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Abstract: There is increasing interest concerning the details about how quantum systems interact
with their surroundings. A number of methodologies have been used to describe these interactions,
including Master Equations (ME) based on a system-plus-reservoir (S + R) approach, and more
recently, Steepest Entropy Ascent Quantum Thermodynamics (SEAQT) which asserts that entropy
is a fundamental physical property and that isolated quantum systems that are not at stable
equilibrium may spontaneously relax without environmental influences. In this paper, the ME,
SEAQT approaches, and a simple linear difference equation (DE) model are compared with each
other and experimental data in order to study the behavior of a single trapped ion as it interacts
with one or more external heat reservoirs. The comparisons of the models present opportunities for
additional study to verify the validity and limitations of these approaches.
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1. Introduction

There is ongoing interest in modeling how quantum systems interact with their environment.
The understanding of the relationship between relaxation processes, entropy and quantum mechanics
is increasingly considered to be of fundamental importance [1,2]. External and internal influences
directly affect many, if not all quantum phenomena, such as quantum computing [3], quantum
chemistry [4,5], and entanglement. Methodologies that have been developed to describe quantum
dissipative systems are extensive and include stochastic quantum mechanics [6] and nonlinear versions
of the Schrödinger Equation [7,8]. Much of the theoretical work describing quantum interactions with
the environment has been done by using system-plus-reservoir approaches (S + R), i.e., Master Equation
(ME) techniques [6,9,10]. An alternate formalism, Steepest Entropy Ascent Quantum Thermodynamics
(SEAQT), developed by Hatsopoulos, Gyftopoulos, and Beretta [11–16], seeks to unify the Second
Law of Thermodynamics with Quantum Mechanics. The theory asserts that it is possible for quantum
systems as small as one particle to possess entropy, and claims that quantum systems that are not at
stable thermodynamic equilibrium may spontaneously relax. SEAQT has been used in previous efforts
to model quantum steady state conditions [17].

Single trapped atoms have proved to be an important research tool, and are described extensively
in Leibfried et al. [18]. Experimental data relating to the quantum relaxation of single ions include
groundbreaking work by Turchette et al. [19] and Gring et al. [20].

The main objective of what follows is to directly compare the ME and SEAQT models as well a
simple linear difference equation (DE) to data for interactions of a trapped ion with the environment
as presented in [19]. The intent of the comparisons is to reveal similarities, but also differences
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in predictions that can be used to test the validity of the models against the essential but limited
experimental data. It is hoped that the results will encourage discussion and help promote further
experimentation that further reveals how entropy interrelates with Quantum Mechanics.

1.1. Model Descriptions

For this study, the quantum states for the single trapped ion under study are limited to Fock
states where off-diagonal elements are equal to zero. Fock states were chosen because they are simpler
and easier to handle computationally for the SEAQT cases. Nevertheless, they represent legitimate
quantum states of interest for which experimental data is available. Fock states do not, however,
exhibit behavior such as interference effects and quantum entanglement.

Important theoretical work using the traditional ME (S + R) approach has been done by [21,22]
for trapped ions interacting with a heat bath. The ME model is said to be valid for systems that are
near or far from stable equilibrium [21]. The ME model assumes that the system-reservoir coupling is
relatively weak so that the system maintains eigenlevels that are unaltered by the reservoir. Though the
ME model is based on the reversible Schrödinger Equation, irreversibility is achieved by various
approximations [6,9,10]. A straightforward presentation is found in [19] for density matrices with or
without non-zero off-diagonal elements.

The Master Equation for a single particle interacting with a reservoir is expressed as

dρ

dt
“

γ

2
pn` 1q

`

2âρâ` ´ â` âρ´ ρâ` â
˘

`
γ

2
n
`

2â`ρâ´ ââ`ρ´ ρââ`
˘

(1)

where ρ is the state matrix, â is the lowering operator, and γ is the system decay rate or reciprocal
time constant. The dynamics of the reservoir are not contained explicitly in Equation (1), other
than the quantity n, which represents the average energy of the reservoir as it interacts with the
system. The energy is in terms of the number of system quanta }ω0 and is related to the reservoir
temperature by:

n “

˜

e´}ω0{kBT

1´ e´}ω0{kBT

¸

. (2)

The solution to the Master Equation for Fock state evolution is shown in [19,21] and takes the form

