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Abstract: The concept of a quantum heat engine (QHEN) has been discussed in the literature,
not only due to its intrinsic scientific interest, but also as an alternative to efficiently recover, on
a nanoscale device, thermal energy in the form of useful work. The quantum character of a QHEN
relies, for instance, on the fact that any of its intermediate states is determined by a density
matrix operator. In particular, this matrix can represent a mixed state. For a classical heat engine,
a theoretical upper bound for its efficiency is obtained by analyzing its quasi-static operation along
a cycle drawn by a sequence of quasi-equilibrium states. A similar analysis can be carried out for
a quantum engine, where quasi-static processes are driven by the evolution of ensemble-averaged
observables, via variation of the corresponding operators or of the density matrix itself on a tunable
physical parameter. We recently proposed two new conceptual designs for a magnetically-driven
quantum engine, where the tunable parameter is the intensity of an external magnetic field. Along
this article, we shall present the general quantum thermodynamics formalism developed in order
to analyze this type of QHEN, and moreover, we shall apply it to describe the theoretical efficiency
of two different practical implementations of this concept: an array of semiconductor quantum dots
and an ensemble of graphene flakes submitted to mechanical tension.
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1. Introduction

The interesting subject of quantum thermodynamics [1], which is largely based on the theory
of quantum open systems [1,2], provides a theoretical framework to study quantum heat engines
(QHEN). The analysis of a QHEN operating far from thermal equilibrium is an interesting and, to
a great extent, an open problem. The dynamics of such systems, whose states are determined by
a reduced density matrix operator out of equilibrium, is described by different approximations to the
master equation [1–3].

As an alternative to recover thermal energy in the form of useful work on a nanoscale device,
QHENs have been proposed in the literature [4–18]. Within the general definition of a QHEN, whose
working fluid is of a quantum mechanical nature, it is important to distinguish those that have
a reciprocating operation [3,19]. It has been proven [19] that under not too restrictive conditions,
a reciprocating QHEN converges to a stationary limit cycle. Such a limit cycle, in direct analogy to
a classical engine, can be pictured as a sequence of equilibrium states, with a trajectory determined
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by a minimal set of variables [1,19,20]. Interesting examples of this concept are constituted by
photosynthesis in plants [21], as well as human-designed photocells [11,12], where the working
substance are thermalized photons. Moreover, it has been recently proposed that if the reservoirs are
also of a quantum mechanical nature, these could be prepared into quantum coherent states [11,12]
or into squeezed thermal states [11,12,22]. These examples by no means constitute the only possible
configurations, since a number of different designs based on alternative principles have been
proposed in the literature, such as entangled states in a qubit [23] and quantum mechanical versions
of the Diesel [15] and the Otto cycle [16,22,24,25]. Conceptually, a statistical ensemble of confined
single-particle systems can undergo a cycle of reversible transformations driven by a generalized
external field. The driving field can be a mechanical force [4–7,9] that, by tuning a confinement
length-scale, modifies the inter-level spacing of the single-particle spectrum, thus inducing a sequence
of transitions on the statistical population of the single-particle states, in close analogy to a classical
gas confined by a piston. We have discussed generalizations of this idea in the context of relativistic
Dirac particles [26]. More recently, we proposed [27] a magnetically-driven QHEN, based on the
combined effects of a parabolic confining potential, representing a semiconductor quantum dot,
and an external magnetic field. In the single-particle picture, this configuration possesses an exact
solution in terms of effective Landau levels, which constitute a discrete spectrum, and the effective
confinement length is determined by the Landau radius. Here, the inter-level distance can be
modulated by tuning the external magnetic field [27], with the effect of modulating the Landau
radius. An interesting variation over this idea is the magneto-strain driven QHEN that, as we recently
proposed, could be implemented on an ensemble of graphene flakes [28]. In this article, we will start
with a brief introduction to the theoretical framework of quantum thermodynamics. We will present
a microscopic formulation of the first law of thermodynamics, both from general out-of-equilibrium
considerations, as well as in the more restricted quasi-static conditions. Finally, we will present two
explicit realistic examples of the application of this formalism, in the analysis of magnetically-driven
quantum engines [27,28].

2. General Theory

Along this section, we will present a brief introduction to the main definitions and physical
quantities involved in the theory of quantum thermodynamics. These definitions will allow us to
formulate the basic theory and assumptions required for the analysis of QHENs. First, we shall
introduce the reduced density matrix operator characterizing the non-equilibrium states of an open
quantum system, as well as the Markovian approximation leading to the master equation that governs
its time evolution. From this description, we shall derive the non-equilibrium, microscopic version of
the first law of thermodynamics for open quantum systems. At last, we shall focus on the quasi-static
approximation to this law, which constitutes the theoretical basis for the two explicit examples of
QHENs to be discussed in Sections 3 and 4.

In general terms, a QHEN can be pictured as a quantum open system in contact with one or more
thermal reservoirs, with which the system interacts and exchanges energy and information.

As depicted schematically in Figure 1, if the open system (S) and the reservoir (B) were isolated
entities, they would be described by Hamiltonian operators ĤS and ĤB, acting over states in Hilbert
spaces HS and HB, respectively. Due to the interaction ĤI that mixes the degrees of freedom
of both subsystems S and B, the composed Hilbert space for the combination is HS ⊗ HB, with
the Hamiltonian:

Ĥ = ĤS ⊗ 1B + 1S ⊗ ĤB + ĤI . (1)
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System (S)

(HS , ĤS , ⇢̂S)

Reservoir (B)
(HB , ĤB , ⇢̂B)

H = HS ⌦ HB

ĤI

Figure 1. (Color online) Schematics of the small open system (S) interacting with a reservoir (B).

Let us define by ρ̂ the density matrix operator describing the mixed state of the combined system
S and B. The reduced density matrix operator that characterizes the state of S, denoted by ρ̂S, is
obtained by tracing over the reservoir degrees of freedom,

ρ̂S = TrB ρ̂. (2)

The equation of motion for the reduced density matrix Equation (2) is then given by:

dρ̂S(t)
dt

= − i
h̄

TrB
[
Ĥ, ρ̂(t)

]
. (3)

Under general physical assumptions, mainly concerning the short correlation times for
observables in the reservoir B (to be discussed later in more detail), Equation (3) can be approximated
by a Markovian master equation [1,2] of the Lindblad form. Mathematically, this involves the
existence of a dynamical map from the space of density matrices of the system S onto itself. This map
combines unitary evolution with a dissipative term described by a super-operator LD and can be seen
as a quantum mechanical version of the Liouville equation [1,2]:

dρ̂S
dt

= − i
h̄
[Ĥ
′
S, ρ̂S] + LD ρ̂S. (4)

Here, the super-operator LD represents the dissipative contribution arising from the interaction
between the open system S and the reservoir B. Notice that in general, Ĥ

′
S may include a

renormalization of the Hamiltonian ĤS due to interaction between the system and the reservoir [2].
We shall come back to this point later in more detail.

