
entropy

Article

Multi-Level Formation of Complex Software Systems

Hui Li 1,*, Li-Ying Hao 1,2,* and Rong Chen 1

1 Information Science and Technology College, Dalian Maritime University, Dalian 116026, China;
rchen@dlmu.edu.cn

2 College of Information Engineering, Dalian Ocean University, Dalian 116023, China
* Correspondence: li_hui@dlmu.edu.cn (H.L.); haoliying@dlou.edu.cn (L.-Y.H.)

Academic Editors: J. A. Tenreiro Machado and António M. Lopes
Received: 29 January 2016; Accepted: 4 May 2016; Published: 12 May 2016

Abstract: We present a multi-level formation model for complex software systems. The previous
works extract the software systems to software networks for further studies, but usually investigate
the software networks at the class level. In contrast to these works, our treatment of software
systems as multi-level networks is more realistic. In particular, the software networks are organized
by three levels of granularity, which represents the modularity and hierarchy in the formation
process of real-world software systems. More importantly, simulations based on this model have
generated more realistic structural properties of software networks, such as power-law, clustering
and modularization. On the basis of this model, how the structure of software systems effects
software design principles is then explored, and it could be helpful for understanding software
evolution and software engineering practices.

Keywords: multi-level; software networks; software evolution; modularity

1. Introduction

Many systems in nature and society reveal network organizations. These networks, such as
biological protein networks [1], science collaborations [2,3], social networks [4] and the Internet [5],
have been found to represent some attributes, such as scale free, small world, etc. These discoveries
emerge from the science of complex networks. Recent studies have revealed that object-oriented
software systems share some structural attributes with these complex networks. Specifically,
the networks of software systems are characterized by a scale-free degree distribution [6–10],
a small-world structure (short average path length and high clustering) [11,12] and some other
features [13–18]. This therefore raises the study of software networks in recent years.

Software systems consist of many interacting units at some levels of granularity, such as
methods, classes and subsystems [19]. Additionally, the collaborations of these units in a software
system can be therefore extracted and defined as a software network. Figure 1 shows a simple
example of the extraction from a software system to a software network, in which the classes in
the left figure are nodes and the collaborations of such nodes are edges. For the software systems
with a more complex structure, the corresponding software networks are organized to be highly
functional, modularized [19] and evolvable [15]. This therefore brings some further studies on
software networks, such as community detection [20,21], quality assessment [10], important unit
identification [22], bug classification [23] and developer social collaboration [24,25], which are helpful
to various phases in software engineering practices.

During the whole production process of a software project, the design phase is the most critical
stage because the structure of the units at different levels and the collaborations of such units are
explicitly described in this process. These collaborations enable the detailed functional tasks to be
integrated by many reusable basic units in a modular and hierarchical fashion [11]. However, some

Entropy 2016, 18, 178; doi:10.3390/e18050178 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 178 2 of 25

other crucial and persistent actions in the lifecycle of software systems, such as software maintenance,
refactoring and adaptation, cannot be carried out in the task of software design, but lie in the
formation of software systems. The goal of a software project is not only building up a software
system to satisfy the functional requirement, but also making the software systems convenient and
economical to upgrade to new versions. Thus, it makes the evolution of software networks an
increasingly important issue.

(a)

(b)

Figure 1. An example of the extraction from a software system to a software network. (a) The Unified
Modeling Language (UML) graph of the simple software program; (b) the software network extracted
by the software program on the left.

However, while active research has been undertaken and many solid results have been obtained
for understanding the formation mechanisms of these natural and man-made systems, the same work
has been only very sparsely performed on software systems, and little has been achieved about the
cause-effect relationship between software engineering practices and the structure of these systems.



Entropy 2016, 18, 178 3 of 25

From the view of software engineering, software evolution is a process of meeting the
dynamical requirement changes of the users. From the view of entropy, software evolution is
a process of network structural change from chaos to order. As a kind of typical open system,
the structure of software systems is dynamically changing under an external driving force, and
the changing reveals the status of system designing and coding [26]. Therefore, studying how
the software systems evolve can help in a number of areas, including software testing, software
maintenance and program comprehension [27] and further to evaluate the system robustness and
its ability to tolerate changes [28].

Based on various of empirical studies [15,29–35], a few models of software network evolution,
which describe the evolutionary mechanism from different perspectives, have been proposed.
The models reported in [11,36–39] are respectively based on refactoring processes, node aging affect,
weighted network and software patterns. These models perform well in some aspects of software
network evolution, and the work can forecast the evolution trends based on the model [39]. However,
they do not explicitly include some important qualities of software networks, e.g., modularity and
hierarchy. In reality, however, software systems are characterized by high modularity [11,21,40],
which corresponds to the important principle of high cohesion and low coupling in software
design [41], and the practice of software architecture design assures that software networks are
hierarchical and multigranular by nature [13,42–44]. In addition, most of these models adopt
a undirected graph, which is appropriate for some types of networks, such as the Internet and
social networks, to represent software networks. However, software networks are directed because
dependent relations between basic units in software systems are unidirectional, and the direction is
designated when the node is added to the network [45].

Here, we stress another salient fact about the evolution of software systems, which is missing
in most of the existing models. With respect to evolution, these systems lie somewhere between
natural systems, which are characterized by a bottom-up self-organizing process, and conventional
engineering systems, whose upgrades are governed by a top-down central design, because the
work of software design is a social work in which many designers and developers are working
together to carry out the task [24]. On the one hand, software architecture supports more autonomous
attachments in comparison to other types of architecture, because objects are loosely coupled,
and adding or removing non-core objects usually does not significantly affect the rest of the system.
On the other hand, in enhancing software systems, some issues should be taken into consideration,
such as reuse, maintenance, performance and optimization. They all call for a comprehensive
viewpoint and overall design.

In view of the current situation discussed above, we aim at more accurately understanding the
general mechanism that governs the evolution of software systems and exploring the cause-effect
relationship between a variety of software development principles and the structure of software
systems. To accomplish this goal, we have developed a multi-level model of software evolution,
which represents software systems as directed networks and adopts a modular binding process for
new component attachments.

The rest of this paper is structured as follows. In Section 2, we describe the multi-level model,
in terms of structure and the evolutionary mechanism. Section 3 exhibits simulation results based on
the model and compares them to empirical data. In Section 4, we explore the implications of various
software design principles for the structure of software systems. Section 5 concludes this work and
presents possible future works.

2. The Multi-Level Model of Software Evolution

2.1. Levels of Software Systems

Software systems are multi-level systems by nature. In this work, we consider three typical levels
of software systems, which are outlined in Table 1.



Entropy 2016, 18, 178 4 of 25

We represent a software system on each level as a directed graph G = {V, E}. Here, V is a set
of elements that are termed nodes; E is a set of ordered node pairs, each of which implies that the
first node depends on the second one, and this relation of dependence is depicted as an edge that
leaves the first and enters the second node. The sets of elements on Levels I, II and III are denoted
respectively by {vI

i,j,k}, {v
II
i,j}, and {vIII

i }. Therefore, the element vI
i,j,k on Level I is the i-th element of

vII
j,k on Level II, and vII

j,k in turn is the j-th element of vIII
k on Level III, which is the k-th element on this

largest scale.

Table 1. Levels of a software network and their elements.

Level Elements

I classes, interfaces, structs
II motifs, patterns, libraries, frameworks
III packages, subsystems, components

In the following part of this section, we will give more detailed descriptions of the three levels.

2.1.1. Level I

In software systems, some basic units, such as classes, encapsulate fundamental functions for
constructing more complex and application-specific elements on larger scales. We term the scale
corresponding to these units Level I.

Collaborations among these basic elements form the microstructure of a software system.
Specifically, there are two types of dependencies between these elements: inheritance implies a
relationship of “is a”, and association corresponds to “has a”. We follow the convention of software
engineering in depicting a dependence: an edge is directed from Element B to Element A if B,
in its definition, makes reference to (or is dependent on) A. In our analysis, repeated links are
not considered.

2.1.2. Level II

In software practices, some combinations of classes or other basic units appear with much higher
frequencies than would be expected by pure chance [42], although some do not work in modern
software engineering [46]. These patterns, such as motifs, are usually composed of a few basic (Level I)
elements. They are general repeatable solutions to some commonly-occurring problems in software
design or have been reused over time in different systems to perform various information processing
functions. Being building blocks of more complex software structures, they constitute a natural level
between the basic units, such as classes, and the entire software system. We name it Level II.

In reality, Level II elements are usually composed of three or four Level I elements. An important
fact is that Level II elements with few internal links appear more frequently than those with many
internal connections [42]. The high probability of these sparse graphs is caused by the software
engineering principle that coupling should be minimized [47]. The most commonly-used Level II
elements are displayed in Figure 2.



Entropy 2016, 18, 178 5 of 25

Figure 2. Most commonly-used motifs in software networks. (a–d) are 3-node motifs; (e–n) are 4-node
motifs. All of the motifs are sparse graphs and not directed cycle.

