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Abstract: Shift and stretch invariance lead to the exponential-Boltzmann probability distribution.
Rotational invariance generates the Gaussian distribution. Particular scaling relations transform
the canonical exponential and Gaussian patterns into the variety of commonly observed patterns.
The scaling relations themselves arise from the fundamental invariances of shift, stretch and rotation,
plus a few additional invariances. Prior work described the three fundamental invariances as
a consequence of the equilibrium canonical ensemble of statistical mechanics or the Jaynesian
maximization of information entropy. By contrast, I emphasize the primacy and sufficiency of
invariance alone to explain the commonly observed patterns. Primary invariance naturally creates the
array of commonly observed scaling relations and associated probability patterns, whereas the
classical approaches derived from statistical mechanics or information theory require special
assumptions to derive commonly observed scales.

Keywords: measurement; maximum entropy; information theory; statistical mechanics; extreme
value distributions

“It is increasingly clear that the symmetry [invariance] group of nature is the deepest thing
that we understand about nature today. I would like to suggest something here that I am
not really certain about but which is at least a possibility: that specifying the symmetry
group of nature may be all we need to say about the physical world, beyond the principles
of quantum mechanics.

The paradigm for symmetries of nature is of course the group symmetries of space and
time. These are symmetries that tell you that the laws of nature don’t care about how you
orient your laboratory, or where you locate your laboratory, or how you set your clocks or
how fast your laboratory is moving” (Weinberg [1] (p. 73)).

“For the description of processes taking place in nature, one must have a system of reference”
(Landau and Lifshitz [2] (p. 1)).

1. Introduction

I argue that three simple invariances dominate much of observed pattern. First, probability patterns
arise from invariance to a shift in scaled measurements. Second, the scaling of measurements satisfies
invariance to uniform stretch. Third, commonly observed scales are often invariant to rotation.

Feynman [3] described the shift invariant form of probability patterns as:

q (E)
q
(
E ′
) =

q (E + a)
q
(
E ′ + a

) (1)

in which q (E) is the probability associated with a measurement, E . Here, the ratio of probabilities
for two different measurements, E and E ′, is invariant to a shift by a. Feynman derived this invariant
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ratio as a consequence of Boltzmann’s equilibrium distribution of energy levels, E , that follows from
statistical mechanics:

q (E) = λe−λE (2)

Here, λ = 1/ 〈E〉 is the inverse of the average measurement.
Feynman presented the second equation as primary, arising as the equilibrium from the

underlying dynamics of particles and the consequent distribution of energy, E . He then mentioned
in a footnote that the first equation of shift invariance follows as a property of equilibrium.
However, one could take the first equation of shift invariance as primary. The second equation
for the form of the probability distribution then follows as a consequence of shift invariance.

What is primary in the relation between these two equations: equilibrium statistical mechanics or
shift invariance? The perspective of statistical mechanics, with Equation (2) as the primary equilibrium
outcome, dominates treatises of physics.

Jaynes [4,5] questioned whether statistical mechanics is sufficient to explain why patterns of
nature often follow the form of Equation (2). Jaynes emphasized that the same probability pattern
often arises in situations for which physical theories of particle dynamics make little sense. In Jaynes’
view, if most patterns in economics, biology and other disciplines follow the same distributional
form, then that form must arise from principles that transcend the original physical interpretations of
particles, energy and statistical mechanics [6].

Jaynes argued that probability patterns derive from the inevitable tendency for systems to lose
information. By that view, the equilibrium form expresses minimum information, or maximum
entropy, subject to whatever constraints may act in particular situations. In maximum entropy, the shift
invariance of the equilibrium distribution is a consequence of the maximum loss of information under
the constraint that total probability is conserved.

Here, I take the view that shift invariance is primary. My argument is that shift invariance and the
conservation of total probability lead to the exponential-Boltzmann form of probability distributions,
without the need to invoke Boltzmann’s equilibrium statistical mechanics or Jaynes’ maximization of
entropy. Those secondary special cases of Boltzmann and Jaynes follow from primary shift invariance
and the conservation of probability. The first part of this article develops the primacy of shift invariance.

Once one adopts the primacy of shift invariance, one is faced with the interpretation of the
measurement scale, E . We must abandon energy, because we have discarded the primacy of statistical
mechanics, and we must abandon Jaynes’ information, because we have assumed that we have only
general invariances as our basis.

We can of course end up with notions of energy and information that derive from underlying
invariance. However, that leaves open the problem of how to define the canonical scale, E , that sets
the frame of reference for measurement.

We must replace the scaling relation E in the above equations by something that derives from
deeper generality: the invariances that define the commonly observed scaling relations.

In essence, we start with an underlying scale for observation, z. We then ask what transformed
scale, z 7→ Tz ≡ E , achieves the requisite shift invariance of probability pattern, arising from the
invariance of total probability. It must be that shift transformations, Tz 7→ a + Tz, leave the probability
pattern invariant, apart from a constant of proportionality.

Next, we note that a stretch of the scale, Tz 7→ bTz, also leaves the probability pattern unchanged,
because the inverse of the average value in Equation (2) becomes λ = 1/b 〈Tz〉, which cancels the
stretch in the term λE = λTz. Thus, the scale Tz has the property that the associated probability
pattern is invariant to the affine transformation of shift and stretch, Tz 7→ a + bTz. That affine
invariance generates the symmetry group of scaling relations that determine the commonly observed
probability patterns [7–9].