The general form [1] of the super-operator LD representing dissipation, within the assumptions
leading to the Markovian master Equation (4), can be expressed by a set of Lindblad operators V̂j,
such that, for any observable Ô:

LDÔ = ∑
j

γj

(
V̂jÔV̂†

j −
1
2

{
V̂†

j V̂j, Ô
})

. (5)

Let us now discuss the implications of the previous quantum-mechanical description of the
open system dynamics in the context of non-equilibrium thermodynamics. The instantaneous
ensemble-average energy for the system out-of-equilibrium is given by:

E(t) = TrS
(
ρ̂S(t)ĤS

)
, (6)
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where the trace in this case is taken over the degrees of freedom of the open system S. The energy
balance arising from this equation is:

dE
dt

= TrS

(
dρ̂S
dt

ĤS

)
+ 〈∂ĤS

∂t
〉 = Q̇ + Ẇ. (7)

This is a non-equilibrium, quantum mechanical version of the first law of thermodynamics,
where Q̇ represents the heat dissipation rate exchanged between the system and the environment,
whereas Ẇ is the power. These terms are defined by the expressions:

Q̇ = TrS
(

ĤLDρS
)
= TrS

(
LD ĤSρS

)
= 〈LD ĤS〉,

Ẇ = TrS

(
ρ̂S

∂ĤS
∂t

)
= 〈∂ĤS

∂t
〉. (8)

We shall now review the general assumptions required to obtain the Lindblad form of
the Markovian master equation presented in Equation (4), starting from an explicit microscopic
derivation. In our present discussion and along the examples that will be developed along this
work, we shall assume that the reservoir B is a truly macroscopic one, as compared to the small
size of the open system S. Under this assumption, it is safe to say that the relaxation time scale for
the dynamics of the reservoir τB is much shorter that the corresponding one for the system S, i.e.,
τB � τS. Moreover, when the reservoir is considered as a macroscopic object, the eigenstates of
ĤB form a continuum. Under these two physical assumptions, in the weak coupling limit between
system and reservoir, the Born–Markov approximation [2] is valid,

ρ̂(t) ∼ ρ̂S(t)⊗ ρ̂B. (9)

The most general form of interaction Hamiltonian can be expressed as:

ĤI = ∑
α

Âα ⊗ B̂α, (10)

with Âα and B̂α two sets of Hermitian operators acting on the Hilbert spacesHS andHB, respectively.
Let us assume the spectral decomposition for the open system Hamiltonian

ĤS = ∑ε ∑
gε

i=1 ε|εi〉〈εi| and define the family of operators in frequency space [2]:

Âα(ω) = ∑
ε′−ε=ω

P̂(ε)Âα P̂(ε′),

B̂α(ω) = ∑
ε′−ε=ω

P̂(ε)B̂α P̂(ε′), (11)

for P̂(ε) = ∑
gε

i=1 |εi〉〈εi| projection operators onto the subspace of eigenvectors of ĤS with eigenvalue
ε and possible degeneracy gε ≥ 1.

Under the assumption τB � τS stated above, it is possible to separate two different time scales
for the system and reservoir dynamics. Hence, a further approximation involves the averaging
of the rapidly oscillating terms in the dynamics of the reservoir, also known as rotating wave
approximation, where the environment operators average out to zero, 〈B̂α(t)〉 = Tr(B̂α(t)ρ̂B) = 0.
Under these approximations, the dynamics [2] of the reduced density matrix operator, in the
Schrödinger picture, is expressed by the Born–Markov master equation:

dρ̂S
dt

= − i
h̄
[
ĤS + ĤLS, ρ̂S(t)

]
+ LD ρ̂S(t). (12)

Mathematically, this implies the existence of a one-parameter dynamical map, from the space of
density matrices V(t) : S(HS) → S(HS) of the system S onto itself, with ρ̂(0)→ ρ̂(t) = V(t)ρ̂S(0)
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for t > 0. This map possesses a semigroup property V(t1)V(t2) = V(t1 + t2). Its infinitesimal
generator, as seen in Equation (12), combines unitary evolution with a dissipative term described
by a super-operator LD [1,2]. The terminology super-operator refers to the fact that the dynamical
map V(t) acts upon operators (reduced density matrix) instead of vectors in Hilbert space.
In Equation (12), we have defined the Lamb-shift operator [2]:

ĤLS = ∑
ω

∑
αβ

σαβ(ω)Â†
α(ω)Âβ(ω), (13)

whose physical meaning is a renormalization of the open system Hamiltonian due to its interaction
with the rapidly fluctuating environment [2], by analogy with the Lamb shift [29] in atomic physics.
On the other hand, the dissipation super-operator in Equation (12) is explicitly given by [2]:

LD ρ̂S = ∑
α,β

∑
ω

γαβ(ω)

(
Âβ(ω)ρ̂S(t)Â†

α(ω)− 1
2

{
Â†

α(ω)Âβ(ω), ρ̂S(t)
})

. (14)

The coefficients in the dissipator and Lamb-shift operator are given by the real and imaginary
parts of the Fourier transform of the bath auto-correlation functions:

Γαβ(ω) =
∫ ∞

0
dseiωs〈B̂†

α(s)B̂β(0)〉 =
1
2

γαβ(ω) + iσαβ(ω). (15)

Notice that Equation (15) can be expressed in the standard Lindblad form Equation (4) by
diagonalizing the matrices γαβ.

2.1. Relaxation to Equilibrium

If the reservoir is a macroscopic system, it can be assumed to be in thermal equilibrium, with a
Gibbsian canonical distribution at inverse temperature β,

ρ̂B =
exp(−βĤB)

TrB exp(−βĤB)
. (16)

Under this assumption, a natural question to pose is if the small open system S would relax to a
stationary distribution corresponding to its own thermal distribution at the same temperature as the
reservoir, i.e., if:

lim
t→∞

ρ̂S(t) = ρ̂S,eq =
exp(−βĤS)

TrS exp(−βĤS)
. (17)

It turns out that for the approximate Markovian dynamics described by the Born–Markov master
Equation (12), this is indeed the case. From the Kubo–Martin–Schwinger (KMS) relation for the
correlators of the reservoir operators:

〈B̂†
α(t)B̂β(0)〉 = TrB

(
ρ̂B B̂†

α(t)B̂β(0)
)
= 〈B̂β(0)B̂†

α(t + iβ)〉 (18)

that follows directly from the thermal distribution of the reservoir Equation (16), one has
the properties:

γαβ(−ω) = e−ωβγαβ(ω),

ρ̂S,eq Âα(ω) = eβω Âα(ω)ρ̂S,eq, (19)

ρ̂S,eq Â†
α(ω) = e−βω Â†

α(ω)ρ̂S,eq.



Entropy 2016, 18, 173 6 of 25

Using these relations, it is straightforward to prove that the dissipation term vanishes for the
canonical Gibbsian distribution Equation (17):

LD ρ̂S,eq = 0. (20)

On the other hand, it is evident that the Lamb-shift operator Equation (13) commutes with the
open system Hamiltonian ĤS, which implies:[

ĤLS, ĤS
]
= 0 =⇒

[
ĤS + ĤLS, ρ̂S,eq

]
= 0. (21)

Therefore, it follows from Equations (20) and (21) that the thermal distribution Equation (17)
is indeed a steady-state solution for the small system master Equation (12) in the Born–Markov
approximation, given that the macroscopic reservoir B is in a thermal equilibrium state.