2.1.3. Level III

Component-based software engineering has become a widely-adopted reuse-oriented approach
to software development, and software evolution usually involves adding new components to
existing systems. In comparison with single classes that can be used only if the detailed knowledge
about them is known, components are more encapsulated, abstract and easy to use.

In our model, components lie on Level III. They contain different numbers of Level II elements
and eventually different numbers of Level III elements, conforming to the empirical fact that the sizes
of components vary from a few objects to whole applications.

2.2. The Mechanism of Software Evolution

Empirically, software networks keep growing in response to changing conditions and new
requirements, in line with the empirical studies on a large number of real software systems [48,49].
Consequently, new functional modules are continually added into software systems, and these
elements are much more than those that are removed. The work in [44] further reported that, in
real software systems, both elements and edges tend to grow on different levels simultaneously.

There is an empirical fact that, although newly-added elements have different functions and
sizes, the numbers of the edges between them and the existing elements are quite close to one another.
For simplicity, we consider these numbers as equal and treat them as a constant that is denoted by Re.
Its value can be obtained by averaging the corresponding values of the elements in different systems.

There are a few parameters in our model: reuse probability Γ, common to elements on all three
levels, expresses the general degree of reuse; coupling ratio Λ is the ratio of the number of the edges
that connect all of the Level II elements within the same Level III element to all of the Level II edges
related to the Level III element; the total size of the whole software system at the end of the evolution
NI, in terms of the number of Level I elements; and the minimum size NIII

I,min and maximum size NIII
I,max

of the Level III elements, in terms of the number of Level I elements.
The mechanism of evolution can be described as the following algorithm and correspondingly

depicted as Figure 3. One should note that an edge between two Level II elements is established
because two Level I elements separately belonging to the two Level II elements are connected.
Likewise, an edge between two Level III elements is established because two Level II elements
separately belonging to the two Level II elements are connected.



Entropy 2016, 18, 178 6 of 25

Figure 3. Structure and evolutionary mechanism of a multi-level software system.

Step 1 Determine the values of NI, NIII
I,min, NIII

I,max, Λ and Γ.
Step 2 Create a new Level III element vIII

k with a random size nIII
k .

Step 2.1 In vIII
k , create a new Level II element vII

j,k of a random type.
Step 2.2 Link vII

j,k to an existing Level II element in vIII
k with directions depending on Γ.

The existing element is selected by probability Pin(Din) or Pout(Dout).
Step 2.3 With the determined direction, link EII,′

I (see Section 2.2.5) pairs of Level I
elements between vII

j,k and the existing element.
Step 2.4 If vII

j,k has linked to Re(1 − Λ) existing Level II elements in vIII
k , continue; else,

go to Step 2.2.
Step 2.5 If the number of Level III elements in vIII

k reaches nIII
k , go to Step 3; else, go to

Step 2.1.

Step 3 Attach vIII
k to an existing Level III element with directions depending on Γ. It is selected

with probability Pin(Din) or Pout(Dout).

Step 3.1 Select a Level II element vII
j,k from vIII

k , and link to an existing Level II element in
the existing Level III element by probability Pin(Din) or Pout(Dout).

Step 3.2 With the determined direction, link EII,′
I pairs of Level I elements between vII

j,k and
the existing Level II element.

Step 3.3 If ReΛnIII
k (see Section 2.2.4) pairs of Level II elements have been linked between

vIII
k and the existing Level III element, go to Step 4; else, go to Step 3.1.

Step 4 If the number of Level III elements in all Level I elements reaches NI, go to Step 5; else,
go to Step 2.

Step 5 End the process.

In the rest of this section, we present a more detailed explanation of the mechanism.



Entropy 2016, 18, 178 7 of 25

2.2.1. Direction of Attachment

The direction of the edges is determined in the following manner: (1) it will reuse an existing
module and establish an outgoing edge with reuse probability Γ (0 ≤ Γ ≤ 1); (2) it depends on an
existing module and receives an incoming edge with probability 1− Γ. Γ is positively related to the
general degree of reuse. We adopt a great value for Γ on account of the fact that, in the software
development practice, there is a strong inclination to reuse.

2.2.2. Probability of Attachment

In software engineering practices, the elements with high incoming dependencies usually have
a simple structure and perform some fundamental functions. These elements could be reused
for a greater probability to be reused and receive incoming links. In contrast, the elements with
more outgoing dependencies, such as modules of user interfaces, usually represent a more complex
structure within the elements. They are more likely to depend on other elements and establish
outgoing links. Due to their complexity, it is dangerous for the system if these elements are dependent
on other elements.

Consequently, elements with larger in-degrees are more likely to receive incoming edges, while
those with larger out-degrees are more likely to link to other elements with outgoing edges [45].
Therefore, we can consider that the probability that an element receives an incoming edge Pin(Din) is
proportional to its in-degree Din, and that with which elements establish an outgoing edge Pout(Dout)

is proportional to its out-degree Dout, i.e.,

Pin(Din) ∼ Din,

and:

Pout(Dout) ∼ Dout.

2.2.3. Level III

We assume that NI Level I elements will be added to the existing network. New Level III
elements {vIII

k } with a random number of Level I elements will be generated and added, one by
one, to the existing network, until the total number of Level I elements of the whole system reaches
NI. The size of each Level III element vIII

k is between NIII
I,min and NIII

I,max, and there are Re edges that
connect this element to other existing Level III elements.

2.2.4. Level II

The edges of each Level II element are of two types: internal edges connecting it to other elements
in the same Level III element and edges that link to elements in other Level III elements. We use the
parameter named coupling ratio Λ for the proportion of the second type of edges. A high (low) value
of Λ therefore corresponds to high coupling and low cohesion (low coupling and high cohesion).

In the evolutionary process, when a new Level II element vII
j,k is added into a Level III element

vIII
k , Re Λ internal edges form between vII

j,k and other Level II elements in vIII
k . Since vIII

k contains NIII
II

Level II elements, there will be NIII
II Re (1−Λ) internal edges and NIII

II Re Λ edges connecting different
Level II elements within vIII

k .
When an edge is added between the new Level III element vIII

k and an existing Level III element,
ReNIII

II Λ pairs of Level II elements between the two Level III elements are linked through Level II
edges and with the same direction as the Level III edge. The probabilities for each pair of Level II
elements to get an incoming edge and an outgoing edge are Pin(Din) and Pout(Dout), respectively.



Entropy 2016, 18, 178 8 of 25

2.2.5. Level I

Empirically, a Level II element is composed of three or four Level I elements of 14 types
(see Figure 2). When a Level II element is generated, the number of internal Level I edges depends on
the type of the Level II element. For simplicity, we assume that the 14 types of Level I elements appear
in every Level II element with an equal probability. Consequently, we can get the average number of
Level I elements N̄II

I = (1/n)∑n
j=1 NII

I,j and the average number of Level I edges ĒII
I = (1/n)∑n

j=1 EII
I,j.

We assume that there are NIII
II Level II elements in the current Level III element, and EII,′

I
Level I level interacting edges are added when a Level II level edge is added. The total number
of Level I edges is equal to the sum of the total number of internal edges and the total number of
interacting edges:

NIII
II N̄II

I Re = NIII
II ĒII

I + EII,′
I NIII

II Re,

then we have:

EII,′
I = N̄II

I −
ĒII

I
Re

.

We can therefore simply consider that each Level II element contains N̄II
I Level II elements and

ĒII
I Level II edges. When an edge is added between the new Level II element vII

j,k and an existing

Level II element, EII,′
I pairs of edges between the two elements are linked by Level I level edges and

with the same direction as that of the Level II level edge. The selected probabilities for each pair of
elements to get the incoming edge and the outgoing edge are Pin(Din) and Pout(Dout), respectively.

3. Simulation Results

In this section, some essential results of simulations based on our multi-level model are
displayed. The simulations were undertaken with respect to the structural properties of our
simulated software network. We explored the influences of four parameters: coupling ratio Λ, reuse
probability Γ and the minimum size NIII

I,min and the maximum size NIII
I,max of the Level III elements.

The values for EII,′
I and Re are adopted as, respectively, the average values of their corresponding

empirical observations.
For validating our modeling, the simulation results are compared to data presented in some

real-world software systems, such as Blender, Doxygen, Eclipse, etc. More importantly, these
simulations enable more comprehensive understanding of the evolutionary mechanisms under study.

3.1. Degree Distributions

The degree of an element, Di,j,k, is the number of edges attached to it. Correspondingly,
the in-degree Din

i,j,k and the out-degree Dout
i,j,k are respectively the number of links that enter it and

the number of links that exit it.
In this study, the measurements of the p-value and xmin are used to measure the goodness-of-fit

for degree distributions [50] (the code can be found from [51]). The first metric, p-value, represents
the mathematical “distance” between the power-law distribution and the distribution of the actual
network. The previous study reports that the power-law distribution of the current data can be
believable, if p-value≥ 0.1; conversely, it cannot be authentic [50]. moreover, the degree distribution
has some non-power-law behavior at the lower end; thus, we use the metric of xmin to control the
part of the degree distribution that represents power-law behavior. It is reported that the power-law
distribution is more plausible if the value of xmin is smaller [50].

