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Abstract: Recently the logical entropy was suggested by D. Ellerman (2013) as a new information
measure. The present paper deals with studying logical entropy and logical mutual information
and their properties in a fuzzy probability space. In particular, chain rules for logical entropy and
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1. Introduction

The classical approach in information theory [1] is based on Shannon’s entropy [2]. Using
Shannon entropy Kolmogorov and Sinai [3,4] defined the entropy hpTq of dynamical systems. Since the
entropy hpTq is invariant under isomorphism of dynamical systems, they received a tool for distinction
of non-isomorphic dynamical systems by means of which proved the existence of non-isomorphic
Bernoulli shifts. In the paper by Markechová [5] the Shannon entropy of fuzzy partitions has been
defined. This concept was exploited to define the Kolmogorov-Sinai entropy hm of fuzzy dynamical
systems [6]. The obtained results generalize the corresponding results from the classical Kolmogorov
theory. In [7] it was shown that hm coincides on isomorphic fuzzy dynamical systems, hence hm can
serve as a tool for distinction of non-isomorphic fuzzy dynamical systems.

Recently the logical entropy was suggested by Ellerman [8] as a new information measure. Let
P “ pp1, . . . , pnq P <n be a probability distribution; the logical entropy of P is defined by Ellerman

as the number hpPq “
n
ř

i“1
pip1´ piq. Ellerman also defined a logical mutual information and logical

conditional entropy and discussed the relation of logical entropy to Shannon’s entropy. B. Tamir and
E. Cohen in [9] extended the definition of logical entropy to the theory of quantum states.

The aim of this paper is to study the logical entropy in fuzzy probability spaces and fuzzy
dynamical systems. The paper is organized as follows. In the next section, we give the basic definitions
and some known results used in the paper and we present relevant related works. In Section 3, the
logical entropy, conditional logical entropy, logical mutual information and logical conditional mutual
information of fuzzy partitions of a fuzzy probability space are defined. We state and prove some of the
basic properties of these measures; in particular, chain rules for logical entropy and for logical mutual
information of fuzzy partitions are established. In Section 4, the logical entropy hL of fuzzy dynamical
systems is defined and studied. It is proved that the logical entropy hL of fuzzy dynamical systems is
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invariant under isomorphism of fuzzy dynamical systems (Theorem 12). In this way, we obtained a
new tool for distinction of non-isomorphic fuzzy dynamical systems; this result is demonstrated by
Example 4. Our conclusions are given in Section 5.

2. Basic Definitions and Related Works

In this section, we recall some definitions and basic facts which will be used throughout this
paper and we mention some works connected with the subject of this paper, of course, with no claim
for completeness.

In the classical probability theory, an event is understood as an exactly defined phenomenon and
from the mathematical point of view it is a classical set. In practice, however, we often encounter
events that are described imprecisely, vaguely, so called fuzzy events. That is why various proposals
for a fuzzy generalization of the notions of classical probability theory have been created. The object of
our studies will be a fuzzy probability space pΩ, M, µq defined by Piasecki [10].

Definition 1. By a fuzzy probability space we mean a triplet pΩ, M, µq, where Ω is a non-empty
set, M is a fuzzy σ-algebra of fuzzy subsets of Ω, i.e., M Ă r0, 1sΩ such that (i) 1Ω P M; p1{2qΩ R M;
(ii) if a P M, then aK“ 1Ω ´ a P M; (iii) if an P M, n “ 1, 2, . . . , then Y8n“1an P M, and the mapping
µ : M Ñ r0, 8q satisfies the following conditions: (iv) µpaY a1q “ 1 for all a P M; (v) if tanu

8
n“1 Ă M

such that ai ď aKj (point wisely) whenever i ‰ j, then µpY8n“1anq “
ř8

n“1 µpanq.

The symbols Y8n“1an “ supn an and X8n“1an “ infn an denote the fuzzy union and the fuzzy
intersection of a sequence tanu

8
n“1 Ă M, respectively, in the sense of Zadeh [11]. Note that operations

with fuzzy sets can be introduced in various ways. A review can be found in [12] (see also [13]). Using
the complementation K: a Ñ aK for every fuzzy subset a P M, we see that the complementation

K satisfies two conditions: (i) paKqK “ a for every a P M; (ii) if a ď b, then bK ď aK. Therefore,
M is a distributive σ´ lattice with the complementation K for which the de Morgan laws hold:
pY8n“1anq

K
“ X8n“1aKn and pX8n“1anq

K
“ Y8n“1aKn for any sequence tanu

8
n“1 Ă M. Fuzzy subsets a, b

of Ω such that aX b = 0Ω are called separated fuzzy sets, fuzzy subsets a, b P M such that a ď bK

are called W-separated. Each fuzzy subset a P M such that a ě aK is called a W-universum, each
fuzzy subset a P M such that a ď aK is called a W-empty set. A set from the fuzzy σ-algebra M is a
fuzzy event; W-separated fuzzy events are interpreted as mutually exclusive events. A W-universum
is interpreted as a certain event and a W-empty set as an impossible event. It can be proved that a
fuzzy set a P M is a W-universum if and only if there exists a fuzzy set b P M such that a “ bY bK.
The presented σ-additive fuzzy measure µ has all properties analogous to properties of a classical
probability measure. We recall some of them that are used in the following.

(2.1) µpaKq “ 1´ µpaq for every a P M.
(2.2) µ is a nondecreasing function, i.e., if a, b P M such that a ď b, then µpaq ď µpbq.
(2.3) µpaY bq “ µpaq ` µpbq ´ µpaX bq for every a, b P M.
(2.4) Let b P M. Then µpaX bq “ µpaq for all a P M if and only if µpbq “ 1.
(2.5) If a, b P M are W-separated, then µpaX bq “ 0.
(2.6) If a, b P M such that a ď b, then µpbq “ µpaq ` µpaK X bq.