2.2. Quasi-Static Evolution

In the previous section, we have discussed sufficient conditions under which the dynamical
evolution of the reduced density matrix operator ρ̂S(t), when in contact with a macroscopic reservoir
in thermal equilibrium, will relax towards the thermal distribution ρ̂S,eq. Assuming that the system
is in such an equilibrium state, in analogy with the classical thermodynamics analysis, we can
conceive of a sequence of quasi-static processes that drives the subsystem along a sequence of
equilibrium states. This is a very special type of dynamics, where we shall assume that one or more
physical parameters in the set {λj} (such as geometrical dimensions or external fields), on which the
Hamiltonian ĤS

(
{λj}

)
depends explicitly, can be varied at an arbitrary slow rate λ̇j. To be more

precise, let us assume that |n; {λj}〉 constitutes the set of eigenvectors of ĤS:

ĤS|n; {λj}〉 = En({λj})|n; {λj}〉, (22)

where n represents a set of indexes (can be continuous, not necessarily discrete) that labels
the spectrum of the Hamiltonian. The equilibrium density matrix operator is diagonal in the
energy eigenbasis:

ρ̂S,eq = ∑
n

pn({λj})|n; {λj}〉〈n; {λj}|. (23)

Due to the normalization condition TrS ρ̂S,eq = 1, we have:

∑
n

pn({λj}) = 1. (24)

In this representation, the von Neumann entropy [30] adopts a simple expression in terms of the
probability coefficients:

S({λj}) = −kBTrS (ρ̂S ln ρ̂S) = −kB ∑
n

pn({λj}) ln
(

pn({λj})
)

. (25)

The ensemble-average energy E = 〈ĤS〉 of the open system S is given by:

E = TrS(ρ̂S,eqĤS) = ∑
n

pn({λj})En({λj}). (26)

The statistical ensemble just described can be submitted to an arbitrary quasi-static process,
involving the modulation of one or more of the parameters {λj} [26,27], and hence, the
ensemble-average energy in Equation (26) changes accordingly:



Entropy 2016, 18, 173 7 of 25

dE = TrS
(

ĤS δρ̂S,eq
)
+ TrS

(
ρ̂S,eq δĤS

)
= ∑

n
∑

j
En({λj})

∂

∂λj
pn({λj})δλj + ∑

n
∑

j
pn({λj})

∂

∂λj
En({λj})δλj (27)

= δQ + δW.

The first term in Equation (27) represents a process along which the spectrum remains
unaltered, while the second one represents an isentropic process. These two terms are in
correspondence with the macroscopic notions of work and heat, respectively. Therefore, Equation (27)
represents a microscopic version of the first law of thermodynamics for the statistical ensemble of
single-particle systems [26–28].

We notice that Equation (27) strongly parallels the non-equilibrium relations described along
Equations (6)–(8). Indeed, the quasi-static process described above via Equation (27) can be
considered as a very particular form of a dynamical process under two considerations. First, we
assume that the process is performed arbitrarily close to equilibrium, such that the dynamics is
uniquely determined by the rate of change of the set of parameters {λ̇j}. Concretely, in a given
interval of time δt, we have δλj = λ̇jδt. In the second place, for the system to remain arbitrarily
close to equilibrium at any instant, we must assume that the rates are slow enough in order to satisfy
δλj/λ̇j � τS � τB, with τS and τB the characteristic relaxation time scales for the open system S and
the reservoir B, respectively. This is in practice an idealization, since such a process would take of
course a nearly infinite amount of time to yield a finite change in any of the quantities δW = Ẇδt
and δQ = Q̇δt.

In the following sections, we shall develop in detail two explicit examples of the application of
this formalism, each of them constituting a proof of principle for the concrete realization of a quantum
heat engine.

3. Magnetically-Driven Quantum Engine on a Quantum Dot Array

A system that is physically possible to construct in the laboratory and of which many examples
exist indeed [31,32] is a two-dimensional array of nearly identical, cylindrical semiconductor
quantum dots. For our purposes, this array need not be periodic, but a sufficient distance between the
dots is necessary in order to ensure that no charge tunneling effects occur among them. Let us further
assume that a constant gate potential is applied to each dot in the array, such that the local charge
density can be controlled. In a fairly idealized limit, we shall further assume that each dot is charged
with a single electron, and hence, the whole array of non-interacting dots constitutes an ensemble of
identical replicas of a single-particle system. Under these assumptions, let us consider the action of an
external, uniform magnetic field perpendicular to the plane of the array. The geometric confinement
imposed by the structure of the dots, in combination with the imposed magnetic field, leads to the
emergence of discrete Landau levels, with a characteristic confinement length-scale defined by an
effective Landau radius. This characteristic length can be tuned by modulating the intensity of the
external magnetic field, such that a sequence of processes can be devised in order to construct a
QHEN, as discussed in [27]. In particular, along the next sections, we shall discuss two different
alternatives, that we shall the call iso-energetic cycle and the Carnot cycle, respectively.

3.1. The Single-Particle Spectrum in a Cylindrical Quantum Dot under an External Magnetic Field

As discussed in [27], we shall conceive of a simplified model for a cylindrical semiconductor
quantum dot, through the confining potential [27,31,32].

Vdot(x, y) =
m∗

2
ω2

d

(
x2 + y2

)
. (28)
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Here, m∗ is the effective mass of an electron in this system. For instance, in Gallium-Arsenide
m∗∼0.067 m0 [31,32]. In addition to this “geometric” confinement, we shall impose a uniform
magnetic field directed along the z-axis, B = ẑB. For convenience, we choose the symmetric gauge
A = B

2 (−y, x, 0), such that the system is represented by the single-particle Hamiltonian:

Ĥ =
1

2m∗

[(
px −

e By
2

)2
+

(
py +

e Bx
2

)2
]
+ Vdot(x, y). (29)

The corresponding single-particle eigenstates correspond to Landau levels [32] with the
energy spectrum:

Enρ ,m(B) = h̄Ω(2nρ+ | m | +1)−m
h̄ωB

2
. (30)

Here, nρ = 0, 1, 2, ... and m = 0,±1,±2, .. are the radial and azimuthal quantum numbers,
respectively. These levels are characterized by an effective frequency:

Ω =

√
ω2

d +
ω2

B
4

, (31)

where ωB = eB/m∗ is the field-dependent cyclotron frequency. The eigenfunctions are expressed in
terms of associated Laguerre polynomials [32]:

〈r|ψn(B)〉 =

√
2

l2
e,B

√
nρ!(

nρ + |m|
)
!

(
ρ

le,B

)|m|
e
− ρ2

2l2e,B L|m|nρ

(
ρ2

l2
e,B

)
, (32)

where le,B =
√

h̄/ (m∗Ω) is the effective Landau radius that captures the confining effects of the
geometric potential, as well as the external magnetic field, and n ≡ (nρ, m).

The single-particle spectrum after Equation (30) is displayed in Figure 2, in units of the energy
scale h̄ωd, as a function of the external magnetic field, for the first fourteen eigenstates. From the
figure, it is clear that, even at arbitrary large magnetic fields, the ground state (nρ = 0, m = 0) is
non-degenerate. The excited states, on the other hand, are non-degenerate except for a discrete set of
crossovers as the field intensity increases. In particular, the excited state (nρ = 1, m = 0) exhibits only
a single crossover with the state (nρ = 0, m = 3).

0 0.2 0.4 0.6 0.8 1
Magnetic Field in units of ωB/(2 ωd)

0

2

4

6

En
er

gy
 / 

(h_  ω
d)

(0, 0)

(1, 0)

(0, 3)

(2, 0)

Figure 2. (Color online) The single-particle spectrum for a cylindrical quantum dot in a constant
magnetic field. Depicted are the branches relevant to the quantum heat engine (QHEN).
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3.2. The Iso-Energetic Cycle

An elementary scheme for a quantum heat-engine, originally proposed by Bender et al. [4,5]
in the context of a single Schrödinger particle and more recently extended by us to a relativistic
Dirac particle [26], is the iso-energetic cycle . The cycle is composed of two iso-entropic and two
iso-energetic trajectories. In particular, during the iso-energetic trajectories, the “working substance”
must exchange energy with an energy reservoir [6,7], such as single-mode radiation in a cavity [6].