ρnn ptq “ 1
1`Nptq

n
ř

j“0

´

Nptq
1`Nptq

¯j ´
e´γt{2

1`Nptq

¯2n´2j
ˆ
8
ř

j“0

´

1´ e´γt

1`Nptq

¯j
˜

n` 1´ j
n´ j

¸

ˆ

˜

n
j

¸

ρn`l´j,n`l´j p0q (3)

where N ptq is the average number of quanta in the system over time for a system initially in the
ground state:

N ptq “ n
`

1´ e´γt˘ . (4)

The index n stands for the nth energy eigenlevel above the groundstate.
The difference equation DE is a simple dynamic relaxation model that can be constructed based

on the difference between the current state of the system and the final mutually stable equilibrium
state with the reservoir [23,24]. It is understood that the region of greatest accuracy occurs in the
“linear” region close to stable equilibrium, which may include steady state behavior. The model has the
advantage of being simple enough to readily approximate several interacting reservoirs. The governing
equation is,

dρnn ptq
dt

“ ´
1
τ
pρnn ptq ´ ρresq (5)

where τ is a time constant. The state of the reservoir is assumed to be constant in time.
The SEAQT formalism is based on the idea that entropy is a fundamental property of matter

that is present for all systems, even those at quantum scales. The theory asserts that the kinematical
framework for entropy as a fundamental quantity is established by the state matrix ρ of quantum
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mechanics, which is fully able to describe entropy for a quantum system as well as other quantities, such
as energy and momentum. The formalism asserts that any system that is not at stable thermodynamic
equilibrium, even a system of one particle, is by default unstable and will tend to spontaneously relax
toward the equilibrium state [25]. SEAQT postulates that the evolution takes place along a path of
steepest entropy increase [26]. The change occurs due to the ability of the internal degrees of freedom;
i.e., the energy eigenlevels of the system, to exchange energy with one another [27]. Relaxation may
however be inhibited by the presence of local metastable states, such as those robust enough to describe
chemistry and the existence of atomic elements.

To enable entropy changes to occur, SEAQT adds a nonlinear operator to the time-dependent
Schrödinger Equation, which produces an expression analogous to a master equation [24]. The SEAQT
evolution equation claims to describe the evolution of all systems whether they are near or far from
stable equilibrium. Recently, SEAQT has been extended and applied to quantum chemistry [28], fuel
cells [17], and quantum decoherence [29].

The SEAQT formalism also exhibits a time lag effect that is not present with the other
two approaches. When a system is near a pure state close to zero entropy or a “partial equilibrium
state” [27], the energy is contained in only a few of the available energy eigenlevels. Relaxation proceeds
slowly until the energy becomes more evenly distributed. The dynamics of the SEAQT model are
given by the equation developed by Beretta [15]:

dρ

dt
“ ´

i
} rH, ρs ´

1
τ

Dpρptqq. (6)

The term in brackets is the time-dependent Schrödinger term, along with D, a nonlinear
irreversibility operator. Equation (6) describes the time evolution of the state of an isolated,
non-equilibrium quantum system as it relaxes spontaneously to a stable equilibrium end state along a
path of steepest entropy increase. If the system is in a Fock state, Equation (6) simplifies to

dρ

dt
“ ´

1
τ

D pρptqq . (7)

The irreversibility operator for the n-th energy eigenlevel can be represented by a ratio of Gram
determinants [25]:

Dn “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρnlnρn ρn enρn
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ř
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ř
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ˇ
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ř
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ˇ
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ˇ

ˇ

ˇ

. (8)

1.2. Equations for Describing System Interactions

New expressions were developed herein to describe the interactions between the elements of
composite systems when employing the SEAQT and DE approaches. Several cases are illustrated in
Figure 1. In Figure 1a, two systems relax spontaneously and independently without mutual interaction.
A relation that combines the two separate equations of motion for uncorrelated systems ρA and ρB
into a single equation for a composite system is shown in [24]. The separate equations for systems A
and B are

dρA
dt

“
´i
} rH, ρAs ´

1
τA

D pρAq (9)

and
dρB
dt

“
´i
} rH, ρBs ´

1
τB

D pρBq . (10)
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The state matrices of the two systems can be combined using an outer product. The equivalent
expression for the composite system becomes

d pρA b ρBq

dt
“
´i
} rH, ρA b ρBs ´

1
τA

D pρAq b ρB ´
1
τB

D pρBq b ρA, (11)