The proofs of these properties can be found in [10]. The monotonicity of fuzzy measure µ implies
that this measure transforms M into the interval r0, 1s.

The above described couple pΩ, Mq is called in the terminology of Riečan and Dvurečenskij an
F-quantum space, the fuzzy measure µ is so-called F-state [14,15]. This structure has been suggested
(see [14]) as an alternative mathematical model of the quantum statistical theory for the case when
quantum mechanical events are described vaguely. The theory of F-quantum spaces was developed
in [16–19]. According to Tamir and Cohen [9], the logical entropy could be more intuitive and useful
than the Shannon entropy and also von Neumann entropy when analyzing specific quantum problems.
This fact inspired us to study of logical entropy of fuzzy partitions in a fuzzy probability space.
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By a fuzzy partition (of a space pΩ, M, µq) we will understand a finite collection ξ “ ta1, . . . , anu

of members of M such that µpYn
i“1aiq “ 1 and ai ď aKj whenever i ‰ j.

We define in the set of all fuzzy partitions of a fuzzy probability space pΩ, M, µq the relation ă

in the following way: Let ξ, η be two fuzzy partitions of a fuzzy probability space pΩ, M, µq. Then
ξ ă η iff for every b P η there exists a P ξ such that b ď a. In this case, we shall say that the partition η

is a refinement of the partition ξ.
Given two fuzzy partitions ξ “ ta1, . . . , anu and η “ tb1, . . . , bmu of a fuzzy probability space

pΩ, M, µq, their join ξ _ η is defined as the system

ξ _ η “
 

ai X bj; ai P ξ, bj P η
(

.

Since ξ ă ξ _ η and η ă ξ _ η, ξ _ η is so called common refinement of ξ and η.
Let ξ “ ta1, . . . , anu and η “ tb1, . . . , bmu be two fuzzy partitions of a fuzzy probability

space pΩ, M, µq. Then ξ and η are called statistically independent, if µpai X bjq “ µpaiq ¨ µpbjq, for
i “ 1, 2, . . . , n, j “ 1, 2, . . . , m.

If ξ1, ξ2, . . . , ξn are fuzzy partitions of a fuzzy probability space pΩ, M, µq, then we put

_n
i“1 ξi “ ξ1 _ ξ2 _ . . ._ ξn.

Remark 1. A classical probability space pΩ, S, Pq can be regarded as a fuzzy probability space,
if we put M “ tχA; A P Su , where χA is the characteristic function of a set A P S, and define the
mapping µ : M Ñ r0, 1s by µpχAq “ PpAq. A usual measurable partition tA1, . . . , Anu of a space
pΩ, S, Pq (i.e., any sequence tA1, . . . , Anu Ă S such that Yn

i“1 Ai “ Ω and Ai X Aj “Ø pi ‰ jq) can be
regarded as a fuzzy partition of pΩ, M, µq, if we consider ai “ χAi instead of Ai. Namely,

Ai X Aj “ Ø pi ‰ jq implies χAi ď 1´ χA j pi ‰ jq,

and
µpYn

i“1χAiq “ µpχYn
i“1 Ai

q “ PpYn
i“1 Aiq “ PpΩq “ 1.

Let us mention that a fuzzy partition can serve as a mathematical model of the random experiment
whose outcomes are vaguely defined events, i.e., the fuzzy events. The Shannon entropy of fuzzy
partitions of a fuzzy probability space pΩ, M, µq has been defined and studied by Markechová in [5],
see also [20]. It is noted that some other conceptions of fuzzy partitions and their entropy were
introduced, for example in [21–26]. While our approach is based on Zadeh’s connectives, in these
papers other fuzzy set operations were used.

In Section 4, we deal with fuzzy dynamical systems. The notion of fuzzy dynamical system
was introduced by Markechová in [6] as follows. By a fuzzy dynamical system (Definition 6) we
understand a system pΩ, M, µ, τq, where pΩ, M, µq is any fuzzy probability space and τ : M Ñ M is
a µ-preserving σ-homomorphism. Fuzzy dynamical systems include the dynamical systems within
the meaning of the classical Kolmogorov theory (Remark 5) while allowing studying more general
situations, for example, Markov's operators. Recall that a classical dynamical system is a quadruple
pΩ, S, P, Tq, where pΩ, S, Pq is a probability space and T : Ω Ñ Ω is a measure preserving map, i.e.,
T´1pAq P S and P

`

T´1pAq
˘

“ PpAq, whenever A P S. The notion of Shannon’s entropy of fuzzy
partitions of a fuzzy probability space was exploited to define the Kolmogorov-Sinai entropy of fuzzy
dynamical systems [6,7]. Subsequently an ergodic theory for fuzzy dynamical systems was proposed
(see [27]).