Figure 4 shows the simulated distribution of the degrees of the Level I elements, and the
corresponding correlation coefficients, p-value, xmin can be found in Table 2. For comparison, in the
same figure, we also plotted the degree distribution of the real software systems. It can be seen that



Entropy 2016, 18, 178 9 of 25

both of and simulations and real software networks represent a power-law feature, and the degree
distributions of the simulations are close to those of real software networks because the values of the
exponents γ are close to the values of real software networks.

The power-law degree distribution is an important network feature in complex networks.
It indicates that the degrees of most of the nodes are small while a small amount of nodes have large
degrees [52]. In software networks, the elements with a small degree can be benefit fromthe function
decomposition [53]. In contrast, the nodes with a large degree are crucial to achieve complex tasks
and frequently interact and exchange data with other nodes. Therefore, the possible failures of these
nodes with a large degree could greatly affect the system.

On the other hand, we know that software networks are directed; thus, the in-degree and
out-degree distributions can also represent the interaction characteristics of the nodes. Figure 5 and
Table 3 show the simulated distribution of the in-degrees of the Level I elements, with the comparison
of the in-degree distribution of the real software systems. Similar to the degree distributions,
the in-degree distributions of the simulations and real software networks express the power-law,
and the differences between them are small according to the exponents γ and fitting goodness
p-value. Additionally, Figure 6 and Table 4 show the out-degree distributions of these networks.
Though the distributions are also close between the simulations and real software networks,
the fitting goodness of the power-law is not good enough for some networks. Therefore, only some
software networks follow a power-law.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Blender 2.64
Fitting of Blender 2.64
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Doxygen 1.8.2
Fitting of Doxygen 1.8.2
Simulation
Fitting of simulation

(a) (b)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Eclipse 3.6.2
Fitting of Eclipse 3.6.2
Simulation
Fitting of Simulation

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Firefox 8.0
Fitting of Firefox 8.0
Simulation
Fitting of simulation

(c) (d)

Figure 4. Cont.



Entropy 2016, 18, 178 10 of 25

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
JEdit 5.0
Fitting of JEdit 5.0
Simulation
Fitting of Simulation

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Koffice 2.3.2
Fitting of Koffice 2.3.2
Simulation
Fitting of simulation

(e) (f)

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Spring 3.1
Fitting of Spring 3.1
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Squirrel 3.2.1
Fitting of Squirrel 3.2.1
Simulation
Fitting of simulation

(g) (h)

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Tomcat 7.0.20
Fitting of Tomcat 7.0.20
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
VTK 5.10
Fitting of VTK 5.10
Simulation
Fitting of simulation

(i) (j)

Figure 4. Degree distributions produced by our multi-level model (◦ points) (the scale of the vertical
axis is logarithmic). The corresponding distributions of real software systems (4 points) are also
plotted here for comparison. (a) Blender 2.64; (b) Doxygen 1.8.2; (c) Eclipse 3.6.2; (d) Firefox 8.0;
(e) JEdit 5.0; (f) Koffice 2.3.2; (g) Spring 3.1; (h) Squirrel 3.2.1; (i) Tomcat 7.0.20; (j) VTK 5.10.



Entropy 2016, 18, 178 11 of 25

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Blender 2.64
Fitting of Blender 2.64
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Doxygen 1.8.2
Fitting of Doxygen 1.8.2
Simulation
Fitting of simulation

(a) (b)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Eclipse 3.6.2
Fitting of Eclipse 3.6.2
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Firefox 8.0
Fitting of Firefox 8.0
Simulation
Fitting of simulation

(c) (d)

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
JEdit 5.0
Fitting of JEdit 5.0
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Koffice 2.3.2
Fitting of Koffice 2.3.2
Simulation
Fitting of simulation

(e) (f)

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Spring 3.1
Fitting of Spring 3.1
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Squirrel 3.2.1
Fitting of Squirrel 3.2.1
Simulation
Fitting of simulation

(g) (h)

Figure 5. Cont.



Entropy 2016, 18, 178 12 of 25

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Tomcat 7.0.20
Fitting of Tomcat 7.0.20
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
VTK 5.10
Fitting of VTK 5.10
Simulation
Fitting of simulation

(i) (j)

Figure 5. In-degree distributions produced by our multi-level model (◦ points) (the scale of the vertical
axis is logarithmic). The corresponding distributions of real software systems (4 points) are also
plotted here for comparison. (a) Blender 2.64; (b) Doxygen 1.8.2; (c) Eclipse 3.6.2; (d) Firefox 8.0;
(e) JEdit 5.0; (f) Koffice 2.3.2; (g) Spring 3.1; (h) Squirrel 3.2.1; (i) Tomcat 7.0.20; (j) VTK 5.10.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Blender 2.64
Fitting of Blender 2.64
Simulation
Fitting of simulation

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Doxygen 1.8.2
Fitting of Doxygen 1.8.2
Simulation
Fitting of simulation

(a) (b)

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Eclipse 3.6.2
Fitting of Eclipse 3.6.2
Simulation
Fitting of simulation

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Firefox 8.0
Fitting of Firefox 8.0
Simulation
Fitting of simulation

(c) (d)

Figure 6. Cont.



Entropy 2016, 18, 178 13 of 25

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
JEdit 5.0
Fitting of JEdit 5.0
Simulation
Fitting of simulation

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Koffice 2.3.2
Fitting of Koffice 2.3.2
Simulation
Fitting of simulation

(e) (f)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Spring 3.1
Fitting of Spring 3.1
Simulation
Fitting of simulation

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Squirrel 3.2.1
Fitting of Squirrel 3.2.1
Simulation
Fitting of simulation

(g) (h)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
Tomcat 7.0.20
Fitting of Tomcat 7.0.20
Simulation
Fitting of simulation

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
(X

 ≥
 x

)

x

 

 
VTK 5.10
Fitting of VTK 5.10
Simulation
Fitting of simulation

(i) (j)

Figure 6. Out-degree distributions produced by our multi-level model (◦ points) (the scale of the
vertical axis is logarithmic). The corresponding distributions of real software systems (4 points) are
also plotted here for comparison. (a) Blender 2.64; (b) Doxygen 1.8.2; (c) Eclipse 3.6.2; (d) Firefox 8.0;
(e) JEdit 5.0; (f) Koffice 2.3.2; (g) Spring 3.1; (h) Squirrel 3.2.1; (i) Tomcat 7.0.20; (j) VTK 5.10.



Entropy 2016, 18, 178 14 of 25

Table 2. Correlation coefficients of degree distributions; the corresponding metrics of the p-value and
xmin, produced by our multi-level model and real software systems.

Software Real Networks Simulations
C-C p-Value xmin C-C p-Value xmin

Blender 2.64 2.726 0.643 5 2.732 0.77 5
Doxygen 1.8.2 2.358 0.614 4 2.508 0.573 4
Eclipse 3.6.2 2.691 0.204 6 2.803 0.416 6
Firefox 8.0 2.705 0.14 5 2.488 0.196 2

Jedit 5.0 2.825 0.686 4 2.933 0.896 3
Koffice 2.3.2 2.657 0.332 3 2.825 0.51 4
Spring 3.1 2.923 0.605 5 2.731 0.378 2

Squirrel 3.2.1 2.719 0.24 4 2.801 0.432 5
Tomcat 7.0.20 2.605 0.152 4 2.89 0.582 3

VTK 5.10 2.513 0.655 8 2.348 0.259 3

Table 3. Correlation coefficients of in-degree distributions; the corresponding metrics of the p-value
and xmin, produced by our multi-level model and real software systems.

Software Real Networks Simulations
C-C p-value xmin C-C p-value xmin

Blender 2.64 2.344 0.207 4 2.438 0.289 8
Doxygen 1.8.2 1.947 0.665 1 2.096 0.572 3
Eclipse 3.6.2 2.238 0.893 6 2.254 0.697 9
Firefox 8.0 2.262 0.609 3 2.105 0.196 4

Jedit 5.0 2.404 0.902 3 2.604 0.112 2
Koffice 2.3.2 2.322 0.08 4 2.293 0.744 5
Spring 3.1 2.478 0.605 4 2.349 0.724 6

Squirrel 3.2.1 2.072 0.176 3 1.992 0.161 3
Tomcat 7.0.20 2.426 0.902 5 2.257 0.537 3

VTK 5.10 2.106 0.145 3 2.258 0.126 5

Table 4. Correlation coefficients of out-degree distributions; the corresponding metrics of the p-value
and xmin, produced by our multi-level model and real software systems.