a form that is reminiscent of the product rule for differentiation. Equation (11) can be expressed in
words as “the change with time of the composite of A and B is equal to the Schrödinger term for the
composite, minus the spontaneous relaxation of A without the influence of B, minus the spontaneous
relaxation of B without the influence of A.” The speeds of relaxation for A and B are governed by the
time constants τA and τB. Though expressed as a composite, the two systems remain uncorrelated and
their relaxations take place independently.
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Figure 1. Representations of composite system interactions. (a) Two systems evolve spontaneously
and independently; (b) Two systems evolve spontaneously as they also interact; (c) Three systems
that interact. Each region represents a separate spontaneous evolution with its own time constant.
Each interface or intersection of interfaces represents a mutual interaction of two or more systems that
also has its own time constant; (d) Interactions of system A with reservoirs B and C, which may include
steady state behavior.

To enable the interaction between systems A and B, an extension is introduced to allow the
composite ρA b ρB to evolve under the influence of the irreversibility operator. The resulting term,
´ 1

τAB
D pρA b ρBq, is added to Equation (11), where τAB is a separate time constant for the interaction.

For convenience, D pρA b ρBq is rewritten as D pρABq and can be expressed as “the relaxation of the
composite of A and B due to the interaction of A with B”. If the state matrices ρA and ρB have
off-diagonal terms equal to zero, the Schrödinger term can be dropped. The equation for case (b) in
Figure 1 is then

d pρABq

dt
“ ´

1
τA

D pρAq b ρB ´
1
τB

D pρBq b ρA ´
1

τAB
D pρABq . (12)

Given that system B is a reservoir (already at equilibrium, off-diagonal terms are zero),
Equation (12) reduces to

d pρABq

dt
“ ´

1
τA

D pρAq b ρB ´
1

τAB
D pρABq . (13)

If the spontaneous relaxation of A is slow, the first term on the right hand side of the equation can
also be dropped.
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For the case of three systems A, B, C, that interact with one another as shown in case (c), the above
formalism for a Fock state is written as:

dpρABCq
dt “ ´ 1

τA
D pρAq b ρB b ρC ´

1
τB

D pρBq b ρA b ρC ´
1

τC
D pρCq b ρA b ρB

´ 1
τAB

D pρABq b ρC ´
1

τAC
D pρACq b ρB ´

1
τBC

D pρBCq b ρA ´
1

τABC
D pρABCq .

(14)

Each spontaneous relaxation and relaxation due to interaction is distinct and has its own time constant.
For case (d), where a small system A in a Fock state interacts with two reservoirs B and C,

Equation (14) becomes,

d pρABCq

dt
“ ´

1
τA

D pρAq b ρB b ρC ´
1

τAB
D pρABq b ρC ´

1
τAC

D pρACq b ρB. (15)

The two reservoirs interact only with system A and not with each other. Again, the self-relaxation
term for system A can be ignored if it is deemed slow enough.

The proposed interaction term,´ 1
τAB

D pρABq is simplistic and may not fully describe all interaction
scenarios that physically occur. The term represents a composite of two or more uncorrelated systems,
where the irreversibility operator has joint and unimpeded influence on the degrees of freedom
of each as the evolution takes place. Though simplistic, the interaction term fits into the dynamic
framework of Equation (6) as developed by Beretta: The combined system is itself an isolated system
that spontaneously evolves to a maximal entropy state along a steepest entropy path. The interaction
term therefore represents a valid case within the SEAQT theory. The extended formalism represented
by Equations (12)–(15) allows for the separate relaxation of each subsystem to be included as well.

1.3. Additional Modeling Details

The model system under investigation is a single trapped ion held in a quadratic potential that
is able to move along one dimension, similar to experiments involving a Paul trap [18]. The system
behaves as a quantum harmonic oscillator with equally-spaced energy eigenlevels. The reservoir
with which the system interacts is modeled as a bath of 3-dimensional quantum oscillators having a
degeneracy of

g “
pn` 1q pn` 2q

2
, (16)

where n is the n-th eigenenergy level of the oscillator.
Initially, all interacting systems are regarded as independent and uncorrelated. An initial state for

each system (i.e., ρp0q) is chosen. The systems are closed, with no mass flow across their boundaries,
but they may exchange energy and entropy via heat interactions. For the SEAQT case, the system and
reservoir are combined and the evolution for the composite is calculated. Afterward, the evolution of
the system of interest is extracted from the composite results using a partial trace operation.