Note that other approaches to a fuzzy generalization of the notion of Kolmogorov-Sinai entropy
of a dynamical system can be found in [28–34]. Let us mention that while the definition of fuzzy
dynamical system in this paper is based on Zadeh’s connectives, in our recently published paper [28]
the Lukasiewicz connectives were used to define the fuzzy set operations.
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3. Logical Entropy and Logical Mutual Information of Fuzzy Partitions

Every fuzzy partition ξ “ ta1, . . . , anu of pΩ, M, µq represents within the meaning of the classical
probability theory a random experiment with a finite number of outcomes ai, i “ 1, 2, . . . , n (which are
fuzzy events) with a probability distribution pi “ µpaiq, i “ 1, 2, . . . , n, since pi ě 0 for i “ 1, 2, . . . , n

and
n
ř

i“1
pi “

n
ř

i“1
µpaiq “ µpYn

i“1aiq “ 1. For that reason, we define the logical entropy of ξ “ ta1, . . . , anu

as the number
HLpξq “

ÿ

n
i“1µpaiq p1´ µpaiqq. (1)

Since
n
ř

i“1
µpaiq = 1, we can write

HLpξq “ 1´
ÿ

n
i“1 pµpaiqq

2. (2)

Example 1. Let Ω “ r0, 1s , a : Ω Ñ Ω, apωq “ ω, ω P Ω, M “
 

a, aK, aY aK, aX aK, 0Ω, 1Ω
(

.
If we define the mapping µ : M Ñ r0, 1s by the equalities µp1Ωq “ µp aY aKq “ 1, µp0Ωq “ µp aX
aKq “ 0 and µp aq “ µp aKq “ 1{2, then the triplet pΩ, M, µq is a fuzzy probability space. The systems
ξ1 “

 

a, aK
(

, ξ2 “
 

aY aK
(

, ξ3 “ t1Ωu are fuzzy partitions of pΩ, M, µq such that ξ3 ă ξ2 ă ξ1. By
simple calculation we get their logical entropy: HLpξ1q “ 1{2, HLpξ2q “ HLpξ3q “ 0. In accordance
with the natural requirement, each experiment whose outcome is a certain event has zero entropy.

Some basic properties of logical entropy of fuzzy partitions are presented in the
following theorems.

Theorem 1. The logical entropy HL has the following properties:

(i) HLpξq ě 0 for every fuzzy partition ξ of a fuzzy probability space pΩ, M, µq;
(ii) if ξ, η are two fuzzy partitions of a fuzzy probability space pΩ, M, µq such that ξ ă η, then

HLpξq ď HLpηq;
(iii) HLpξq ď HLpξ _ ηq for every fuzzy partitions ξ, η of a fuzzy probability space pΩ, M, µq.

Proof. The property (i) follows immediately from Equation (1).

(ii) Let ξ “ ta1, . . . , anu , η “ tb1, . . . , bmu , ξ ă η. Then for every bj P η there exists ai0 P ξ such
that bj ď ai0 . Since ξ is a system of pair wise W-separated fuzzy sets, for every i ‰ i0, it holds
bj “ bj X ai0 ď ai0 ď aKi . Hence, by the property (2.5) of fuzzy measure µ, we get

µpbj X aiq “

#

µpbjq, if i “ i0;
0, if i ‰ i0.

Using this equality and the property (2.4) of fuzzy measure µ we obtain

µpbjq ¨ p1´ µpbjqq “

n
ÿ

i“1

µpai X bjq ¨ p1´ µpai X bjqq “

n
ÿ

i“1

µpai X bjq ´

n
ÿ

i“1

`

µpai X bjq
˘2

“ µ
`

Yn
i“1pai X bjq

˘

´

n
ÿ

i“1

`

µpai X bjq
˘2
“ µ

`

pYn
i“1aiq X bj

˘

´

n
ÿ

i“1

`

µpai X bjq
˘2

“ µpbjq ´

n
ÿ

i“1

`

µpai X bjq
˘2.

Therefore

HLpηq “
m
ÿ

j“1

µpbjq ¨ p1´ µpbjqq “

m
ÿ

j“1

µpbjq ´

m
ÿ

j“1

n
ÿ

i“1

`

µpai X bjq
˘2
“1´

m
ÿ

j“1

n
ÿ

i“1

`

µpai X bjq
˘2 .
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Since
m
ÿ

j“1

`

µpai X bjq
˘2
ď

m
ÿ

j“1

µpai X bjq

m
ÿ

j“1

µpai X bjq “ pµpaiqq
2 , i “ 1, 2, . . . , n,

we obtain
n
ÿ

i“1

m
ÿ

j“1

`

µpai X bjq
˘2
ď

n
ÿ

i“1

pµpaiqq
2.

This inequality implies

1´
n
ÿ

i“1

m
ÿ

j“1

`

µpai X bjq
˘2
ě 1´

n
ÿ

i“1

pµpaiqq
2,

what means that
HLpηq ě HLpξq.

Since ξ ă ξ _ η, the inequality (iii) is a simple consequence of (ii). ˝

As a simple consequence of the previous theorem we obtain the following property of the logical
entropy of fuzzy partitions.

Corollary 1. For any fuzzy partitions ξ, η of a fuzzy probability space pΩ, M, µq, it holds

HLpξ _ ηq ě maxpHLpξq; HLpηqq.

Definition 2. If ξ, η are two fuzzy partitions of a fuzzy probability space pΩ, M, µq, then the
conditional logical entropy of ξ given η is defined by the formula

HLpξ{ηq “ HLpξ _ ηq ´ HLpηq. (3)

Remark 2. Evidently HLpξ{ξq “ 0 and from Theorem 1 it follows HLpξ{ηq ě 0.

Proposition 1. For every fuzzy partitions ξ “ ta1, . . . , anu , η “ tb1, . . . , bmu of a fuzzy probability
space pΩ, M, µq, it holds

HLpξ{ηq “
m
ÿ

j“1

`

µpbjq
˘2
´

n
ÿ

i“1

m
ÿ

j“1

`

µpai X bjq
˘2. (4)

Proof. By Equations (2) and (3) we get

HLpξ{ηq “ HLpξ _ ηq ´ HLpηq “ 1´
n
ÿ

i“1

m
ÿ

j“1

`

µpai X bjq
˘2
´ 1`

m
ÿ

j“1

`

µpbjq
˘2

“

m
ÿ

j“1

`

µpbjq
˘2
´

n
ÿ

i“1

m
ÿ

j“1

`

µpai X bjq
˘2. ˝

Theorem 2. Let ξ, η be two fuzzy partitions of a fuzzy probability space pΩ, M, µq. Then

(i) HLpξ{ηq ď HLpξq;
(ii) HLpξ _ ηq ď HLpξq `HLpηq.