Software Real Networks Simulations
C-C p-value xmin C-C p-value xmin

Blender 2.64 3.079 0.072 3 3.323 0.199 3
Doxygen 1.8.2 3.383 0.278 3 3.978 0.178 5
Eclipse 3.6.2 4.202 0.753 9 5.481 0.636 9
Firefox 8.0 3.762 0.625 6 3.534 0.144 4

Jedit 5.0 3.142 0.18 2 3.864 0.502 5
Koffice 2.3.2 3.536 0.06 3 3.442 0.14 4
Spring 3.1 4.443 0.387 4 5.223 0.665 7

Squirrel 3.2.1 4.373 0.843 5 3.438 0.275 4
Tomcat 7.0.20 4.915 0.795 7 6.038 0.605 7

VTK 5.10 3.078 0.05 3 3.491 0.16 3



Entropy 2016, 18, 178 15 of 25

3.2. Correlation between In-Degree and Out-Degree

In comparison with some other complex networks, software networks display an important
characteristic: in-degrees and out-degrees of elements are negatively correlated [11].

Figure 7 is a scatter plot of the simulated Level I in-degrees against corresponding out-degrees
of all Level I elements. For comparison, in the same figure, we also plotted the same types of data
obtained from the real software systems. This figure expresses that the results generated by our model
are in line with empirical data.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

kout

ki
n

 

 
Blender 2.64
Simulation

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

kout

ki
n

 

 
Doxygen 1.8.2
Simulation

(a) (b)

0 10 20 30 40 50
0

100

200

300

400

500

600

700

kout

ki
n

 

 
Eclipse 3.6.2
Simulation

0 100 200 300 400
0

200

400

600

800

1000

1200

1400

kout

ki
n

 

 
Firefox 8.0
Simulation

(c) (d)

0 2 4 6 8 10 12
0

10

20

30

40

50

kout

ki
n

 

 
JEdit 5.0
Simulation

0 5 10 15 20
0

100

200

300

400

500

600

700

800

kout

ki
n

 

 
Koffice 2.3.2
Simulation

(e) (f)

Figure 7. Cont.



Entropy 2016, 18, 178 16 of 25

0 5 10 15 20
0

20

40

60

80

100

120

140

160

kout

ki
n

 

 
Spring−framework 3.1
Simulation

0 5 10 15 20 25 30
0

100

200

300

400

500

600

kout

ki
n

 

 
Squirrel 3.2.1
Simulation

(g) (h)

0 5 10 15 20
0

50

100

150

200

250

kout

ki
n

 

 
Tomcat 7.0.20
Simulation

0 10 20 30 40
0

50

100

150

200

250

300

350

kout

ki
n

 

 
VTK 5.10
Simulation

(i) (j)

Figure 7. Simulated in-degrees against corresponding out-degrees. The corresponding data obtained
from the real software networks (+ points) and those of simulations (× points) are also plotted here
for comparison. (a) Blender 2.64; (b) Doxygen 1.8.2; (c) Eclipse 3.6.2; (d) Firefox 8.0; (e) JEdit 5.0;
(f) Koffice 2.3.2; (g) Spring 3.1; (h) Squirrel 3.2.1; (i) Tomcat 7.0.20; (j) VTK 5.10.

We can see that the elements with larger in-degrees have smaller out-degrees, while the nodes
with large out-degrees have smaller in-degrees. Therefore, we use correlation coefficient R(Din, Dout)

for measuring the correlation between in-degree and out-degree distributions. The correlation
coefficients of the in-degree set and the out-degree set (respectively for all nodes and the elements
with din ≥ 10 or dout ≥ 10) for simulations of the multi-level model and real software networks are
shown in Table 5. It can be seen that most of the coefficients for simulations (−0.2 ∼ −0.05) between
in-degrees and out-degrees are close to the real software networks (−0.2 ∼ 0), though the negative
correlations are not obvious. However, the correlation coefficients for simulations (−0.4 ∼ −0.6)
between in-degrees and out-degrees are also close to the real software networks (−0.3 ∼ −0.6) and
negatively correlated.

This negative correlation can be accounted for by some principles of software development.
In a software system, elements with a large in-degree usually perform fundamental or commonly-used
functions. These elements are therefore more likely to be reused. Conversely, elements with a large
out-degree usually accomplish specific tasks. Therefore, they are less likely to be aggregated by
other elements.

As shown in Figure 7, our model also reproduced another feature of real software systems, i.e.,
the largest out-degrees of the nodes are always much smaller than the largest in-degrees. In contrast,
the BAmodel is unable to generate this attribute.

The reason for this feature is that elements that have a larger probability to be reused tend to have
a higher in-degree; while existing elements are not easy to aggregate intonew elements. Additionally,



Entropy 2016, 18, 178 17 of 25

a new element is more likely to reuse an element with many incoming links than a complex element
with many outgoing links. The software engineering practice encourages reuse, which leads to large
in-degrees. Conversely, it is not encouraged for an element to have too many out-degrees, because
this will lead to highly complicated structures and hinder maintenance.

Table 5. Correlation coefficients of the in-degree set and the out-degree set (respectively for all nodes
and the elements with din ≥ 10 or dout ≥ 10) for simulations of the multi-level model and real
software networks. Sub-Network_1 and Sub-Network_2, respectively, represent the sub-network with
the elements with din ≥ 10 or dout ≥ 10 simulations of the multi-level model and the sub-network
with the elements with din ≥ 10 or dout ≥ 10 simulations of real software networks.

Software Real Networks Simulations (all d) Sub-Network_1 Sub-Network_2

Blender 2.64 0.019 −0.116 −0.293 −0.536
Doxygen 1.8.2 −0.014 −0.029 −0.409 −0.43
Eclipse 3.6.2 −0.015 −0.09 −0.52 −0.494
Firefox 8.0 −0.025 −0.136 −0.448 −0.502

Jedit 5.0 0.042 −0.108 −0.372 −0.607
Koffice 2.3.2 −0.02 −0.071 −0.326 −0.461
Spring 3.1 −0.08 −0.133 −0.418 −0.482

Squirrel 3.2.1 −0.039 −0.056 −0.491 −0.525
Tomcat 7.0.20 −0.032 −0.08 −0.38 −0.449

VTK 5.10 −0.06 −0.127 −0.588 −0.511

3.3. Level of Clustering and Modularity

In software design, the cohesion and coupling reflect the interactions between modules of
software systems. Cohesion is a property of a single module and represents the degree to which the
related units within the module, while coupling is a property of a pair of modules and represents the
degree of relationships between such modules [41]. It is well known that the modularized software
systems are much easier to develop and maintain, and a well-modularized software system usually
represents a high degree of cohesion and a low degree of coupling [19,20].

According to the previous studies, the metrics of the clustering coefficient and modularity are
used to represent the degree of cohesion and coupling for software networks [11,21]. The clustering
coefficient of the entire network is a measure of the degree to which nodes in the network tend to
cluster together, and it represents the tendency of the nodes’ neighbors to be their common neighbors
in a network [11]. The modularity is an attribute of how good a network is divided into modules, and
a good division is more edges within modules and fewer edges between them [54]. Comparatively
speaking, the clustering coefficient tends to describe the clustering of the node and its neighbors,
while the modularity emphasizes the goodness of module division.

The measurement of clustering coefficient C is the average of the clustering coefficients of all of
the nodes [55]. The equation of the clustering coefficient is:

Ci,j,k =
ti,j,k

qi,j,k(qi,j,k − 1)
,

in which qi,j,k is the number of nearest neighbors of node vi,j,k and ti,j,k is the number of connections
between them. If the value of C is larger, the network tends to have a higher degree of cohesion and
a lower degree of coupling.

Real software systems are modular, and the clusters represent some units that collaborate
together to carry out the same task [56]. Then, we choose the sample software systems, such as
Blender (written in C++) and Eclipse (written in Java), respectively, to generate 10 simulated networks
for comparisons, and the results are shown in Tables 6 and 7. Table 6 shows that the C value from



Entropy 2016, 18, 178 18 of 25

our model is close to the value of the real-world software system. The reason is that the networks
generated by the model are modular and have high cohesion.

Table 6. Clustering coefficients of Blender and Eclipse, with the corresponding simulations produced
by the model for 8 versions.

Version Index Blender Simulations Eclipse Simulations

1 0.0574 0.0642± 0.0027 0.0565 0.0629± 0.0032
2 0.0545 0.0651± 0.0034 0.0572 0.0633± 0.0027
3 0.0568 0.0676± 0.0025 0.0616 0.0639± 0.0039
4 0.0642 0.0684± 0.0047 0.0605 0.0642± 0.004
5 0.0689 0.0694± 0.0035 0.0602 0.0638± 0.0043
6 0.0712 0.0686± 0.005 0.0599 0.0655± 0.0029
7 0.0757 0.0699± 0.0053 0.0582 0.0663± 0.0036
8 0.0651 0.0705± 0.0045 0.0601 0.0669± 0.0041

Table 7. The values of modularity of real software networks (Blender and Eclipse), with the
corresponding simulations produced by the model for 8 versions.