1.4. Treatment of Reservoirs

The ME and DE have been formulated to describe the evolution of the system of interest without
including explicit details of the reservoir. The system of interest moves to a final stable equilibrium
state that has the same temperature as the reservoir. The ME interaction scenarios were determined
directly from Equation (3). For DE, Equation (5) was used. A solution for interactions with more than
one reservoir using the ME approach has yet to be developed, but is being pursued by [30].

The SEAQT technique was implemented with a reservoir that was explicitly modeled as a bath of
a number of harmonic oscillators. The bath remains in a stable equilibrium state relative to itself; i.e., in
a thermal state, but is free to exchange energy and entropy with the system of interest. Though finite
in size, the bath of oscillators was large enough to approximate the effects of a system approaching
that of a reservoir for the lowest energy eigenlevels.
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2. Results and Discussion

Figures 2–5 show comparisons between the ME, DE, and SEAQT models for the case where
the single-particle system near a pure state interacts with a “cold” reservoir at lower energy.
Initial conditions for the three cases are identical. Spontaneous self-relaxation for the DE and SEAQT
cases are excluded, except in Figure 5 for SEAQT. Given the lack of data for this interaction, the
respective time constants were adjusted to produce energy vs. time curves having the same shape in
order to facilitate comparisons between the models.
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Figure 4. Evolution vs. time of the state matrix ( )tρ  for the lowest five energy eigenlevels for the 

system interaction with the “cold” reservoir of Figure 2. The various colors represent the different 
energy eigenlevels of the system. The dotted lines represent the results for the DE model, the dashed 
lines represent the ME model, and the solid lines are for the SEAQT model. The occupation 
probabilities for P1 and P4 change the fastest and over the widest ranges with the ME model. An 
example of the characteristic time delay for the SEAQT case is seen. 

Figure 3. Comparisons of time trajectories for the ME, DE, and SEAQT models for the case in
Figure 2. (a) For the energy vs. time comparison, the paths for the ME and DE are essentially
identical. The trajectory for the SEAQT model is also similar, except for the time lag, which is due to the
initial slowness of energy spreading between eigenlevels; (b) For the entropy vs. time trajectories, the
ME model shows a markedly greater change in entropy. The DE and SEAQT curves indicate similar
dynamic behavior.
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Figure 5. Energy vs. Entropy curves of SEAQT as described by Equation (13) for the system of interest
A (shown in red) which includes spontaneous relaxation effects of various magnitudes as well as
interaction with the reservoir. The evolution of reservoir B is in green, and the composite system Ab B
is in blue. Magenta asterisks mark the initial states. An ME curve is shown for comparison.

In Figure 2, the E–S trajectory of the SEAQT model closely resembles that for the linear DE, and
was found to become more coincident as the size of model reservoir for SEAQT is increased. Both paths
markedly diverge from the predictions of ME. The differences may be due to the simplistic nature of
the interaction model used for the SEAQT case. However, near-linear behavior by the SEAQT model
has been seen previously. A straightforward examination of the results for isolated systems in [31]
shows trajectories that are almost indistinguishable from simple decaying exponentials of the DE
model. In Figure 2 and other figures, the units of entropy are (eigen) energy units/K with the value of
the Boltzmann constant set to unity.

The energy vs. time diagram in Figure 3a shows essentially identical behavior for ME and DE.
The SEAQT trajectory displays a time lag, but behaves similarly to ME and DE at later times. There is
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limited literature illustrating the time lag that is predicted by SEAQT. The results found by [32] for the
relaxation of rubidium atoms hints at a time delay with a sigmoidal profile and can be contrasted to
that of [33,34]. The data of Figure 15 in Turchette et al. [19] displays what looks like time delays for at
least two of the cases studied.

Figure 3b shows that the entropy increases faster and to a greater extent for the ME model than
either DE or SEAQT. Figure 4 illustrates how the occupation probabilities for the elements of the state
matrices for the three models change with time.

The E–S curves in Figure 5 show how discrepancies between the SEAQT and ME are reduced
when spontaneous relaxation effects are included according to Equation (13) for system A, the system
of interest. However, the curvature for the SEAQT model appears less rounded than that for the ME
model over a range of time constants.