Proof. Let ξ “ ta1, . . . , anu and η “ tb1, . . . , bmu. Since for each ai P ξ, i “ 1, 2, . . . , n, we have

ÿ

m
j“1µpai X bjq

`

µpbjq ´ µpai X bjq
˘

ď
ÿ

m
j“1µpai X bjq ¨

ÿ

m
j“1

`

µpbjq ´ µpai X bjq
˘

“ µpaiq ¨
´

ÿ

m
j“1µpbjq ´

ÿ

m
j“1µpai X bjq

¯

“ µpaiq ¨ p1´ µpaiqq ,
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it holds

HLpξ{ηq “
n
ÿ

i“1

m
ÿ

j“1

µpai X bjq ¨ pµpbjq ´ µpai X bjqq ď
ÿ

n
i“1µpaiq p1´ µpaiqq “ HLpξq.

This along with Equation (3) implies

HLpξ _ ηq “ HLpηq ` HLpξ{ηq ď HLpηq ` HLpξq.

The proof is complete. ˝

Theorem 3. Let ξ, η, ς be fuzzy partitions of a fuzzy probability space pΩ, M, µq. Then

HLpξ _ η{ςq “ HLpξ{ςq ` HLpη{ς_ ξq.

Proof. Let ξ “ ta1, . . . , anu , η “ tb1, . . . , bmu , ς “
 

c1, . . . , cp
(

. Then by Equation (4) we get

HLpξ{ςq ` HLpη{ς_ ξq

“

p
ÿ

k“1

pµpckqq
2
´

n
ÿ

i“1

p
ÿ

k“1

pµpai X ckqq
2
`

p
ÿ

k“1

n
ÿ

i“1

pµpck X aiqq
2
´

m
ÿ

j“1

p
ÿ

k“1

n
ÿ

i“1

`

µpbj X ck X aiq
˘2

“

p
ÿ

k“1

pµpckqq
2
´

n
ÿ

i“1

m
ÿ

j“1

p
ÿ

k“1

`

µpai X bj X ckq
˘2
“ HLpξ _ η{ςq. ˝

Theorem 4. (Chain rules for logical entropy). Let ξ1, ξ2, . . . , ξn and η be fuzzy partitions of a fuzzy
probability space pΩ, M, µq. If we put ξ0 “ t1Ωu , then, for n “ 1, 2, . . . , the following equalities hold:

(i) HLpξ1 _ ξ2 _ . . ._ ξnq “
řn

i“1 HLpξi{ _
i´1
k“0ξkq;

(ii) HLp_
n
i“1ξi{ηq =

řn
i“1 HLpξi{ p_

i´1
k“0ξkq _ ηq.

Proof. Evidently, for any fuzzy partition ξ, we have ξ0 _ ξ “ ξ, and HLpξ{ξ0q “ HLpξq.

(i) By Equation (3) we have
HLpξ1 _ ξ2q “ HLpξ1q ` HLpξ2{ξ1q.

For n “ 3, using the previous equality and Theorem 3, we get

HLpξ1 _ ξ2 _ ξ3q “ HLpξ1q ` HLpξ2 _ ξ3{ξ1q

“ HLpξ1q ` HLpξ2{ξ1q ` HLpξ3{ξ2 _ ξ1q.

Now let us suppose that the result is true for a given n P N. Then

HLpξ1 _ ξ2 _ . . ._ ξn _ ξn`1q

“ HLpξ1 _ ξ2 _ . . ._ ξnq ` HLpξn`1{ξ1 _ ξ2 _ . . ._ ξnq

“
ÿ

n
i“1HLpξi{ _

i´1
k“0 ξkq ` HLpξn`1{ξ1 _ ξ2 _ . . ._ ξnq

“
ÿ

n`1
i“1 HLpξi{ _

i´1
k“0 ξkq.

(ii) For n “ 2, using Theorem 3, we obtain

HLpξ1 _ ξ2{ηq “ HLpξ1{ηq ` HLpξ2{ξ1 _ ηq “
ÿ

2
i“1HLpξi{p_

i´1
k“0ξkq _ ηq.
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Suppose that the result is true for a given n P N. Then

HLpξ1 _ ξ2 _ . . ._ ξn _ ξn`1{ηq “ HLp_
n
i“1ξi{ηq ` HLpξn`1{ξ1 _ . . ._ ξn _ ηq

“
ÿ

n
i“1HLpξi{p_

i´1
k“0ξkq _ ηq ` HLpξn`1{p_

i´1
k“0ξkq _ ηq

“
ÿ

n`1
i“1 HLpξi{p_

i´1
k“0ξkq _ ηq. ˝

Definition 3. If ξ, η are two fuzzy partitions of a fuzzy probability space pΩ, M, µq, then the
logical mutual information of ξ and η is defined by the formula

ILpξ, ηq “ HLpξq ´ HLpξ{ηq . (5)

Remark 3. As a simple consequence of Equation (3) we have:

ILpξ, ηq “ HLpξq ` HLpηq ´ HLpξ _ ηq, (6)

and subsequently we see that

ILpξ, ηq “ ILpη, ξq and ILpξ, ξq “ HLpξq.