In [27], we proposed a series of quasi-static processes (see Figure 3), where the confinement
length to be modified is the effective Landau radius:

le,B =
√

h̄/(m∗Ω) =
(

l−4
d + l−4

B /4
)−1/4

, (33)

with ld =
√

h̄/(m∗ωd) representing the geometric confinement imposed by the cylindrical potential
well. The effective Landau radius le,B can be modified through lB, by quasi-statically adjusting the
intensity of the external magnetic field. Along these trajectories, according to the general theory
presented in Section 2, the total change in the ensemble average energy of the system is given by:

dE = ∑
n

pn(B)dEn(B) + ∑
n

dpn(B)En(B) = δW + δQ (34)

where we have introduced the two-valued index n ≡ (nρ, m) to enumerate the eigenstates of the
Hamiltonian, defined in Equation (30).

0 2 4 6 8 10
Magnetic Field in number of flux quanta N

Φ

2

4

6

8

10

12

14

E
n

e
rg

y
 /

 (
h_
 ω

d
)

(0, 0)

1
2

3
4

Iso-entropic

(1, 0)

Iso-energetic

Iso-energetic

Iso-entropic

Figure 3. (Color online) The effective two-level system that allows the construction of the
iso-energetic cycle.

We shall analyze in detail each type of process. For an iso-entropic process defined by
the constraint [33] {pn(B)} = const., the quasi-static work performed in varying the external
magnetic field B is related to the ensemble-average magnetization M = − (∂E/∂B)S (see Figure 4),
δW = −MdB. Hence, if the magnetic field is varied from B = Bγ to B = Bδ, the total work performed
by the system is given by the expression:

Wγ→δ =
∫ Bδ

Bγ

dB
(

∂E
∂B

)
{pn(Bγ)=pn(Bδ)}=const.

= ∑
n

pn(Bγ) [En(Bδ)− En(Bγ)] . (35)

Here, we have chosen a sign convention, such that for an expansion process le,Bδ
> le,Bγ , the work

performed by the system is negative [34], indicating that the ensemble-averaged energy is decreasing
during expansion.
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Figure 4. (Color online) Pictorial description of the Magnetization versus an external magnetic field
for the iso-energetic cycle.

On the other hand, the parametric trajectory for an iso-energetic process is defined by
the equation:

dE = δWγ→δ + δQγ→δ = 0. (36)

The solution to this equation, for B ∈ [Bδ, Bγ], is given by the path:

∑
n

pn(B)En(B) = ∑
n

pn(Bγ)En(Bγ), (37)

along with the normalization condition Equation (24). The integral of Equation (36) from
Bγ → Bδ yields:

∆E = Wγ→δ + Qγ→δ = 0. (38)

Here, the first term Wγ→δ corresponds to the magnetic work performed by the system when
changing its induced magnetization due to the applied field, at constant total energy. The second
term Qγ→δ = −Wγ→δ corresponds to the amount of energy exchanged by the system with the
environment, in order to rearrange its internal level occupation. Therefore, for an iso-energetic
process, the heat exchanged by the system with the environment is:

Qγ→δ = ∑
n

∫ Bδ

Bγ

En(B)
dpn(B)

dB
dB. (39)

Evidently, Equation (37) combined with the normalization condition Equation (24) is not enough
to uniquely define the coefficients pn(B) along an iso-energetic trajectory. An exception is the case
when the energy scale of all of the processes involved is such that only transitions between two
adjacent levels are possible. Since the only driving force to induce transitions is a quasi-static variation
of the magnetic field intensity, the azimuthal symmetry of the Hamiltonian Equation (29) is conserved
at any moment along this process. Therefore, the transition probability amplitudes impose the
selection rule T1→2 ∝

∫
dϕei(m1−m2)ϕ = δm1,m2 , and hence, the azimuthal quantum numbers of initial

and final states must be the same m1 = m2, that is angular momentum Lz is conserved for such a
transition.

Let us focus on the particular case when the two states involved are the ground state and the
first accessible excited state, respectively: 1 ≡ (nρ = 0, m = 0) and 2 ≡ (nρ = 1, m = 0) (see
Figures 2 and 3). It is clear that transitions between these two energy levels, when the quasi-static
variation of the magnetic field intensity is the only driving force, are allowed by symmetry, since
m1 = m2 = 0 for both eigenstates. Moreover, by looking at Figure 2, it is clear that (nρ = 1, m = 0)
is the lowest excited state accessible from the ground state (nρ = 0, m = 0) that respects the selection
rule imposed by angular momentum conservation. From Figure 2, it is also evident that a crossover
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occurs between the excited states (nρ = 1, m = 0) and (nρ = 0, m = 3). However, transitions between
the ground state (nρ = 0, m = 0) and the excited state (nρ = 0, m = 3) or between (nρ = 0, m = 3)
and (nρ = 1, m = 0) are forbidden by angular momentum conservation, if the quasi-static variation
of the magnetic field intensity is the only driving force, as discussed above. The next excited state
that would respect the symmetry is (nρ = 2, m = 0), but as clearly seen in Figure 2, this one is
quite high in energy and does not cross at any point with (0, 0) nor (1, 0). Therefore, under these
considerations, the ground state (nρ = 0, m = 0) and the excited state (nρ = 1, m = 0) constitute an
effective two-level system.

In practice, single quantum dots can be prepared in the ground state (0, 0) by coupling them to
a modified high-Q single-defect cavity [35] due to Purcell’s effect [36]. Once the system has been
prepared in its ground state, the iso-energetic cycle can start by quasi-statically tuning the static
magnetic field in the absence of external radiation sources.

The effective two-level system constituted by the states (0, 0) and (1, 0) as described
before, along with the different trajectories involved in the cycle, is represented in Figure 3.
Combining Equation (37) with the normalization condition Equation (24), the iso-energetic
trajectories are described by:

p1(B) =
E2(B1)− E2(B)
E1(B)− E2(B)

+
E1(B1)− E2(B1)

E1(B)− E2(B)
p1(B1), (40)

with p2(B) = 1− p1(B) after the normalization condition Equation (24). The heat exchanged by the
system with the environment during the iso-energetic trajectory connecting the initial and final states
B1 → B2 is given by the expression:

Q1→2 = [E2(B1) + (E1(B1)− E2(B1)) p1(B1)] ln
[

E1(B2)− E2(B2)

E1(B1)− E2(B1)

]
. (41)

For the effective two-level system described in Figure 3, we consider the cycle that starts in
the ground state with p1(B1) = 1. Then, the system experiences an iso-energetic expansion from
lB1 → lB2 > lB1 , followed by an iso-entropic expansion from lB2 → lB3 > lB2 . Then, it experiences
an iso-energetic compression lB3 → lB4 < lB3 , to finally return to its initial ground state through an
iso-entropic compression lB4 → lB1 .