The SEAQT formalism does however allow for τ to be a functional that varies with the system
state [24], so that

τ “ τ pρq (17)

Changing the value of τAB alone changes the rate of the system evolution but not the shape of the
E–S curve. By appropriately varying τ pρq for both spontaneous and reservoir interaction effects, the
E–S curve for SEAQT or DE could be made to conform to the ME trajectory. However, at present, there
is not yet a rationale for choosing how time factors should vary, other than to avoid conflict with the
Heisenberg uncertainty [24].

Figure 5 also shows the E–S curves for the composite system as well as the finite reservoir.
The curves illustrate how energy and entropy are transferred between system A and the reservoir.
As expected, energy is conserved for the composite system and entropy increases overall due to the
irreversibilities of the relaxation.

Current experimental evidence indicates that spontaneous relaxation effects for single particle
systems, if they exist, are negligible. Atoms that are sufficiently isolated have been found to maintain
their prepared states without degradation for long periods; in the case of rubidium atoms, for more
than one minute [34], and for trapped ions, more than ten minutes [35].

In Figures 6 and 7 the comparative behavior for system interactions with a “hot” reservoir are
shown. The same general differences between ME, DE, and SEAQT are seen. A closer match with ME
can be obtained if spontaneous relaxation effects are included for the SEAQT model.
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Figure 7. Energy and entropy time trajectories for the ME, DE, and SEAQT models for a system
interacting with a “hot” reservoir as in Figure 6a, without spontaneous relaxation by the system. As in
Figure 2, the DE and SEAQT paths tend to more closely coincide as the size of the SEAQT model
reservoir is increased. In (a), energy changes vs. time are shown; In (b), the ME model predicts
markedly faster changes in entropy with time.

2.1. Comparison of the Models with Experimental Data

One of the few sources of experimental data that are available for the relaxation of a quantum
single particle system is found in the work of Turchette et al. [19]. The data for the relaxation of
Fock states as they interact with a surrogate reservoir are shown therein in Figure 15 for the lowest
five energy levels. Four different cases are presented, representing initial states that are prepared
near the ground (|0>), first (|1>), second (|2>), and third (|3>) energy eigenstates, respectively.
The thermal reservoir was created by introducing a Gaussian noise spectrum to the electromagnetic
fields that trap the atom. The evolution of the system state over time was achieved by varying the
power of the reservoir over a constant time interval rather than by keeping the reservoir power constant
and making measurements over different time intervals. Maintaining a constant time interval has the
advantage of limiting extraneous environmental effects not represented by the reservoir. It is not clear
whether the higher power levels of the reservoir might cause unintended changes to the eigenstructure
of the system, however. Each data point is an average of several thousand experimental runs.

Figure A1 in the Appendix shows the application of Equation (3) of the ME model to the data.
The claim in [19] is that the variation of only one parameter, the inverse time constant γ, is needed to fit
the theoretical curves. In practice, the values for the data near the initial state are open to interpretation
and may be modified slightly to adjust the curve fit. Moreover, the increase of the mean energy chosen
for the reservoir can cause the curves to group more tightly together as equilibrium is approached.
The energy for the reservoir in [19] is not known, but the mean reservoir energy for the present study
was chosen to be 25 system eigenenergy units. The overall ME data match appears to be reasonably
accurate. The results of the correlation with the evolution for state |1> ostensibly shows the worst fit,
with traces P0, P1, and P2 consistently separated from the data points.

Small but noticeable differences are also seen when the current ME results are compared to
Figure 15 of [19]. The probabilities for the lowest five theoretical traces sum to greater than unity in
the areas near the vertical axis, for example. Other slight shifts of the theoretical curves are seen to
imply time delays in the evolution of certain energy levels. It was found in the present study, however,
that Equation (3) by itself is not able to produce time lags, regardless of the initial state of the system.
Time lags, if they exist, are noteworthy, and would support the SEAQT point of view.