Corollary 2. For fuzzy partitions ξ, η of a fuzzy probability space pΩ, M, µq, it holds

0 ď ILpξ, ηq ď minpHLpξq; HLpηqq.

Proof. The result follows immediately from Equation (6) and the property (iii) of Theorem 1. ˝

Definition 4. Let ξ, η, ς be fuzzy partitions of a fuzzy probability space pΩ, M, µq. Then the
logical conditional mutual information of ξ and η given ς is defined by the formula

ILpξ, η{ςq “ HLpξ{ςq ´ HLpξ{η _ ςq. (7)

Theorem 5 (Chain rules for logical mutual information). Let ξ1, ξ2, . . . , ξn and η be fuzzy partitions
of a fuzzy probability space pΩ, M, µq. If we put ξ0 “ t1Ωu , then, for n “ 1, 2, . . . , it holds

ILp_
n
i“1ξi, ηq “

ÿ

n
i“1 ILpξi, η{ _i´1

k“0 ξkq.

Proof. By Equation (5), Theorem 4, and Equation (7), we obtain

ILp_
n
i“1ξi, ηq “ HLp_

n
i“1ξiq ´ HLp_

n
i“1ξi{ηq

“
ÿ

n
i“1HLpξi{ _

i´1
k“0 ξkq ´

ÿ

n
i“1HLpξi{p_

i´1
k“0ξkq _ ηq

“
ÿ

n
i“1 pHL pξi{ _

i´1
k“0 ξkq ´ HLpξi{ p_

i´1
k“0ξkq _ ηq

¯

ÿ

n
i“1 ILpξi, η{ _i´1

k“0 ξkq. ˝

Theorem 6. If fuzzy partitions ξ, η of a fuzzy probability space pΩ, M, µq are statistically
independent, then

ILpξ, ηq “ HLpξq ¨ HLpηq.
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Proof. Let ξ “ ta1, . . . , anu , η “ tb1, . . . , bmu be statistically independent fuzzy partitions of a
fuzzy probability space pΩ, M, µq. Then µpai X bjq “ µpaiq ¨ µpbjq, for i “ 1, 2, . . . , n, j “ 1, 2, . . . , m. By
simple calculation we obtain:

ILpξ, ηq “ HLpξq ` HLpηq ´ HLpξ _ ηq

“ 1´
ÿ

n
i“1 pµpaiqq

2
` 1´

ÿ

m
j“1

`

µpbjq
˘2
´ 1`

n
ÿ

i“1

m
ÿ

j“1

`

µpai X bjq
˘2

“ 1´
ÿ

n
i“1 pµpaiqq

2
´
ÿ

m
j“1

`

µpbjq
˘2
`

n
ÿ

i“1

pµpaiqq
2

m
ÿ

j“1

`

µpbjq
˘2

“

´

1´
ÿ

n
i“1 pµpaiqq

2
¯

¨

´

1´
ÿ

m
j“1

`

µpbjq
˘2
¯

“ HLpξq ¨ HLpηq. ˝

Corollary 3. If fuzzy partitions ξ, η of a fuzzy probability space pΩ, M, µq are statistically
independent, then

1´ HLpξ _ ηq “ p1´ HLpξqq ¨ p1´ HLpηqq.

Proof. Calculate:

p1´ HLpξqq ¨ p1´ HLpηqq “ 1´ HLpξq ´ HLpηq ` HLpξq ¨ HLpηq

“ 1´ HLpξq ´ HLpηq ` ILpξ, ηq

“ 1´ HLpξ _ ηq. ˝

Definition 5. Let ξ, η, ς be fuzzy partitions of a fuzzy probability space pΩ, M, µq. We say that ξ

is conditionally independent to ς given η (and write ξ Ñ η Ñ ς ) if ILpξ, ς{ηq “ 0.

Theorem 7. For fuzzy partitions ξ, η, ς of a fuzzy probability space pΩ, M, µq, it holds
ξ Ñ η Ñ ς if and only if ς Ñ η Ñ ξ.

Proof. Let ξ Ñ η Ñ ς. Then 0 “ ILpξ, ς{ηq “ HLpξ{ηq´ HLpξ{η _ ςq. Therefore by Equation (3)
we get:

HLpξ{ηq “ HLpξ{η _ ςq “ HLpξ _ η _ ςq ´ HLpη _ ςq.

Calculate:

ILpς, ξ{ηq “ HLpς{ηq ´ HLpς{ξ _ ηq “ HLpς_ ηq ´ HLpηq ´ HLpξ _ η _ ςq ` HLpξ _ ηq

“ HLpξ _ ηq ´ HLpηq ´ HLpξ{ηq “ 0. ˝

Remark 4. According to Theorem 7, we may say that ξ and ς are conditionally independent given
η and write ξ Ø η Ø ς instead of ξ Ñ η Ñ ς.

Theorem 8. For fuzzy partitions ξ, η, ς of a fuzzy probability space pΩ, M, µq, it holds

ILpξ, η _ ςq “ ILpξ, ηq ` ILpξ, ς{ηq “ ILpξ, ςq ` ILpξ, η{ςq.

Proof. Calculate:

ILpξ, ηq ` ILpξ, ς{ηq “ HLpξq ´ HLpξ{ηq ` HLpξ{ηq ´ HLpξ{η _ ςq

“ HLpξq ´ HLpξ{η _ ςq “ ILpξ, η _ ςq.

The second equality is obtained in the same way. ˝

Theorem 9. For fuzzy partitions ξ, η, ς of a fuzzy probability space pΩ, M, µq such that
ξ Ñ η Ñ ς, we have

(i) ILpξ _ η, ςq “ ILpη, ςq;
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(ii) ILpη, ςq “ ILpξ, ςq` ILpς, η{ξq;
(iii) ILpξ, η{ςq ď ILpξ, ηq.