Version Index Blender Simulations Eclipse Simulations

1 0.733 0.787± 0.019 0.719 0.702± 0.024
2 0.735 0.799± 0.014 0.722 0.707± 0.033
3 0.758 0.813± 0.025 0.716 0.712± 0.018
4 0.79 0.818± 0.021 0.714 0.715± 0.03
5 0.792 0.821± 0.023 0.727 0.72± 0.024
6 0.801 0.827± 0.02 0.72 0.726± 0.031
7 0.796 0.832± 0.021 0.726 0.73± 0.024
8 0.806 0.835± 0.016 0.732 0.737± 0.028

The work in [21] proves that software networks show the feature of community structure by
empirical studies, and thus, it is verified that software networks are modularized and that each
consists of a network of interdependent parts [57]. Therefore, we use the metric of modularity Q,
which is defined as the fraction of the edges within the divided groups minus the expected fraction
of such edges in the network formed in a random way [54], to measure the modularity of software
networks. The mathematical definition for modularity Q [58] is:

Q =
1

2m ∑
i,j

[Aij −
kik j

2m
]δ(ci, cj),

where Aij denotes the weight of an edge between a node vi and a node vj (the weight is one in this
case) in the graph, ki = ∑j Aij is the sum of the weights of the edges attached to the node vi, ci is the
community to which the node vi is assigned, the function δ(u, v) is one if u = v and zero otherwise
and m = 1

2 ∑
i,j

Aij. The lager the value of Q, the higher the degree of cohesion for a network.

The examples of Blender and Eclipse are also used here to study the modularity of the
simulations, and the results can be found in Table 7. We can see that the values of modularity are close
between the real software networks and simulations. Moreover, the results also demonstrate that the
model can produce software networks following the principle of high cohesion and low coupling.



Entropy 2016, 18, 178 19 of 25

4. Discussions

4.1. Trade-Off between Reusability and Maintainability

4.1.1. Cohesion and Coupling

In the model, the coupling ratio Λ represents the possibility that a new edge connects two nodes
in different modules, when new nodes are added to the existing network. Particularly, a larger value
of Λ means a larger proportion of edges between nodes in different modules, which indicates that the
nodes are more likely to connect the nodes in other modules. Conversely, a smaller value of Λ means
a smaller proportion of edges between nodes in the same modules, which indicates that the nodes are
more likely to connect the nodes in the same modules.

We generate three groups of evolving networks (Γ = 0.8, NIII
I,min = 32, EII,′

I = 48 and Re = 2) by
three different values of Λ, in order to discuss the clustering and modularity of the software networks
for different coupling ratios. Figure 8 shows the negative correlation between the two measurements,
clustering coefficient C and modularity Q, and coupling ratio Λ. We can see that the values of C
distribute in the range of 0.1 ∼ 0.11, and the values of Q are around 0.85, when Λ = 0.1. However,
the values of C decrease to the range of 0.05 ∼ 0.055, and the values of Q decrease to around 0.65
when the value of Λ rises to 0.5. Therefore, the clustering coefficient and modularity will decrease as
the coupling ratio becomes larger.

3000 4000 5000 6000 7000 8000 9000 10000
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

 Number of Vertices

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

 

 
Λ=0.1
Λ=0.3
Λ=0.5

3000 4000 5000 6000 7000 8000 9000 10000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 Number of vertices

M
od

ul
ar

ity

 

 
Λ=0.1
Λ=0.3
Λ=0.5

(a) (b)

Figure 8. Negative correlation between two measurements and coupling ratio Λ. (a) The correlation
between clustering coefficient C and coupling ratio Λ; (b) The correlation between modularity Q and
coupling ratio Λ.

Moreover, the above correlation can be proven by the network topological structure. For the
sake of better visualization, we generate three simulated networks (Γ = 0.8, NIII

I,min = 32, EII,′
I = 48

and Re = 2) with 1000 nodes by different values of coupling ratio Λ and display the topological
structure of them by Gephi (version 0.9) [59] in Figure 9. It can be seen clearly that the network
represents obvious modularization as Λ = 0.1, and the nodes within the same modules connect
more tightly while the connections between the nodes in different modules are sparse. As the value
of Λ becomes 0.3, the network still displays the feature of modularization, and the nodes interact
with their neighbors within the modules more tightly than the nodes in other modules, although the
modularization is reduced obviously. When the value of Λ reaches 0.5, we cannot find a modular
structure any longer from the generated network.