In Figure 8, the SEAQT model utilizing Equation (13) with spontaneous effects is fitted to the
data from [19] for the lowest four of the initial states. For the horizontal scale, time is equivalenced to
reservoir power as was done in [19]. Reasonable correspondence to data can be made even though the
results differ somewhat from the ME result. For the individual cases illustrated, both τA and τAB were
held constant. Unlike the ME and DE models, SEAQT is readily able to produce time lags as seen in
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the case of |1> of Figure 8. Reducing the initial probability for a given energy eigenlevel produces a
longer time delay in its corresponding probability curve.Entropy 2016, 18, 176 11 of 17 
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Figure 8. Comparison of the SEAQT theoretical curves with spontaneous relaxation effects to the 
experimental data of [19] for initial states approximating |0> (a), |1> (b), |2> (c), and |3> (d) based on 
Equation (13). The dashed tan line for P5 of |1> (b) illustrates a time lag that can be introduced using 
the SEAQT formalism by making the initial probability small, in this case 1 × 10−5. For case |2> (c), 
there appears to be a time delay in the data for P0. The theoretical curve rises much faster than the 
data, however. 

Figure 8. Comparison of the SEAQT theoretical curves with spontaneous relaxation effects to the
experimental data of [19] for initial states approximating |0> (a), |1> (b), |2> (c), and |3> (d) based on
Equation (13). The dashed tan line for P5 of |1> (b) illustrates a time lag that can be introduced using
the SEAQT formalism by making the initial probability small, in this case 1 ˆ 10´5. For case |2> (c),
there appears to be a time delay in the data for P0. The theoretical curve rises much faster than the
data, however.
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Unexpectedly, even when spontaneous effects are neglected for the SEAQT model, there is still
reasonable correspondence to the data, as seen in Figure 9. The ME model looks to be slightly if
not conclusively better at matching the two higher energy data sets |2> and |3>. Figure 10 is an
example showing that the DE model without spontaneous effects is not able to adequately capture the
inflections of the experimental data.Entropy 2016, 18, 176 12 of 17 
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Figure 9. SEAQT theoretical curves without spontaneous relaxation effects, (a), (b), (c), (d) for initial 
states |0>, |1>, |2>, |3> as fitted to the data from [19]. The correlation of the curves with the data 
appears comparable to ME as well as SEAQT with relaxation effects. 

Figure 9. SEAQT theoretical curves without spontaneous relaxation effects, (a), (b), (c), (d) for initial
states |0>, |1>, |2>, |3> as fitted to the data from [19]. The correlation of the curves with the data
appears comparable to ME as well as SEAQT with relaxation effects.
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2.2. Quantum Steady States 
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Figure 10. A result for the DE model without spontaneous relaxation effects as compared to the data
for state |1>. Though accurate in many respects, the DE model does not capture local maxima (e.g., P3)
in the data.

To best fit the data, it was found necessary to use different time constants for each of the initial
states for both the ME and SEAQT models. The implication is that τ and γ are not constant but vary as
the system state changes. The values of τ that were used for each initial state are shown in Table 1.
The ME model evolved more quickly the greater the difference in energy between the initial and final
(reservoir) equilibrium state was. Since the reservoir energy was held constant, perhaps the smaller
energy differences explain the larger time constants for the higher energy |2> and |3> initial states.
For the SEAQT cases with spontaneous effects, the same general trend for τAB was seen. Curiously, the
opposite tendency was found for the SEAQT cases without spontaneous effects.

Table 1. A table showing how the time constants values were varied in order to fit the ME and
SEAQT models to the experimental data. The second column are τ values for ME, the third and fourth
are for SEAQT with spontaneous relaxation, and the last column for SEAQT without spontaneous
relaxation effects.

Initial State τME (= 1/γ) τAB τA τAB (No Spontaneous)

|0> 2.1 0.40 0.40 0.60
|1> 3.0 0.50 0.40 0.32
|2> 3.1 0.55 0.45 0.25
|3> 3.7 0.65 0.45 0.26

2.2. Quantum Steady States

Figure 11 shows an evolution of a single-atom system that interacts with two reservoirs at
different temperatures. The dynamics are based on a DE model using Equation (15). The system
is seen to move to a steady state condition that is not at stable equilibrium. The starting points are
a pure state with near-zero entropy and a representative stable equilibrium state. The results are
considered accurate only in the region near stable equilibrium. The model demonstrates at least
qualitatively how the system can evolve to a steady state. Each point on the steady state curve is a
linear combination of the two reservoir states. The location of a steady state point is determined by the
relative influence of each reservoir on the system as given by the magnitudes of the time constants for
the system-reservoir interactions:

ρssA “ αρeqA pTBq ` p1´ αq ρeqA pTCq ; 0 ă α ă 1 (18)

where
α “

τAC
τAB ` τAC

(19)
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1´ α “
τAB

τAB ` τAC
. (20)

Ordinarily, a state with a given energy and entropy that is not at stable equilibrium can be
represented by an unlimited number of different distinct state matrices. However, since the stable
equilibrium states are unique [36,37], it can be inferred that the steady states are also unique for a
given value of the α parameter.
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3. Conclusions 

Comparisons between the ME, DE, and SEAQT methods for modeling the quantum evolution 
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to demonstrate steady state dynamics for a single particle system that interacts with two reservoirs 
at different temperatures. 