Proof. (i) Since by the assumption ILpξ, ς{ηq “ 0, using the chain rule for logical mutual
information, we obtain

ILpξ _ η, ςq “ ILpη _ ξ, ςq “ ILpη, ςq ` ILpξ, ς{ηq “ ILpη, ςq.

(ii) By Theorem 8, we have ILpξ _ η, ςq “ ILpς, ξq` ILpς, η{ξq. Hence using (i), we can write

ILpη, ςq “ ILpξ _ η, ςq “ ILpς, ξq ` ILpς, η{ξq.

(iii) From (ii) it follows the inequality ILpς, η{ξq ď ILpς, ηq. By Theorem 7 we can interchange ξ and ς.
Doing so we obtain ILpξ, η{ςq ď ILpξ, ηq. ˝

4. Logical Entropy of Fuzzy Dynamical Systems

In this section, we extend the definition of logical entropy of fuzzy partitions to fuzzy
dynamical systems.

Definition 6 [6]. By a fuzzy dynamical system we mean a quadruple pΩ, M, µ, τq, where
pΩ, M, µq is a fuzzy probability space and τ : M Ñ M is a µ´ preserving σ´ homomorphism, i.e.,
τpaKq “ pτpaqqK, τpY8n“1anq “ Y

8
n“1τpanq and µpτpaqq “ µpaq, for every a P M and any sequence

tanu
8
n“1 Ă M.

Let any fuzzy dynamical system pΩ, M, µ, τq be given. Denote τ2 “ τ ˝ τ and put τn “ τ ˝ τn´1,
n “ 1, 2, . . . , where τ0 is an identical mapping on M. Define τnξ = t τnpaq; a P ξu for every fuzzy
partition ξ of pΩ, M, µq. Evidently τnξ is a fuzzy partition of pΩ, M, µq.

Remark 5. A classical dynamical system pΩ, S, P, Tq can be regarded as a fuzzy dynamical system
pΩ, M, µ, τq, if we consider a fuzzy probability space pΩ, M, µq from Remark 1 and define the mapping
τ : M Ñ M by τpχAq “ χA ˝ T “ χT´1pAq, χA P M.

Example 2. Let any fuzzy probability space pΩ, M, µq be given. Let T : Ω Ñ Ω be a measure
µ preserving transformation, i.e., a P M implies a ˝ T P M and µpa ˝ Tq “ µpaq. Define the
mapping τ : M Ñ M by the formula τpaq “ a ˝ T for all a P M. Then it is easy to verify that τ is a
σ´ homomorphism. Moreover, µpτpaqq “ µpa ˝ Tq “ µpaq for all a P M. Hence τ is a µ´ preserving
map and the system pΩ, M, µ, τq is a fuzzy dynamical system.

Theorem 10. Let ξ, η be fuzzy partitions of a fuzzy probability space pΩ, M, µq. Then, for
n “ 1, 2, . . . , the following equalities hold:

(i) HLp τnξq “ HLpξq;
(ii) HLp τnξ {τnηq “ HLpξ{ηq ;

(iii) HLp_
n´1
i“0 τiξq “ HLpξq`

řn´1
j“1 HLpξ{ _

j
i“1 τiξq.

Proof. Since the mapping τ : M Ñ M is µ´ invariant, for every a P M, we have µpτnpaqq “ µpaq.
This fact immediately implies the equalities (i) and (ii).

We prove the assertion (iii) by mathematical induction. The statement is true for n “ 2 according
to Equation (3). Assume that the assertion holds for a given n P N. Since by the part (i) of this theorem
we have

HLp_
n
i“1τiξq “ HLpτp_

n´1
i“0 τiξqq “ HLp_

n´1
i“0 τiξq,
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by means of Equation (3) and the induction assumption we obtain

HLp_
n
i“0τiξq “ HLpp_

n
i“1τiξq _ ξq “ HLp_

n
i“1τiξq ` HLpξ{ _

n
i“1 τiξq

“ HLp_
n´1
i“0 τiξq ` HLpξ{ _

n
i“1 τiξq “ HLpξq `

ÿ

n´1
j“1 HLpξ{ _

j
i“1 τiξq ` HLpξ{ _

n
i“1 τiξq

“ HLpξq `
ÿ

n
j“1HLpξ{ _

j
i“1 τiξq.

The proof is finished. ˝

In the following we define the logical entropy of fuzzy dynamical systems. The possibility of this
definition is based on Proposition 2. To its proof we need the assertion of the following lemma.

Lemma 1 ([35], Theorem 4.9). Let tanu
8
n“1 be a subadditive sequence of nonnegative real numbers,

i.e., an ě 0 and an`m ď an `am for every n, m P N. Then lim
nÑ8

1
n an exists.

Proposition 2. For any fuzzy partition ξ of pΩ, M, µq, lim
nÑ8

1
n HLp_

n´1
i“ 0 τiξq exists.

Proof. Put
an “ HLp_

n´1
i“ 0 τiξq.

By the property (i) of Theorem 1, an ě 0 for every n P N. According to subadditivity of logical
entropy (the property (ii) of Theorem 2) and the property (iii) from the previous theorem, for any
n, m P N, we obtain

an`m “ HLp_
n`m´1
i“0 τiξq ď HLp_

n´1
i“0 τiξq ` HLp_

n`m´1
i“n τiξq

“ an ` HLpτ
np_m´1

i“0 τiξqq

“ an ` HLp_
m´1
i“0 τiξq “ an ` am.