Entropy 2016, 18, 178 20 of 25

390

158

389

883

882

707

723

913

719

722

831

844

215

198

156

643

660

560

575

563

887

513

523

532

6

67

39

715

706

717

718

710

711

724

700

725

716

503

271

965
950

832

818

843

214

367

319

400

556

574

570

226

219

880

881

902
886

111 917

789

796

512

522

531

519

537

599

49

527

538

66

65

25

24

70

38

44

60

708

726

701

705

709712

697

721

688

698

699

696

713

714

695

694

720

502

482

275

251

471

489

279

263

264

57

969

829

830

816

817821

850

842

825

826
827

828

823

773

736

766

748

440

436

236

342

184

607

318

310

301

293

648

668

674

897

392

387

393

391

395

394

396

397

398

399

553

554

564

565

566

567

555

559

579

572

573

568

569

580

582

578

577

576

562

581

583

558

224

225

221

222

218

233

849

878

871

879

872

899

900

901

868

856

885

867

889

888
873

884

863

862

939

938

936

925

146

974

916

935

788

795

783

511
506

521

509

529

530

517

518

510

597

591

598

596

600

590

595

515

514

587

48

536

533

526

524

702

704

356

29

703

14

23

53

36

37

43

45

34

35

64

42

58
59

52

69

687

689

690

691

692

693

501

459

472

473

474

475

457

456

446

464

465

466

467

458

252

250

249

470

478
479

490

486

451 485

278

493

452

453

454

455

500

497

255

274

496

481

259

56

973

953

943

960

959

957

968

958

949

964

962

961

971
970

972

820

819
806

841
810

822

824

814

815

774

769

770

747

1000

990

997

996

993

439

425

431

435

417

213

235

234

203

238

363

378

374

370

377

379

230

228

197

199

210

304

207

341

348

352

177

176

174

179

178

165

326

164

183

625

622

620

623

618

619

614

624

317

316

309

308

292

290

311300

307

314

313

312

647

663664

667

639

678

677

642

675

896

876

877

386

383

380

381

385

382

388

384

543
541

540
539

561

545

546

547

544

542

557

549

551

550

571

220

223
206

216

217

232

231

194

852

851

870

869

864

853

937

906

923

924

919
918921

131

132

135

133

144

134

145

140

141

143

142

121

123

122116

127

129

128

130

914915

929

931

920

930

934

932

933

927

926

928

894

860

861

893

786

787

792

776

803

793

794

799

800

782

785

508

507

593

589

588

586

594

592

516

585

46

47

534

136

535

137

525

528

520

1

2

28

31

7

3

13

12

4

5

27

33

32

26

15

10

16

11

8

9

40

41

61

63

30

62

50

51

68

441

442

448

449

239

240

469

468

450

447

477

476

487

488

484

483

276

277

491

492

266

244

267

265

499

498

462

253

254

268

256

269

270

273

272

261

262

243

245

495

494

480

444

257

258

246

248

260

54

55

653

654

655

656

247

952

951

963

954

948

947

966

967

955

956

940

941

944

942

945

946

805

813
812

811

771

772

768

767

750

758

757

764

761

760

765

745

746

751

998

999

991

994

982

992

755

584

985

980

986

995

987

981

984
983

977

437

438

424
421

411

429

414

427

426
428

848

847

845

434

433

416

410

404

91

92

93

94

212

202

201

200

196

191

362

361

365

364

373

372

366

368

376

375

360

208

211

369

371

229

320

321

322

323

303

302

204

205

195

237

340

339

327

328

347

346

337

338

344

330

345

343

357

333

350

349

354

353

355

175

172

160

168

169

325

324

166

167

163

162

170

171

157

181

182

153

159

161

180

612

606

608

609

616

617

613

615

603

610

611

621

297

299

298

306

305

288

287

289

283

285

296

315

645

646

632

628

662

661

665

666

637

640 633

676
679

635

638

680

681

682

683

644
672

673

671

651

686

898

874

875

865

98

90

463

552

548

190

188

185

186

911

909

139

138

109

110

114

113

104

103

126

124

903

904

907

905

922

908

912

910

891
892

866

857

115

125

858

859

351

780

775

777

801

802

791

790

778

779
798

797

784

781

505
504

22

20

17

18

21

19

445

443

242

241

107

105

804

807

809

808

727

728

734

732

762

763

749

752

738

739 741

729

735

737

744

743

742

756

979978

988
989

754

753

112

976
975

423

422

420

419

407

412

413

846

835

430

432

120

415

418

409

408

403

359

358

209

227

193

192

189

187

335

336

331

334

332

329

155

149

150

154

147

148

152

151

602

601

604

605

281

284

280

282

295

294

291

286

630

631

634

636

626

627

641

629

670669

650

649685

684

657

652
658

659

895

890

855

854

96

95

99

100

80

78

89

88

86

85

77

82

83

84

173

87

97

461

460

101

102

759

731

730

740

733

108

106

406 405

833
834

840

836

838

119

839

837

118

117

402

401

72

71

74

75

81

76

79

73

494

752

750

749

534

532

672

199

412

413

419

493

633

641

527

952

35

673

665

269

441

429

637

700

842

854

895

903

106

690

806

198

834

411

410

403

402

418

417

415

355

317

511

510

503

501

632

644

643

642

215

250

42

526

523

965

951

874

711

34

26

99

56

670

671

664

660

675

674

268

605

587

600

276

275

273

254

583

195

172

850

440

571

555

636

290

697

841

279

962

293

830

853

845

894

923

902

921

899

913

770

102

107

396

159

144

805

808

137

748

756

118

833

838

784

802

569

414

416

404
401

405

354

362

301 264

471

996

378

392

151

374

508

509

319

283

502

504

496

498

488

499

500

506

505

507

495

497

631

634

617

611

610

639

640

622

620

623

621

625
626

217

218

220

221

203

212

219

251

795

796

797

798

444

350

524

525

521

520

535

954

529

528

514

966

955

950

949

958

929

959

957

860

861

877

869

868

879

878

876

875

708

709

713

712

703

710

714

719

717

32

33

24

25

80

44

98

87

86

88

55

76

663

662

659

658

656

655

661

591

592

593

594

589

657

654

651

267

266

233

234

235

236

229

232

225

603

604

586

599

602

596

253

239

459

580

581

668

669

194

177

601

173

258

849

438

439

460

461

462

463

477

480

562

428

446

447

448

449

551

552

556

564

566

565

635

638

288

287

272

318

685

686

698

687

694

695

683

689

840

839

277

278

313

859

816

291

294

828

829

822

823

851

852

844

827

892

893

922

925

889

890

900

901

920

909

924

914

915

916

917

898

911

912

905

904

910

613

614

615

616

629

630

768

769

481

101

65

64

66

72

71

83

84

104

105

92

93

94

95

90

380

379

387

395

158

155

243

692

696

143

122

154

804

803

807

809

766

774

135

134

136

146

145

147

776
759

775

777

789

746

745
744

755

734

117

132

164

741

186

197

831832

837

857

783

794

793

801

773

570

558

563

947

946

945

409

400

399

352

353

363

336

359

358

343

327

297

330

309

316

299

298

303

464

465

466

467

458

263

1000

470

452

434

242

880

993

997

982

975
990

986

377

388

397

391

383

398

150

373

483

482

489

487

485

486

492

484

609

612

618

619

624

627

200

201

214

216

209

202

211

210

205
204

208

206

213

207

248

249

140

300

443

442

43

517

516

518

515

519 533

531

933

953

956

934

936

513

512
963

964

930

928

935

931

530

932

937

938

939

940

944

948

864

862

870

863

865

866

871

872

873

867

702

701

705

718

704

707

706

720

716

715

79

78

27

96

97

63

61

53

54

74

75

62

50

81

650

588

590

649

647

653

652

646

645

224

585

584

595

598

597

582

577

259

260

274

261

252

255

238

237

231

667

666

578

192

193

178169

572

170

171

257

256

179

12

168

848

847

180

181

182

183

818

819

820

476

475

425

422

561

560

427

7

436

435

474

437

454

453

455

541

539

542

543

547

544

546

545

553

554

536

537

271

270

289

679678

682
681

311

310

490

491

304

821

824

813

843

846

825

826

961

960

858

886

883

888

891

919

918

908

907

906

896

897

884

628

315

607

479

478

751

3

230

100

103

57

58

69

59

70

68

67

60

82

85

89

91

46

47

73

369

367

393

381

157

156

152

153

16

677

676

688

680

142

141

119

120

133

765

764

763

788

790

779

778

767

743

742

727

747

754

753

732

733

723

735

115

116

130

131
128

739

740

737

736

738

729

160

161

162

163

127

129

114

184
185

196

187

836

835

856

855

189

188

175

781

782

791

792

780

762

800

799

771

772

786

785

787

567

568

557

559

548

522

943

407

406

473

472

408

360

361

334

335

339

338

337

356

357

348

349

342

351

333
331

329

326

296

295

346

347

345

344

306

307

314

308

302

305

550

549

312

457

456

433

431

430

262

265

999998

691

693

246
469

468

450

451445

240

241

5

6

992

991

699

684

29

994

995

981

980

969

988

987

974

978

977

979

989

985

983

375

376

386

385

394

389

390

382

384

370

148

149

123

124

125

126

30

38

371

372

244

247

191

39

77

139

138

40

23

2

1

926

927

941

942

22

21

52

49

245

648

223

222

574

575

227

228

576

579

176

573

167

166

815

814

420

421

280

281

285

284

811
810

190

812

885

887881

882

606

608

10

4

51

48

14

8

113

112

121

761

165

757

726

725

730

728

722

721

731

724

110

111

108

109

174

817

760

758

540

538

11

9

320

322

341

340

332

321

328

325

323

324

292

282

426

424

226

286

432

423

15

13

968

967
973

972

971

970

984

976

365

364 368

366

28

31

17

18

45

41

37

36

19

20

(a) (b)

959958 957

174

387

386

526

173

530

525

243

403

195

529

741

837

458

50

432

396

582

353

283

268

501

240

244

236

402

194

619

313

145

875

761

755

998

885

740

75

814

836

72

456

457

476

751

51

54

431

426

395

419

854

131

581

213

373

282279

267

287

553

239

341

202

224

321

342

317

241

242

235

227

786

794

95

9697

98

58

676

424

868

706

618

611

90

314

337

874

881

759

760

769

754

758

218

766

997

984

980

988

992

922

884

23

109

568

177

954

955

528

160

738

739

73

74

729

815

544

842

816

841

843

822

834

835

70

71

180

478

475

474

455
477

750

749

745

118

119

120

121

191

599

48

49

25

26

27

28

35

63

64

65

66

53

52

46

43

42

41

62

55

430

429

425

428

409

393

394

420

412

853

614

130

579

580

562

557

564

578

211

212

363

364

593

594

595

652

370

369

371

372

375

348

374

516

517

518

519

368

465

281

280

278

264

265

266

286

547

546

548

552

541

495

500

505

446

448

447

238

237

354

355

356

357

116

340
247

248

225

223

222

249

319

320

322315
316

343

234

233

226

229

221

785

793

782

57

56

902

904

674

673

682

683

423

171

717

193

867

871

705

671

617

616

610

609

605

509

11

89

690

311

312

336

324306

102

912

873 872

880

879

860

551

825

833

768

767

735

772

753

752

756

757

725

726

217

333

328

765

695

996

999

983

1000

979

987

991

939

901

908

921

468

461

471

747

882

883

21

22

649

107

108

567

575

178

962

971

159

158

527

161

728

730

47

45

82

812

813

542

543

545

807

810

808

524

817

821

820

818

819

179

181

32

454

453

438

743

742
733

731

744

190

189

228

34

33

39

37

44

61

60

36

408

410

388

391

417

418

411

413

390

389

392

851

852

612

613

99

100

143

128

129

135

137

140

124

125

134

563

561

577

576

570

569

571

362

361

214

591

590

632

626
497

498

114

350

351

347

349

345

482

483

484

485

491

481

365

366

359

358

360

352

464

463

514

513

298

277

276

261

262

254

256

263

285

284

301

300

258

257

270

255

536

492

493

502

504

503

511

510

487

164

165

115

117

31

376

338

339

210

305

246

245

200

201

205

203

206

204
318

220

219

231

230

198

783

784

787

788

789

790

781

779
777

791

792

795

796

797

798

85

84

122

433

434

435

436

398

664 663

681

684

422

421

170

169

133

132

427

715

714

716

866
865 870

869

697

703704

670

678

679

604

603

598

601

600

588

586

602

608

607

606

508

88

87

689

692

113

123

335
334

323

325

304

878

887

886

888

291

910

909

67

69

889

859

861

863

862

549

550

540

826

840

832

829

711

712

687

734

737

770

718

719

762

215

216

332

327

763

764

694

693

147

469

982

981

924

925

926

927

934

977

978

986

985

990

989

936

937

995

975

899

900

933

935

911

907

897

896

895

920

923

928

929

930

931

918

940

467

466

450

443

445

459

460

451

472

470

473

415

771

746

748

407

406

648

647

105

399

640

641

642

643

629

658

565

566

574

573

559

556

572

175

176

292

293

294

295

157

964

965

966

967

973

960

963

950

951

970

139

138

972

24

3

1213

437

439

724

722

38

15

17

18

19

20

384

380

385

383

381

382

81

80

136

150

126

127

554

555

10

8

16

14

344

346

490

489

480

479

188

186

252
253

269

260

250

251

523

522

499

494

486

488

30

29

4

307

310

197

778

775

773

774

780

776

86

397

400

377

378

401

379

151

192

168

696

698

847 848

845

669

672

677

680

675

597

596

589

592

506
507

5

6

9

7

112

111

106

232

876
877

890

849

850

299

615

290275
274

272

144

857

858

864

539

538

532

531

534

823

824

839

838

805

806

803

830

831

827

828

811

809

710

713

367

685688

708707

691

736

727

331

330

326

329

146

148

308

515

994

993

938

898

894

906

905

891

892

917

916

919

444

442

449

452

462

414

416

259

404

405

187

104

103

110

627

630

637

639

638

657

656

654

653

659

660

661

662

636

634

655

913

914

932

915

645

644

633631

646

800

799

302

558

560

156

155

162

163

309

944

945

952

947

953

946

942

941

949

948

968

969

961

1

2

196

199

59

77

141

152

686

846

667

665

584

583

587

585

40

78

209

303

699

700

701
702

855

856

297

296

101

83

288

289

273

271

142

94

709

844

521

520

533

801

535

537

802

804

167

166

666

668

732

721

723

720

172

154

496

976

512

974

903

893

440

441

182

184
183

185

79

76

620

621
651

650

628

622

635

623

207

208

91

92

625

624

68

93

149

153

956

943

(c)

Figure 9. The structure of the Level I network for different values of coupling ratio Λ. (a) Λ = 0.1;
(b) Λ = 0.3; (c) Λ = 0.5.