For definiteness, let us consider that after the iso-energetic process lB1 → lB2 , the system ends
completely localized in the excited state n = 2. In this condition, we have:

p1(B2) = 0, p2(B2) = 1. (42)

The conservation of total energy between the initial and final states connected through the
iso-energetic process leads to the equation:

p1(B1)E1(B1) = p2(B2)E2(B2), (43)

where p1(B1) = p2(B2) = 1 for maximal expansion. Therefore, given the spectrum in Equation (30),
Equation (43) implies that lB2 /lB1 = α1, where α1 is determined by the condition:

h̄ωd

√
1 + N2

Φ1
= 3h̄ωd

√√√√1 +
N2

Φ1

α4
1

. (44)
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Here, we have defined NΦ1 = l2
d/(2l2

B1
) = ΦB1 /Φ0 as the number of flux quanta Φ0 = h/(2e)

piercing the area πl2
d . Equation (44) possesses physically meaningful solutions:

α1 =

√
3NΦ1(

N2
Φ1
− 8
)1/4 (45)

when NΦ1 > 2
√

2. Therefore, the minimal initial value of the external field required to perform
the cycle is B1,min = 4

√
2h̄/(el2

d). For instance, if one considers a typical size of a semiconductor
quantum dot of ld = 70 nm [31], the minimal initial field is B1,min∼4.8 T. The heat exchanged with the
environment along this first stage of the cycle is calculated after Equation (39):

Q1→2 = E1(B1) ln

[
E2(B1)− E1(B1)

E2(α
−2
1 B1)− E1(α

−2
1 B1)

]
, (46)

while the work performed is W1→2 = −Q1→2.
The next process along the cycle is an iso-entropic expansion (see Figure 3), characterized by the

condition p2(B2) = p2(B3) = 1. We shall define the expansion parameter α ≡ lB3 /lB2 > 1. Notice that
α > 1 can be arbitrarily chosen. Along this stage, we have lB2 = α1lB1 .

The cycle continues with a maximal compression process from lB3 = α1αlB1 to lB4 = α3α1αlB1

under iso-energetic conditions (see Figure 3). The condition for energy conservation is in this case
similar to Equation (43), implying p2(B3) = p1(B4) = 1 and:

h̄ωd

√√√√1 +
N2

Φ1

(α1α3α)4 = 3h̄ωd

√√√√1 +
N2

Φ1

(α1α)4 . (47)

The solution to Equation (47) fixes the value for the compression coefficient α3 < 1:

α3 =
N1/2

Φ1(
8 (α1α)4 + 9N2

Φ1

)1/4 . (48)

The heat exchanged by the system with the environment along this process, applying
Equation (39), is given by the expression:

Q3→4 = E2

(
B1

(αα1)2

)
ln

E1(
B1

(αα1α3)
2 )− E2(

B1
(αα1α3)

2 )

E1(
B1

(αα1)2 )− E2(
B1

(αα1)2 )

 , (49)

and the work performed is W3→4 = −Q3→4. The last path along the cycle is an adiabatic process (see
Figure 3), which returns the system to its initial ground state with p1(B4) = p1(B1) = 1.

The efficiency of the cycle is defined by the ratio [27]:

η
(

NΦ1 , α
)
= 1−

∣∣∣∣Q3→4

Q1→2

∣∣∣∣ = 1− 3
Θ1 (αα1)

Θ1(1)

ln
[

Θ1(αα1α3)
Θ1(αα1)

]
ln
[

Θ1(1)
Θ1(α1)

] , (50)

where we have defined Θ1 (α) =
√

1 + N2
Φ1

/α4. The trend of the efficiency is shown in Figure 5
as a function of the expansion parameter α, for different values of the initial external field B1
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(expressed in terms of NΦ1 ). For very large fields NΦ1 � 1, one has from Equations (45) and (48)
that α1 = 1/α3 =

√
3, and hence, the efficiency tends to the asymptotic limit [27]:

η → 1− 1/α2, NΦ1 � 1. (51)

Remarkably, this asymptotic result has been obtained before for an iso-energetic cycle driven by
a mechanical external force, both in the Schrödinger [4], as well as in the low-energy limit for the
Dirac particle case [26]. This suggests that it may represent a universal maximal efficiency for any
quantum mechanical engine based on the iso-energetic cycle construction.

Figure 5. (Color online) The efficiency of the iso-energetic cycle, calculated from Equation (50), is
represented as a function of the expansion parameter α > 1. Different values of the initial magnetic
field in the cycle B1, expressed in terms of the number of flux quanta NΦ1 , are compared. We find
that the asymptotic limit represented by Equation (51) (red dashed line in the figure) is achieved in
practice for NΦ1 > 30.

3.3. The Quantum Carnot Cycle

A quantum mechanical version of the Carnot cycle, as applied to the statistical ensemble of
quantum dots under consideration, is composed of four stages: two isothermal and two iso-entropic
processes, as shown in Figure 6.

Figure 6. (Color online) The quantum Carnot cycle discussed in this section is pictorially represented.
The isothermal trajectories are achieved by bringing the system into contact with macroscopic thermal
reservoirs at temperatures TH > TC, respectively.

Along the first stage of the cycle, the system is brought into contact with a thermal reservoir at
temperature TH . Under isothermal conditions, the Landau radius is expanded from le,B1 → le,B2 . Since
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thermal equilibrium with the reservoir is assumed along this process, the von Neumann entropy of
the system achieves a maximum for the Boltzmann distribution [30,37]:

pn(B, βH) = [Z(B, βH)]
−1 e−βH En(B), (52)

with β = (kBT)−1, and the normalization factor is given by the partition function (see [27]):

Z(B, β) = ∑
n

e−βEn = Z+Z−. (53)

Here, we have defined:

Z± =
1

2 sinh( h̄βω±
2 )

, (54)

with:
ω± = Ω± ωB

2
. (55)

From the general theory presented in Section 2, the heat absorbed by the system from the thermal
reservoir is given by:

Q1→2 =
∫ B2

B1
∑
n

En(B)
dpn(B, βH)

dB
dB = E(B2, βH)− E(B1, βH) + β−1

H ln
[

Z(B2, βH)

Z(B1, βH)

]
. (56)

The final result follows from substituting the explicit expression for the partition function
Equation (53) and the definition of the ensemble-averaged energy of the single-particle system
E = 〈Ĥ〉 = −∂lnZ/∂β,

E(B, β) =
h̄ω+

2
coth

(
βh̄ω+

2

)
+

h̄ω−
2

coth
(

βh̄ω−
2

)
. (57)

Similarly, during the third stage of the cycle (see Figure 6), the system is again brought into
contact with a thermal reservoir, but at a lower temperature TC < TH . Therefore, the probability
distribution of states in the ensemble is pn(B, βC), as defined in Equation (52), but with TC instead of
TH . The heat released to the reservoir during this stage is given by the expression:

Q3→4 = E(B4, βC)− E(B3, βC) + β−1
C ln

[
Z(B4, βC)

Z(B3, βC)

]
. (58)

The second and fourth stages of the cycle constitute iso-entropic trajectories (see Figure 6).
When substituting the Boltzmann distribution pn(β, B) = [Z(β, B)]−1 exp(−βEn(B)) into the
expression for the von Neumann entropy Equation (25), we obtain the relation:

S/kB = βE + ln Z(β, B). (59)

The equation of state is obtained from Equation (57) as:

M = −
(

∂E
∂B

)
S
= −µB

ω+

Ω
coth

(
βh̄ω+

2

)
+ µB

ω−
Ω

coth
(

βh̄ω−
2

)
, (60)

with M the ensemble-average magnetization as a function of the external magnetic field (see Figure 7)
and µB = eh̄/(2m∗) the Bohr magneton. In the last line, we made use of the explicit analytical
expression Equation (53) for the partition function to calculate the derivative. The work performed
during the second stage of the process is W2→3 = E(B2, βH)− E(B3, βC). We are now in conditions
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to discuss the second and fourth stages of the Carnot cycle. These iso-entropic trajectories impose
implicit conditions for the intensities of the magnetic field,

∆S2→3 = S(B3, βC)− S(B2, βH) = 0,

∆S4→1 = S(B1, βH)− S(B4, βC) = 0. (61)

Figure 7. (Color online) The magnetization of the system changes as a function of the applied external
magnetic field, along two isothermal and two iso-entropic trajectories of the cycle. The isothermal
trajectories are achieved by bringing the system into contact with macroscopic thermal reservoirs at
temperatures TH > TC, respectively.