This means that tanu
8
n“1 is a subadditive sequence of nonnegative real numbers, and therefore by

Lemma 1, lim
nÑ8

1
n an exists. ˝

Definition 7. Let pΩ, M, µ, τq be a fuzzy dynamical system, ξ be a fuzzy partition of pΩ, M, µq.
Then we define

hLpτ, ξq “ lim
nÑ8

1
n

HLp_
n´1
i“ 0 τiξq.

The logical entropy of a fuzzy dynamical system pΩ, M, µ, τq is defined by the formula

hLpτq “ sup thLpτ, ξqu ,

where the supremum is taken over all fuzzy partitions ξ of pΩ, M, µq.

Remark 6. The trivial case of a fuzzy dynamical system is a quadruple pΩ, M, µ, Iq, where
pΩ, M, µq is any fuzzy probability space and I : M Ñ M is an identity mapping. Since the operation
_ is idempotent, for every fuzzy partition ξ of pΩ, M, µq it holds

hLpI, ξq “ lim
nÑ8

1
n

HLp_
n´1
i“ 0 Iiξq “ lim

nÑ8

1
n

HLpξq “ 0.

The logical entropy of the fuzzy dynamical system pΩ, M, µ, Iq is hLpIq “ supt hLpI, ξq; ξ is a
fuzzy partition of pΩ, M, µq} = 0.

Example 3. Consider the fuzzy probability space pΩ, M, µq from Example 1. If we define a
mapping τ : M Ñ M by the equalities τp aY aKq “ aY aK, τp1Ωq “ 1Ω, τp0Ωq “ 0Ω, τp aX aKq “
a X aK, τp aq “ aK, τp aKq “ a, then pΩ, M, µ, τq is a fuzzy dynamical system. The systems
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ξ1 “
 

a, aK
(

, ξ2 “
 

aY aK
(

, ξ3 “ t1Ωu are fuzzy partitions of pΩ, M, µq with HLpξ1q “ 1{2,
HLpξ2q “ HLpξ3q “ 0. Calculate:

hLpτ, ξ1q “ lim
nÑ8

1
n

HLp_
n´1
i“ 0 τiξ1q “ lim

nÑ8

1
n

HLpξ1q “ 0.

Since hLpτ, ξ2q “ hLpτ, ξ3q = 0, the logical entropy of pΩ, M, µ, τq is the number

hLpτq “ supthLpτ, ξiq; i “ 1, 2, 3u “ 0.

Theorem 11. For every fuzzy partition ξ of a fuzzy probability space pΩ, M, µq it holds

hLpτ, ξq “ hLpτ,_k
i“ 0τiξq.

Proof. Let ξ be any fuzzy partition of a fuzzy probability space pΩ, M, µq. We get

hLpτ,_k
i“ 0τiξq “ lim

nÑ8

1
n

HLp_
n´1
j“ 0 τ jp_k

i“ 0τiξqq

“ lim
nÑ8

k` n
n

¨
1

k` n
HLp_

k`n´1
s“ 0 τsξq

“ lim
nÑ8

1
k` n

HLp_
k`n´1
s“ 0 τsξq “ hLpτ, ξq. ˝

The notion of isomorphism of fuzzy dynamical systems was defined in [7] as follows:

Definition 8. We say that two fuzzy dynamical systems pΩ1, M1, µ1, τ1q, pΩ2, M2, µ2, τ2q are
isomorphic if there exists a bijective mapping f : M1 Ñ M2 satisfying the following conditions:

(i) f preserves the operations, i.e., f pY8n“1anq “ Y
8
n“1 f panq, f paKq “ 1Ω2 ´ f paq, for any sequence

tanu
8
n“1 Ă M1 and for every a P M1.

(ii) The diagram
M1

τ1
Ñ M1

f Ó Ó f
M2 Ñ

τ2
M2

is commutative, i.e., f pτ1paqq “ τ2p f paqq, for every a P M1.

(iii) µ1paq “ µ2p f paqq for every a P M1.

Remark 7. It is easy to see that, for every b1, b2 P M2, f´1pb1 X b2q “ f´1pb1q X f´1pb2q. Namely,
because f is bijective, for every b1, b2 P M2, there exist a1, a2 P M1 such that f´1pb1q “ a1, f´1pb2q “ a2,
and we have

f´1pb1 X b2q “ f´1p f pa1q X f pa2qq “ f´1p f pa1 X a2qq “ a1 X a2 “ f´1pb1q X f´1pb2q.

In an analogous way, we get that for every b1, b2 P M2, f´1pb1 Y b2q “ f´1pb1q Y f´1pb2q and for
every b P M2

p f´1pbqq
K
“ f´1pbKq and µ2pbq “ µ1p f´1pbqq.

In the following theorem we prove that the logical entropy of fuzzy dynamical systems is invariant
under isomorphism.

Theorem 12. If fuzzy dynamical systems pΩ1, M1, µ1, τ1q, pΩ2, M2, µ2, τ2q are isomorphic, then

hLpτ1q “ hLpτ2q.