4.1.2. Reuse and Modularity

Software engineering practice encourages code reuse. However, reuse could lead to over
coupling. In the case of a fixed amount of interactions across modules, if the value of Γ is large,
more elements are reused as new elements are added. Conversely, if the value of Γ is small, existing
modules aggregate more new elements.

Table 8 shows the top five largest out-degrees of the Level I network for different vales of reuse
probability Γ and the corresponding numbers of the Level I elements. We can see that more elements
with large out-degrees appear as the value Γ decreases. This will cause serious risk in global functions
and decreases the evolvability of the software system, due to the complicated structure caused by
many out-going edges.

Table 8. Numbers of Level I elements with large out-degrees, for different values of reuse probability
Γ. The numbers 1 to 5 correspond respectively to the largest to the fifth largest out-degrees.

1st 2nd 3rd 4th 5th

Γ = 0.2 192 186 142 137 133
Γ = 0.4 130 80 70 61 59
Γ = 0.4 126 47 34 32 31
Γ = 0.8 26 21 21 19 19



Entropy 2016, 18, 178 21 of 25

Figure 9 also shows that the level of modularity is negatively related to coupling ratio Λ.
In software engineering practice, the degree of modularity is governed by the trade-off between
reuse and maintainability. In order to promote reuse, fine-grained and self-contained components
should be used. If maintainability is a critical requirement, the coupling among components should
be minimized by adopting relatively large-grain, highly cohesive components.

4.2. Influence of Motifs on Software Structure

In addition to modularity, software networks share another important feature with many other
types of systems, such as biological networks. They show recurring patterns in a small scale, i.e.,
motifs. It has been conjectured that the abundance of motifs in software networks relates to universal
mechanisms underlying software evolution [42].

From a specific angle based on our multi-level modeling, we have explored the impact of the
existence of motifs on the structure of software systems. We undertake this exploration through the
comparison between the simulated network with 10,000 nodes produced by our model in the normal
setting (Λ = 0.35, Γ = 0.8, NIII

I,min = 32, EII,′
I = 64 and Re = 2) and the resulting networks generated

by special settings.
In the first special setting, all of the Level I elements within each Level II element are connected

through the same mechanism as those Level II elements in each Level III element. The network
generated by this rule also represents clustering, though the clustering coefficient C is smaller than
the simulation with the motif, as shown in Figure 10. However, this formation rule does not conform
to software engineering practices. Actually, the existing classes and components are usually reused,
and this is the case of basic code reuse in software design. Besides, the local structures are also
duplicated in some scenario, such as design patterns. If the latter is ignored in software design, it will
result in an awful situation that some well-designed micro-structure (such as design patterns) will
not be widely used, and the designers have to design many repeated scenarios and workflows. Thus,
the motifs represent the micro-structure reuse in software system evolution.

3000 4000 5000 6000 7000 8000 9000 10000
0.05

0.1

0.15

0.2

0.25

0.3

 number of vertices

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

 

 
Motifs
Without motifs
Random Graphs

Figure 10. The influence of motifs on the values of the clustering of Level I networks.

In the second special setting, the random sub-graphs are used to replace the motifs. The result
shows that the simulated network represents much stronger clustering than the simulation using
motifs, as shown in Figure 10. The motifs used in software network formation are usually sparse
sub-graphs, which are composed of three or four nodes and two or three edges. Conversely, the
random sub-graphs include some dense sub-graphs, which will increase the clustering in the network



Entropy 2016, 18, 178 22 of 25

formation. Most of the edges in these sub-graphs are redundant connections, and this could lead
to unnecessary cost. Even worse, the McCabe cycles, which will result in increasing complexity
and decreasing stability, will propagate in the evolution of the software systems. This discussion
therefore tells us that the motifs can keep the overall software systems in reasonable cohesion and
with structural stability.

5. Conclusions

The main contribution of this paper is that a multi-level model for software network evolution
is proposed. In this model, three levels of elements, including class level, design pattern level
and framework level, are used to describe the organization of the software systems. Through the
comparisons with the real software networks from different aspects, the model has been proven to be
inherently close to describing the formation process of real software systems. Furthermore, with the
help of this model, we discuss some principles in software engineering practices, such as the relation
of cohesion and coupling, the code reuse and modularity and the influence of motifs on software
structure. This model could help us to understand the formation of the complex software systems
and potentially to forecast the changes of the software structure.

However, some limitations may shorten the usage of the model. The parameters used in this
model are obtained from the history data of the source codes. This means that the model may not
correctly describe the structural changes due to the dramatic changes in the software architecture
modifications. In addition, empirical studies tell us that the number of nodes and edges usually
keeps increasing in most software projects, but it cannot avoid the sudden reduction of the nodes and
edges in some projects for some unpredictable reasons. Besides, some large-scale software systems
may not organize by three levels, but four levels or more, so how to dynamically describe the levels
of the software network structure is also an open question.

Thus, some further studies still need to be done in the future. Firstly, more software projects
should be investigated, especially the software systems written in the C language. Secondly, many
projects have been terminated because of different reasons; thus, the studies of the structural changes
of these software systems may make sense, then the model may be improved due to the further
studies. Finally, the model may potentially be used to describe the formation of some other complex
systems (such as the Internet, social networks, biology systems), and thus, it is worth updating the
model to be universal for multi-level complex systems.

Acknowledgments: This work is supported by National Natural Science Foundation of China under Grant
No.61175056, No.61402070 and No.61503055, Educational Commission of Liaoning Province of China under
Grant No. L2015060, China Postdoctoral Science Foundation under Grant No.2015M571291, Fundamental
Research Funds for the Central Universities No.3132014096, Natural Science Foundation of Liaoning Province
under Grant No.2015020023. We would like to thank the anonymous referees for providing us with constructive
comments and suggestions.

Author Contributions: Hui Li and Rong Chen conceived of the idea and designed the model and wrote the
paper; Li-Ying Hao performed the simulations and analyzed the data. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jeong, H.; Mason, S.; Barabási, A.-L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature 2001,
411, 41–42.

2. Newman, M.E.J. Scientific collaboration networks. I. Network construction and fundamental results.
Phys. Rev. E 2001, 64, 016131.

3. Newman, M.E.J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.
Phys. Rev. E 2001, 64, 016132.

4. Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad.
Sci. USA 2002, 99, 7821–7826.



Entropy 2016, 18, 178 23 of 25

5. Ai, J.; Zhao, H.; Carley, K.M.; Su, Z.; Li, H. Evolution of IPv6 Internet topology with unusual sudden
changes. Chin. Phys. B 2013, 22, 078902.

6. Wen, L.; Dromey, R.G.; Kirk, D. Software engineering and scale-free networks. IEEE Trans. Syst. Man Cybern.
2009, 39, 845–854.

7. Concas, G.; Marchesi, M.; Pinna, S.; Serra, N. Power-laws in a large object-oriented software system.
IEEE Trans. Softw. Eng. 2007, 33, 687–708.

8. Liu, J.; He, K.; Ma, Y.; Peng, R. Scale free in software metrics. In Proceedings of the 30th Annual
International Computer Software and Applications Conference (COMPSAC ‘06), Chicago, IL, USA,
17–21 September 2006; pp. 229–235.

9. Potanin, A.; Noble, J.; Frean, M.; Biddle, R. Scale-free geometry in OO programs. Commun. ACM 2005, 48,
99–103.

10. Ma, Y.; He, K.; Du, D.; Liu, J.; Yan, Y. A complexity metrics set for large-scale object-oriented software
systems. In Proceedings of the 6th IEEE International Conference on Computer and Information
Technology (CIT ‘06), Seoul, Korea, 20–22 September 2006; pp. 189–194.