Expressing the entropies in terms of Equation (59), in combination with Equations (57) and (54),
we obtain the condition:

βC [E(B3, βC)− E(B4, βC)] + ln
[

Z(B3, βC)

Z(B4, βC)

]
= βH [E(B2, βH)− E(B1, βH)] + ln

[
Z(B2, βH)

Z(B1, βH)

]
. (62)

The fourth and final stage of the cycle also corresponds to an iso-entropic trajectory (see Figure 6)
where lB4 → lB1 , and the work performed by the system is given by W4→1 = E(B4, βC)− E(B1, βH).

The efficiency of the quantum Carnot cycle is given by:

ηC = 1− Q3→4

Q1→2
= 1− TC

TH
, (63)

where we have made use of Equations (56) and (58) to obtain the second equality. Remarkably, the
efficiency is identical to the classical Carnot cycle. This result is in agreement with what we found
in a recent work, where the efficiency for a mechanically-driven quantum heat engine based on a
relativistic Dirac particle was studied [26].

4. A Magneto-Strain-Driven Quantum Engine on a Graphene Layer

Graphene, the ultimate slab of graphite [38], is an atomic monolayer of carbon atoms arranged in
a honeycomb lattice that possesses remarkable mechanical, thermal and electronic properties [39–44].
From the electronic point of view, it is a semi-metal characterized by the presence of Dirac points
in its band structure [39,40] that confer pseudo-relativistic properties to the charge carriers in this
material. From the mechanical point of view [43], it is extremely flexible as seen by the presence of a
phonon bending mode with quadratic dispersion near the Γ-point (see Figure 8), but at the same
time extremely strong, with the highest Young modulus known to any material up to date [45].
The nearly ballistic propagation of phonons in graphene confer to this material a remarkably high
thermal conductivity that can reach up to 4000 W/(m·K) [43,46].
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Figure 8. (Color online) The phonon spectrum of single-layer graphene along the symmetry directions
of the Brillouin zone. Calculated from a force constant model using the elastic parameters in [47].

The interplay between mechanics and electronics, determined by electron-phonon
interactions [44] in graphene, induces interesting effects over its transport properties. In particular,
the effect of strain-induced pseudo-magnetic fields on the electronic properties of graphene has been
extensively discussed in the literature [39–41,48,49]. Moreover, by strain engineering, it is possible
to generate nearly homogeneous pseudo-magnetic fields [40,41], thus allowing for the emergence
of relativistic Landau levels, as confirmed experimentally [48]. In this chapter, we shall describe a
conceptual model for a QHEN that is based on these singular properties.

4.1. The Single-Particle Spectrum

The components of the in-plane pseudo-vector potential AS induced by mechanical
strain are [40,41,49]:

AS,1 =
β

2a
(u11 − u22) , AS,2 =

β

2a
(−2u12) . (64)

Here, the local displacement vector is defined as u = (u1, u2, z), with ui the in-plane components
and z the out-of-plane component, while β = ∂ ln t/∂ ln a is the relative change of the hopping
parameter δt/t with respect to the dilation of the lattice constant δa/a [50]. The strain tensor [uij]

is defined by:

uij =
1
2
(
∂iuj + ∂jui + ∂iz∂jz

)
. (65)

The pseudo-magnetic field generated by the strain-induced gauge potential is given by BS =

ê3 (∂1 AS,2 − ∂2 AS,1).
It was recently shown [49,51,52] that the continuum expansion of the tight-binding Hamiltonian

for strained graphene in the vicinity of a single Dirac point (valley), up to O(u2
ij), is given by

the expression:

Ĥ = −i
∫

d2xψ̂†(x)
[
vij(x)σ̂i∂j + ivFσ̂i AS,i + vFσ̂iΓi − γ̄BSσ̂3

]
ψ̂(x). (66)

Here, vF ∼ 106 m s−1 is the Fermi velocity for the undistorted graphene lattice and σ̂i the Pauli
matrices. The presence of strain induces a local position dependence on the velocity [49,51], which
then becomes a tensor:

vij(x) = vF

(
δij −

β

4
(
2uij + δijukk

)
+ ũij

)
. (67)
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Here, ũij =
1
2
(
∂iuj + ∂jui

)
. On top of the gauge field AS, a “geometric” vector field Γi appears,

whose origin can be understood within the covariant picture [51] as the pseudo-spin connection for
fermions propagating in a curved space [49]:

Γi =
1

2vF
∂jvij = −

β

4

(
∂juij +

1
2

∂iujj

)
+

1
2

∂jũij. (68)

The last term in the Hamiltonian Equation (66) represents a pseudo-Zeeman coupling between
the pseudo-spin degree of freedom and the strain pseudo-magnetic field BS [52].

Let us consider the deformation field (see Figure 9):

u1 = −2uSx1x2, u2 = −uS(x2
1 − x2

2), z = 0, (69)

where uS is a constant characterizing the magnitude of the in-plane displacement, in association
through Equation (64) with the vector potential:

AS = 2
βuS

a
(−x2, x1, 0) . (70)

Figure 9. (Color online) The deformation field that induces a uniform pseudo-magnetic field BS.

This in turn implies a pseudo-magnetic field:

BS = 4
βuS

a
ê3, (71)

which is constant in magnitude and points along the out-of-plane direction ê3, where in the last step,
we used that for graphene β = ∂ ln t/∂ ln a ∼ 2 [49,50]. Therefore, for the deformation field defined
by Equation (69), the velocity is a constant diagonal tensor vij = vFδij.

The Hamiltonian in Equation (66) describes the physics in the vicinity of a single Dirac point
(valley). The inclusion of the pseudo-magnetic field terms breaks the valley degeneracy since, as
opposed to a real magnetic field, the strain-induced gauge potential has opposite signs in the vicinity
of each Dirac point [39]. Therefore, we define the Hamiltonian describing both valleys by the
higher-dimensional structure:

Ĥ =
∫

d2x
(

Ψ̂(+)†(x), Ψ̂(−)†(x)
) [ ĥ+ 0

0 ĥ−

](
Ψ̂(+)(x)
Ψ̂(−)(x)

)
. (72)
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Here, ξ = ± represents each of the Kξ valleys, corresponding to the two inequivalent points
ξ 4π

3
√

3a
ê1 in the first Brillouin zone, respectively. By adopting the standard convention for the

components of the spinor field at each sub-lattice (A, B), we have defined the spinor:

Ψ̂(ξ)(x) =
(

ψ
(ξ)
A↑ , ψ

(ξ)
B↑ , ψ

(ξ)
A↓ , ψ

(ξ)
B↓
)T

= ∑
s=↑,↓

χs ⊗ Ψ̂(ξ)
s . (73)

Here, ψ̂
(ξ)
s is the two-component pseudo-spinor at valley Kξ arising from the bipartite graphene

lattice, whereas the electronic spinors χ↑ = (1, 0)T and χ↓ = (0, 1)T are eigenvectors of σ̂3 with
eigenvalues s = {±}.