Proof. Let a mapping f : M1 Ñ M2 represents an isomorphism of systems pΩ1, M1, µ1, τ1q,
pΩ2, M2, µ2, τ2q. Let ξ “ ta1, . . . , anu be a fuzzy partition of a fuzzy probability space
pΩ1, M1, µ1q. Put

f pξq “ t f pa1q, f pa2q, . . . , f panqu .
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Since
µ2pY

n
i“1 f paiqq “ µ2p f pYn

i“1aiqq “ µ1pY
n
i“1aiq “ 1

and
f paiq X p f pajqq

K
“ f paiq X f paKj q “ f pai X aKj q “ f paiq, whenever i ‰ j,

the system f pξq is a fuzzy partition of a fuzzy probability space pΩ2, M2, µ2q. Moreover,

HLp f pξqq “ 1´
ÿ

n
i“1 pµ2p f paiqqq

2
“ 1´

ÿ

n
i“1 pµ1paiqq

2
“ HLpξq

and
hLpτ2, f pξqq “ lim

nÑ8

1
n

HLp_
n´1
i“0 τi

2 f pξqq

“ lim
nÑ8

1
n

HLp_
n´1
i“0 f pτi

1ξqq “ lim
nÑ8

1
n

HLp f p_n´1
i“0 τi

1ξqq

“ lim
nÑ8

1
n

HLp_
n´1
i“0 τi

1ξq “ hLpτ1, ξq.

Therefore
thLpτ1, ξq; ξ is a fuzzy partition of pΩ1, M1, µ1qu Ă thLpτ2, ηq; η is a fuzzy partition of pΩ2, M2, µ2qu

and consequently
hLpτ1q “ sup thLpτ1, ξqu ď sup thLpτ2, ηqu “ hLpτ2q,

where the supremum on the left side of the inequality is taken over all fuzzy partitions ξ of pΩ1, M1, µ1q

and the supremum on the right side of the inequality is taken over all fuzzy partitions η of pΩ2, M2, µ2q.
Let us prove the opposite inequality. Let η “ tb1, . . . , bmu be a fuzzy partition of a fuzzy probability

space pΩ2, M2, µ2q. Then the system f´1pηq “
 

f´1pb1q, . . . , f´1pbmq
(

is a fuzzy partition of a fuzzy
probability space pΩ1, M1, µ1q. Indeed, according to the previous remark we have

µ1pY
m
i“1 f´1pbiqq “ µ1p f´1pYm

i“1biqq “ µ2pY
m
i“1biq “ 1

and

f´1pbiq X p f´1pbjqq
K
“ f´1pbiq X f´1pbKj q “ f´1pbi X bKj q “ f´1pbiq, whenever i ‰ j.

Calculate:

HLp f´1 pηqq “ 1´
ÿ

m
i“1

´

µ1p f´1pbiqq
¯2
“ 1´

ÿ

m
i“1 pµ2pbiqq

2
“ HLpηq

and
hLpτ1, f´1 pηqq “ lim

nÑ8

1
n

HLp_
n´1
i“0 τi

1p f´1pηqqq

“ lim
nÑ8

1
n

HLp_
n´1
i“0 f´1pτi

2ηqq “ lim
nÑ8

1
n

HLp f´1p_n´1
i“0 τi

2ηqq

“ lim
nÑ8

1
n

HLp_
n´1
i“0 τi

2 ηq “ hLpτ2, ηq.

Hence
thLpτ2, ηq; η is a fuzzy partition of pΩ2, M2, µ2qu Ă thLpτ1, ξq; ξ is a fuzzy partition of pΩ1, M1, µ1qu

and consequently
hLpτ2q “ sup thLpτ2, ηqu ď sup thLpτ1, ξqu “ hLpτ1q,

where the supremum on the left side of the inequality is taken over all fuzzy partitions η of pΩ2, M2, µ2q

and the supremum on the right side of the inequality is taken over all fuzzy partitions ξ of pΩ1, M1, µ1q.
Because hLpτ1q ď hLpτ2q and hLpτ2q ď hLpτ1q, the proof is complete. ˝
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Remark 8. From Theorem 12 it follows that if hLpτ1q ‰ hLpτ2q, then the corresponding fuzzy
dynamical systems pΩ1, M1, µ1, τ1q, pΩ2, M2, µ2, τ2q are non-isomorphic. Thus, the logical
entropy distinguishes non-isomorphic fuzzy dynamical systems. We illustrate this result by the
following example.

Example 4. Consider the probability space pΩ, S, Pq, where Ω is the unit interval r0, 1s , S is the σ´

algebra of all Borel subsets of r0, 1s , and P : S Ñ r0, 1s is the Lebesgue measure, i.e., P prx, ysq “ y´ x
for any x, y P r0, 1s , x ă y. Now we can construct a fuzzy probability space pΩ, M, µq, where
M “ tχA; A P Su , and the mapping µ : M Ñ r0, 1s is defined by µpχAq “ PpAq. Let c P p0, 1q , and
Tc : r0, 1s Ñ r0, 1s is defined by the formula Tcpxq “ x` c (mod 1). Let us consider the fuzzy dynamical
system pΩ, M, µ, τcq, where the mapping τc : M Ñ M is defined by τcpχAq “ χA ˝ Tc “ χT´1

c pAq for
any χA P M. The logical entropy distinguishes non-isomorphic fuzzy dynamical systems pΩ, M, µ, τcq

for different c. Namely, hLpτcq “ 0, if c “ 1{2, but hLpτcq ą 0 for c “ 1´
?

2.

5. Conclusions

In this paper, we introduced the notion of logical entropy of fuzzy partition of a given fuzzy
probability space. The proposed measure can be used (in addition to the Shannon entropy of fuzzy
partition) as a measure of information of experiment whose outcomes are fuzzy events. We also defined
the notions of logical conditional entropy, logical mutual information and logical conditional mutual
information of fuzzy partitions. We proved basic properties of the suggested measures. Subsequently
the concept of logical entropy of fuzzy partitions was exploited to define the logical entropy of fuzzy
dynamical systems. Finally, it was shown that isomorphic fuzzy dynamical systems have the same
logical entropy. In this way, we obtained a new tool for distinction of non-isomorphic fuzzy dynamical
systems. This result is demonstrated in Example 4.
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