11. Myers, C.R. Software systems as complex networks: Structure, function, and evolvability of software
collaboration graphs. Phys. Rev. E 2003, 68, 046116.

12. Valverde, S.; Sol, R.V. Hierarchical small worlds in software architecture. Dyn. Contin. Discret. Impuls. Syst.
Ser. B 2007, 14, 1–11.

13. Li, B.; Pan, W.; Lu, J. Multi-granularity dynamic analysis of complex software networks. In Proceedings
of the 2011 IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro, Brazil,
15–18 May 2011; pp. 2119–2124.

14. Jenkins, S.; Kirk, S.R. Software architecture graphs as complex networks: A novel partitioning scheme to
measure stability and evolution. Inf. Sci. 2007, 177, 2587–2601.

15. Canfora, G.; Cerulo, L.; Cimitile, M.; Penta, M.D. How changes affect software entropy: An empirical study.
Empir. Softw. Eng. 2014, 19, 1–38, doi:10.1007/s10664-012-9214-z.

16. Pan, W.; Li, B.; Ma, Y.; Qin, Y.; Zhou, X. Measuring structural quality of object-oriented softwares via bug
propagation analysis on weighted software networks. J. Comput. Sci. Technol. 2010, 25, 1202–1213.

17. Zhang, H.; Zhao, H.; Cai, W.; Zhao, M.; Luo, G. Visualization and cognition of large-scale software structure
using the k-core analysis. In Proceedings of the 2008 International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, Harbin, China, 15–17 August 2008; pp. 954–957.

18. Dabrowski, R.; Stencel, K.; Timoszuk, G. Software is a directed multigraph. In Software Architecture;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 360–369.

19. Zanetti, M.S.; Schweitzer, F. A network perspective on software modularity. In Proceedings of the 25th
International Conference on Architecture of Computing Systems (ARCS) Workshops, München, Germany,
28–29 February 2012; pp. 1–8.

20. Praditwong, K.; Harman, M.; Yao, X. Software module clustering as a multi-objective search problem.
IEEE Trans. Softw. Eng. 2011, 37, 264–282.

21. S̆ubelj, L.; Bajec, M. Community structure of complex software systems: Analysis and applications.
Physica A 2011, 390, 2968–2975.

22. Meyer, P.; Siy, H.; Bhowmick, S. Identifying important classes of large software systems through k-core
decomposition. Adv. Complex Syst. 2014, 17, 1550004.

23. Zanetti, M.S.; Scholtes, I.; Tessone, C.J.; Schweitzer, F. Categorizing Bugs with Social Networks: A Case
Study on Four Open Source Software Communities. In Proceedings of the 2013 International Conference
on Software Engineering, San Francisco, CA, USA, 2013; pp. 1032–1041.

24. Zhang, W.; Nie, L.; Jiang, H.; Chen, Z.; Liu, J. Developer Social Networks in Software Engineering:
Construction, Analysis, and Applications. Sci. China Inf. Sci. 2014, 57, 1–23, doi:10.1007/s11432-014-5221-6.

25. Xuan, Q.; Fu, C.; Yu, L. Ranking developer candidates by social links. Adv. Complex Syst. 2014, 17, 1550005.
26. Li, P.; Zhao, H.; Li, H.; Liu, Z. Research of Software Network Measurement Based on The Deviation of

Standard Entropy. J. Northeast. Univ. 2010, 31, 1558–1561. (In Chinese)
27. Miranskyy, A.V.; Davison, M.; Reesor, R.M.; Murtaza, S.S. Using entropy measures for comparison of

software traces. Inf. Sci. 2012, 203, 59–72.
28. Safar, M.H.; Sorkhoh, I.Y.; Farahat, H.M.; Mahdi, K.A. On Maximizing the Entropy of Complex Networks.

Procedia Comput. Sci. 2011, 5, 480–488.



Entropy 2016, 18, 178 24 of 25

29. Wang, L.; Wang, Z.; Yang, C.; Zhang, L. Evolution and stability of Linux kernels based on complex
networks. Sci. China Inf. Sci. 2012, 54, 1972–1982.

30. Turnu, I.; Concas, G.; Marchesi, M.; Tonelli, R. The fractal dimension of software networks as a global
quality metric. Inf. Sci. 2013, 245, 290–303.

31. Cataldo, M.; Scholtes, I.; Valetto, G. A complex networks perspective on collaborative software engineering.
Adv. Complex Syst. 2014, 17, 1430001.

32. Wang, L.; Wang, P. Propagation and stability in software: A complex network perspective. Int. J. Mod.
Phys. C 2015, 26, 1550052.

33. Koch, S. Software evolution in open source projects—A large-scale investigation. J. Softw. Maint. Evol.
Res. Pract. 2007, 19, 361–382.

34. Cai, K.; Yin, B. Software execution processes as an evolving complex network. Inf. Sci. 2009, 179, 1903–1928.
35. Israeli, A.; Feitelson, D.G. The Linux kernel as a case study in software evolution. J. Syst. Softw. 2010, 83,

485–501.
36. Zheng, X.; Zeng, D.; Li, H.; Wang, F. Analyzing open-source software systems as complex networks.

Physica A 2008, 387, 6190–6200.
37. Pan, W.; Li, B.; Ma, Y.; Liu, J. A Novel Software evolution model based on software networks. In Complex

Sciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1281–1291.
38. He, K.; Peng, R.; Liu, J.; He, F.; Lian, P.; Li, B. Design methodology of networked software evolution growth

based on software patterns. J. Syst. Sci. Complex 2006, 19, 157–181.
39. Theodore, C.; Alexander, C. Forecasting Java Software Evolution Trends Employing Network Models.

IEEE Trans. Softw. Eng. 2015, 41, 582–602.
40. LaBelle, N.; Wallingford, E. Inter-Package Dependency Networks in Open-Source Software. 2004,

arXiv:0411096v1.
41. Stevens, W.P.; Myers, G.J.; Constantine, L.L. Structured design. IBM Syst. J. 1974, 13, 115–139.
42. Valverde, S.; Solé, R.V. Network motifs in computational graphs: A case study in software architecture.

Phys. Rev. E 2005, 72, 026107.
43. Ma, Y.; He, K.; Liu, J. Network motifs in object-oriented software systems. 2008, arXiv:0808.3292.
44. Pan, W.; Li, B.; Ma, Y.; Liu, J. Multi-granularity evolution analysis of software using complex network

theory. J. Syst. Sci. Complex 2011, 24, 1068–1082.
45. Li, H.; Hao, L.; Chen, R.; Ge, X.; Zhao, H. Symmetric Preferential Attachment for New Vertices Attaching

to Software Networks. New Gener. Comput. 2014, 32, 271–296.
46. Gu, Q.; Chen, D. Validation and simulation of software system evolution rules using software networks.

Sci. Sin. Inf. 2014, 44, 20–36.
47. Stevens, W.P.; Myers, G.J.; Constantnve, L.L. Structured design. IBM Syst. J. 1999, 38, 231–256.
48. Schweitzer, F.; Nanumyan, V.; Tessone, C.J.; Xia, X. How do OSS projects change in number and size?

A large-scale analysis to test a model of project grwoth. Adv. Complex Syst. 2014, 17, 1550008.
49. Tessone, C.J.; Geipel, M.M.; Schweitzer, F. Sustainable growth in complex networks. Europhys. Lett. 2011,

96, 58005.
50. Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. SIAM Rev. 2009,

51, 661–703.
51. Fitting power-law distributions to empirical data. Available online: https://github.com/ntamas/plfit

(accessed on 6 May 2016).
52. Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512.
53. Gao, J.; Wang, J.; Yin, M. Experimental analyses on phase transitions in compiling satisfiability problems.

Sci. China Inf. Sci. 2015, 58, 032104.
54. Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004,

69, 026113.
55. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442.
56. Fortuna, M.A.; Bonachela, J.A.; Levin, S.A. Evolution of a Modular Software Network. Proc. Natl. Acad.

Sci. USA 2011, 108, 19985–19989.
57. Subelj, L.; Zitnik, S.; Blagus, N.; Bajec, M. Node mixing and group structure of complex software networks.

Adv. Complex Syst. 2014, 17, 1450022.



Entropy 2016, 18, 178 25 of 25

58. Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks.
J. Stat. Mech. Theory Exp. 2008, 2008, P10008.

59. The Open Graph Viz Platform. Available online: https://gephi.github.io/ (accessed on 6 May 2016).

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	The Multi-Level Model of Software Evolution
	Levels of Software Systems
	Level I
	Level II
	Level III

	The Mechanism of Software Evolution
	Direction of Attachment
	Probability of Attachment
	Level III
	Level II
	Level I


	Simulation Results
	Degree Distributions
	Correlation between In-Degree and Out-Degree
	Level of Clustering and Modularity

	Discussions
	Trade-Off between Reusability and Maintainability
	Cohesion and Coupling
	Reuse and Modularity

	Influence of Motifs on Software Structure

	Conclusions