The Hamiltonian operator defined in Equation (72) includes the effect of mechanical strain, via
the pseudo-vector potential in Equation (70), whose curl is the pseudo-magnetic field in Equation (71).
This effect on itself is sufficient to generate pseudo-relativistic Landau levels in the energy spectrum.

As we shall discuss in more detail in the next section, for the purpose of constructing a
QHEN, the characteristic confinement length-scale given by the Landau radius must be tunable in
a quasi-static way. In practice, it is difficult to adjust the strain applied to a nanoscale structure under
realistic experimental conditions. Therefore, in addition to mechanical strain, we consider the effect
of a uniform magnetic field B = ê3B that is easier to control experimentally. For convenience, we
choose the gauge A = B

2 (−x2, x1, 0), which has the same form as the strain-induced pseudo-vector
potential in Equation (70). For the combined magnetic field and strain, the effective Hamiltonian
density at each valley Kξ , including the electronic spin degree of freedom, becomes [28]:

ĥ(ξ) = ξvF (1⊗ σ̂) · [−i∇+ ξAS + A]− ξγ̄BS (1⊗ σ̂3)− γB (σ̂3 ⊗ 1) . (74)

The last term in the Hamiltonian Equation (74) is the Zeeman interaction, characterized by a
coupling constant γ = gµB/2, with g ∼ 1.8 for graphene [53]. Notice that the Zeeman coupling
only involves the real magnetic field B, since the strain-induced pseudo-magnetic field BS does not
interact with the electronic spin.

The Hamiltonian Equation (72) determines a system of two decoupled Dirac equations in first
quantization, one for each electronic spin component s = {±},

(ξvFσ̂ · [−i∇+ ξAS + A]− sγB1− ξγ̄BSσ̂3)ψ
(ξ)
s (x) = Eξ

s ψ
(ξ)
s (x). (75)

The pseudo-spinor eigenstates in Equation (75) are ψ
(ξ)
λ,n,m,s(x) ≡ 〈x|ψ(ξ)

λ,n,m,s〉, with (see [28]
for details):

|ψ(ξ)
λ,n,m,s〉 =

1√
2

(
αn|n− 1, m〉

βn|n, m〉

)
, n > 0,

|ψ(ξ)
n=0,m,s〉 =

(
0
|0, m〉

)
, n = 0. (76)

Here, the coefficients αn and βn are real constants [28]. The corresponding energy
eigenvalues are [28]:

Eξ
n,s =

{
λh̄Ωξ

√
n + ∆2

ξ − sγB, n > 0,

ξ h̄Ωξ ∆ξ − sγB, n = 0.
(77)

Here, λ = ± is the band index, while Ωξ = vF

√
2e|Bξ |/h̄ is the effective frequency, expressed in

terms of the effective “total” magnetic field Bξ = B + ξBS that results from the combination of the
strain-induced pseudo-magnetic field BS and the real magnetic field B at each valley Kξ . We have also
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defined the dimensionless parameters ∆ξ = γ̄BS h̄−1Ω−1
ξ at each valley. The two quantum numbers

(n, m) correspond to the quantization of the orbital Landau level n ≥ 0, and the guiding-center (i.e.,
the center of the classical cyclotronic orbit) coordinate m ≥ 0, respectively [50]. The energy levels
described by Equation (77) are degenerate in the guiding-center quantum number m, with the same
degeneracy factor Nξ

n,s = Nξ
φ for each Landau level and each valley. On the other hand, Nξ

φ = ΦBξ
/φ0

is the number of magnetic flux quanta φ0 = h/2e piercing the area A of the graphene flake [50],
with ΦBξ

= BξA the “total” flux. As previously discussed, only the magnetic field B couples to
the electronic spin s = {±}, as seen in the Zeeman term in Equation (77), which is proportional to
γ = gµB/2. Regarding the pseudo Zeeman term, when BS is expressed in Tesla, we estimate [40,48,52]
γ̄ = 3πa3

4β
V′
φ0

= 9.788 × 10−5 eV T−1, for a = 1.42 Å the carbon-carbon bond length, and

V′ = 6 eV−1 [52,54]. Remarkably, γ̄∼1.7 µB is on the order of magnitude of the Bohr magneton.

4.2. The Quantum Engine Cycle

As the “working substance” for a QHE, let us consider a statistical ensemble of replicas of
a single-particle system [26,27] consisting of a single electron in the conduction band (λ = +)
of the graphene flake described by Equation (72). This can in principle be achieved by charging
an otherwise neutral graphene flake with a positive gate potential. Each replica [26,27] may
be in any of the different eigenstates of the Hamiltonian Equation (72). The single-particle
system is then in a statistically mixed quantum state [30], described by the density matrix
operator ρ̂ = ∑n,m,s,ξ pn,m,s,ξ(B)|ψ(ξ)

n,m,s(B)〉〈ψ(ξ)
n,m,s(B)|, with |ψ(ξ)

n,m,s(B)〉 a spinor eigenstate of the
single-particle Hamiltonian Equation (72) for a given magnetic field intensity B and pseudo-magnetic
field BS. The indexes (n, m, s, ξ) enumerate the eigenstates of the Hamiltonian defined by
Equation (77), with Landau level n, at valley ξ and electronic spin component s, for λ = +.
Here, the coefficient 0 ≤ pn,m,s,ξ(B) ≤ 1 represents the probability for the system, within the

statistical ensemble, to be in the particular state |ψ(ξ)
n,m,s(B)〉. Therefore, the {pn,m,s,ξ(B)} satisfy the

normalization condition:

Trρ̂ = ∑
n,m,s,ξ

pn,m,s,ξ(B) = 1. (78)

As discussed in Section 2, the von Neumann entropy reduces to the explicit expression:

S(B) = −kB ∑
n,m,s,ξ

pn,m,s,ξ(B) ln
(

pn,m,s,ξ(B)
)

. (79)

In our notation, we emphasize the explicit dependence of the energy eigenstates {|ψ(ξ)
n,m,s(B)〉},

as well as the probability coefficients {pn,m,s,ξ(B)}, on the intensity of the external magnetic field B.
The ensemble-average energy of the quantum single-particle system is:

E = Tr(ρ̂Ĥ) = ∑
n,m,s,ξ

pn,m,s,ξ(B)Eξ
n,s(B) = ∑

n,s,ξ
pn,s,ξ(B)Eξ

n,s(B), (80)

where we introduced the coefficients pn,s,ξ ≡ ∑m pn,m,s,ξ in order to take notational advantage of the
degeneracy in the spectrum with respect to the quantum number m.

The statistical ensemble just described can be submitted to an arbitrary quasi-static process,
either by modulating the magnetic field intensity or by exchanging energy with a reservoir.
Along such a process, the ensemble-average energy will change accordingly [26,27], in a microscopic
version of the first law of thermodynamics for the statistical ensemble of single-particle systems, as
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defined by Equation (27). Here, from Equation (27), the work along the process connecting states with
magnetic fields Bγ → Bδ is:

Wγ→δ =
∫ Bδ

Bγ

dB
(

∂E
∂B

)
{pn,s,ξ (B)}=const.