Both the ME and SEAQT approaches are shown to reasonably coincide with the existing 
experimental data. The SEAQT model matches the data, even without the addition of spontaneous 
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accuracy to conclusively show which of the models is the most physically correct. There are 
indications that the time factors used in the models are not constant but vary with the state of the 
system. It is interesting to note that as applied, both the ME and SEAQT approaches, along with the 
existing data, presume that entropy as described by the density matrix ρ  exists and can be 
measured for a single particle. The data in Figure A2 in Appendix further supports this notion. The 
SEAQT point of view additionally claims that quantum systems that are not at stable thermal 
equilibrium can spontaneously increase in entropy, a claim that remains to be conclusively shown. 
SEAQT is also able to describe time lags that may exist, which the ME and DE models are unable to 
do. The discrepancies and similarities between the theoretical models will hopefully provide added 
rationale for further investigation, including new experiments to show the link between the entropy 
of the Second Law and Quantum Mechanics more clearly. 
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Figure 11. Evolution to steady state predicted by DE of a single atom system as it interacts with
two reservoirs at different temperatures. One of the starting states is near a pure state with energy of
2 (red trajectories), while the other is at a stable equilibrium state (green trajectories). The reservoir
temperatures correspond to the slopes of the stable equilibrium curve at the indicated locations.

3. Conclusions

Comparisons between the ME, DE, and SEAQT methods for modeling the quantum evolution
of a single trapped particle that interacts with a reservoir have been presented. A simple, novel
formalism for describing interactions between two or more systems has also been presented and
applied to the DE and SEAQT approaches. A straightforward adaptation of the DE model was used to
demonstrate steady state dynamics for a single particle system that interacts with two reservoirs at
different temperatures.

Both the ME and SEAQT approaches are shown to reasonably coincide with the existing
experimental data. The SEAQT model matches the data, even without the addition of spontaneous
effects to interactions with the reservoir. However, the available data is too limited in extent and
accuracy to conclusively show which of the models is the most physically correct. There are indications
that the time factors used in the models are not constant but vary with the state of the system. It is
interesting to note that as applied, both the ME and SEAQT approaches, along with the existing
data, presume that entropy as described by the density matrix ρ exists and can be measured for a
single particle. The data in Figure A2 in Appendix further supports this notion. The SEAQT point
of view additionally claims that quantum systems that are not at stable thermal equilibrium can
spontaneously increase in entropy, a claim that remains to be conclusively shown. SEAQT is also able
to describe time lags that may exist, which the ME and DE models are unable to do. The discrepancies
and similarities between the theoretical models will hopefully provide added rationale for further
investigation, including new experiments to show the link between the entropy of the Second Law
and Quantum Mechanics more clearly.
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this paper.
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Figure A1. Comparison of the ME theoretical relaxation curves to the experimental data of [19] for 
initial states approximating |0> in (a), |1> (b), |2> (c), and |3> (d) for the lowest five energy 
eigenlevels. The results are similar but not identical to [19]. A possible time lag is seen for the P0 
data of the |2> (c) case. 

Figure A1. Comparison of the ME theoretical relaxation curves to the experimental data of [19]
for initial states approximating |0> in (a), |1> (b), |2> (c), and |3> (d) for the lowest five energy
eigenlevels. The results are similar but not identical to [19]. A possible time lag is seen for the P0 data
of the |2> (c) case.



Entropy 2016, 18, 176 15 of 16
Entropy 2016, 18, 176 16 of 17 
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approximating the |0> eigenstate. The data follow but do not go to the right of the predicted limit 
curve of stable equilibrium states—physical evidence that single-particle quantum systems can exist 
in states with entropy greater than zero while obeying the limitations imposed by the Second Law. 
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