=
∫ Bδ

Bγ

dB
(

∂E
∂B

)
S

. (81)

On the other hand, the heat exchanged by the system with the environment while modifying its
temperature from Tγ → Tδ will be:

Qγ→δ =
∫ Tδ

Tγ

dT
(

∂E
∂T

)
B

. (82)

For the statistical ensemble just defined, let us consider a cycle by devising a sequence of
quasi-static trajectories as depicted in Figure 10. Initially, the single-particle system, while submitted
to an external magnetic field of intensity B1, is brought into thermal equilibrium with a macroscopic
thermostat at temperature T1 ≡ TC. The system then equilibrates to a Gibbsian ensemble at the
temperature of the reservoir β1 = (kBT1):

pn,s,ξ(B1) = [Z(B1, β1)]
−1 Nξ

φe−β1Eξ
n,s(B1), (83)

where the normalization factor is defined by the partition function [28]:

Z(B1, β1) = ∑
n,s,ξ

Nξ
φe−βE(ξ)

n,s (B1) ∼ e−β1γ̄ξBS + e
−βh̄Ωξ

√
1+∆2

ξ . (84)

Figure 10. (Color online) The cycle is pictorially represented in the entropy (S) versus external
magnetic field (B) coordinates. The cycle is composed of two iso-entropic trajectories and two
trajectories at constant external magnetic field. The cold reservoir is at T1 = TC, whereas the hot
reservoir is at T3 = TH .

The ensemble-average energy for the Gibbsian distribution in Equation (83) is given by
the expression:

E(β1, B1) = −
(

∂ ln Z
∂β

)
B1

= −γB1 tanh(β1γB1) +
∑ξ=± Nξ

φ

(
ξγ̄BSe−ξβ1γ̄BS + h̄Ωξ

√
1 + ∆2

ξe
−β1 h̄Ωξ

√
1+∆2

ξ

)
∑ξ=± Nξ

φ

(
e−ξβ1γ̄BS + e

−β1 h̄Ωξ

√
1+∆2

ξ

) (85)
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It also follows from the definition Equation (79), along with Equation (83), that the entropy can
be expressed in terms of the partition function [28]:

S(β, B)/kB = βE(β, B) + ln Z(B, β)

= βE(β, B) + ln [2 cosh(βγB)] + ln

[
∑

ξ=±
Nξ

φ

(
e−ξβγ̄BS + e

−βh̄Ωξ

√
1+∆2

ξ

)]
. (86)

The system performs work along the iso-entropic trajectory 1 → 2, according to
Equation (81), W1→2 = E(T2, B2) − E(TC, B1), and along the iso-entropic trajectory 3 → 4,
W3→4 = E(T4, B1)− E(TH , B2). A physical interpretation of the work performed by the engine is
obtained by considering the statistical mechanical definition of the ensemble-average magnetization,
that is M = − (∂E/∂B)S. Therefore, we clearly have W = −

∫
MdB, a familiar expression from

classical macroscopic thermodynamics.
Along the constant magnetic field trajectories 2→ 3 and 4→ 1, the system exchanges heat with

the reservoirs. The heat absorbed by the system from the hot reservoir at T3 = TH is:

QH =
∫ TH

T2

dT
(

∂E
∂T

)
B2

= E(TH , B2)− E(T2, B2). (87)

Similarly, the heat released by the system to the cold reservoir at TC is:

QC =
∫ TC

T4

dT
(

∂E
∂T

)
B1

= E(TC, B1)− E(T4, B1). (88)

The efficiency of the engine is then given by the expression:

η =

∣∣∣∣W1→2 + W3→4

QH

∣∣∣∣ = 1−
∣∣∣∣QC
QH

∣∣∣∣ . (89)

The intermediate temperatures T2 and T4 must be determined numerically from the condition
that connects the initial and final states along each iso-entropic trajectory (see Figure 10):

S(B1, TC) = S(B2, T2),

S(B2, TH) = S(B1, T4). (90)

For given values of the initial magnetic field B1, the strain pseudo-magnetic field BS and the
reservoir temperatures TC and TH , the efficiency is a function of the magnetic field B2. We choose to
parametrize this dependency by defining the ratio [28]:

r(B2) = lB1 /lB2 , (91)

where lB = min{l+, l−} is a characteristic confinement length for the semi-classical cyclotronic orbit,
defined as the minimum Landau radius among the two inequivalent valleys. In Figure 11, we plot
the result of our numerical calculation of the efficiency, as a function of the magnetic field expressed
in terms of the ratio r(B2). In this particular example, we have chosen B1 = 4 T, BS = 20 T and the
temperatures TC = 30 K and TH = 100 K at the cold and hot reservoirs, respectively. In Figure 11,
we also compare the effect of the pseudo-Zeeman term, by calculating the efficiency when setting
γ̄ = 1.7µB and γ̄ = 0, respectively. It is evident from the comparison of both curves that the
pseudo-Zeeman effect produces a relative enhancement of the efficiency as compared to the case
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when this term is absent. We find that the numerical solution for the efficiency as a function of the
compression ratio can be accurately represented by the parametric form:

η = 1− [r(B2)]
−α. (92)

Figure 11. (Color online) The efficiency of the cycle, as a function of the compression ratio r(B2), for
the case γ̄ = 0 (red, dash-dotted line) compared to the case γ̄ = 1.7µB (blue, solid line). Here B1 = 4 T,
BS = 20 T, and the temperatures at the reservoirs TH = 100 K, TC = 30 K, respectively.

Here, the exponent α depends on the temperatures TC and TH , as well as on the strain field
BS. In particular, for the choice of parameters represented in Figure 11, we find that α = 6.88 for
γ̄ = 1.7 µB, whereas α = 4.2 for γ̄ = 0. Remarkably, this parametric expression is analogous to the
well-known formula for the efficiency of the Otto cycle that works with a classical ideal gas, with
r instead of the volumetric ratio that applies to the classical case. An even closer analogy between
both cases can be put forward by noticing that r(B2) = lB1 /lB2 > 1 can be literally interpreted as
a “compression ratio” between the effective Landau radii, which in practice defines a characteristic
confinement length for the semi-classical cyclotronic orbit associated with each Landau level.

Numerical solutions for the efficiency only exist up to a maximum compression ratio, which in
the example displayed in Figure 11 is rmax = 1.19 for γ̄ = 1.7µB, whereas rmax = 1.33 for γ̄ = 0.
At this point, the efficiency attains its maximum value, which exactly matches the Carnot efficiency
for the same temperatures in the thermostats, i.e., η(rmax) = ηC = 1− TC/TH = 0.7. More generally,
using the parametric form Equation (92), one concludes that:

r <
(

TH
TC

)1/α

≡ rmax. (93)

5. Discussion

Along this work, we have presented a general theoretical formulation for quantum heat engines
(QHEN). We have connected the more general, non-equilibrium thermodynamics aspects of the
problem, with a specific formulation proposed by us based on the idealization of a quasi-static limit
for the engine operation. Moreover, we have applied this quasi-static analysis to characterize the
performance and to explicitly calculate the efficiency of two different QHENs recently proposed by
us. The cyclic operation of those QHENs is driven by the modulation of an external magnetic field, as
a control parameter for the characteristic confinement length-scale that determines the single-particle
spectrum in both cases, defined as the Landau radius. In both examples, it was shown that the
quasi-static efficiency of a hypothetical device constructed on this principle can be controlled by
adjusting physical parameters, such as the magnetic field, strain and temperatures of the reservoirs
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that act as the heat source and sink, respectively. Remarkably, the Carnot efficiency imposes an upper
limit to the theoretical efficiency obtained for both QHENs analyzed along this work, thus reflecting
the robustness of classical thermodynamics.
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