The final part of this article develops rotational invariance of conserved partitions. For example,
the Pythagorean partition Tz = x2(s) + y2(s) splits the scaled measurement into components that
add invariantly to Tz for any value of s. The invariant quantity defines a circle in the xy plane with a
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conserved radius Rz =
√

Tz that is invariant to rotation around the circle, circumscribing a conserved
area πR2

z = πTz. Rotational invariance allows one to partition a conserved quantity into additive
components, which often provides insight into underlying process.

If we can understand these simple shift, stretch and rotational invariances, we will understand
much about the intrinsic structure of pattern. An explanation of natural pattern often means an
explanation of how particular processes lead to particular forms of invariance.

2. Background

This section introduces basic concepts and notation. I emphasize qualitative aspects rather
than detailed mathematics. The final section of this article provides historical background and
alternative perspectives.

2.1. Probability Increments

Define q(z) ≡ qz, such that the probability associated with z is qz∆ψz. This probability is the area
of a rectangle with height qz and incremental width ∆ψz.

The total probability is constrained to be one, as the sum of the rectangular areas over all values
of z, which is ∑ qz∆ψz = 1. When the z values are discrete quantities or qualitative labels for events,
then the incremental measure is sometimes set to one everywhere, ∆ψz ≡ 1, with changes in the
measure ∆ψz made implicitly by adjusting qz. The conservation of probability becomes ∑ qz = 1.

If a quantitative scale z has values that are close together, then the incremental widths are small,
∆ψz → dψz, and the distribution becomes essentially continuous in the limit. The probability around
each z value is qz dψz. Writing the limiting sum as a integral over z, the conservation of total probability
is
∫

qz dψz = 1.
The increments may be constant-sized steps dψz = dz on the z scale, with probabilities

qzdψz = qzdz in each increment. One may transform z in ways that alter the probability expression,
qz, or the incremental widths, dψz, and study how those changes alter or leave invariant properties
associated with the total probability, qzdψz.

2.2. Parametric Scaling Relations

A probability pattern, qzdψz, may be considered as a parametric description of two scaling
relations, qz and ψz, with respect to the parameter z. Geometrically, qzdψz is a rectangular area
defined by the parametric height, qz, with respect to the parameter, z, and the parametric width,
dψz, with respect to the parameter, z.

We may think of z as a parameter that defines a curve along the path (ψz, qz), relating a scaled
input measure, ψz, to a scaled output probability, qz. The followings sections describe how different
invariances constrain these scaling relations.

3. Shift Invariance and the Exponential Form

I show that shift invariance and the conservation of total probability lead to the exponential form
of probability distributions in Equation (2). Thus, we may consider the main conclusions of statistical
mechanics and maximum entropy as secondary consequences that follow from the primacy of shift
invariance and conserved total probability.

3.1. Conserved Total Probability

This section relates shift invariance to the conservation of total probability. Begin by expressing
probability in terms of a transformed scale, z 7→ Tz, such that qz = k0 f (Tz) and:∫

qzdψz =
∫

k0 f (Tz)dψz = 1
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The term k0 is independent of z and adjusts to satisfy the conservation of total probability.
If we assume that the functional form f is invariant to a shift of the transformed scale by a constant,

a, then by the conservation of total probability:∫
k0 f (Tz)dψz =

∫
ka f (Tz + a)dψz = 1 (3)

The proportionality constant, ka, is independent of z and changes with the magnitude of the shift,
a, in order to satisfy the constraint on total probability.

Probability expressions, q(z) ≡ qz, are generally not shift invariant with respect to the scale, z.
However, if our transformed scale, z 7→ Tz is such that we can write Equation (3) for any magnitude
of shift, a, solely by adjusting the constant, ka, then the fact that the conservation of total probability
sets the adjustment for ka means that the condition for Tz to be a shift-invariant canonical scale for
probability is:

qz = k0 f (Tz) = ka f (Tz + a) (4)

which holds over the entire domain of z.
The key point here is that ka is an adjustable parameter, independent of z, that is set by the

conservation of total probability. Thus, the conservation of total probability means that we are only
required to consider shift invariance in relation to the proportionality constant ka that changes with
the magnitude of the shift, a, independently of the value of z. Appendix A provides additional detail
about the conservation of total probability and the shift-invariant exponential form.

3.2. Shift-Invariant Canonical Coordinates

This section shows the equivalence between shift invariance and the exponential form for
probability distributions.

Let x ≡ Tz, so that we can write the shift invariance of f in Equation (4) as:

f (x + a) = αa f (x)

By the conservation of total probability, αa depends only on a and is independent of x.
If the invariance holds for any shift, a, then it must hold for an infinitesimal shift, a = ε. By Taylor

series, we can write:
f (x + ε) = f (x) + ε f ′(x) = αε f (x)

Because ε is small and independent of x, and α0 = 1, we can write αε = 1− λε for a constant λ.
Then, the previous equation becomes:

f ′(x) = −λ f (x)

This differential equation has the solution:

f (x) = k̂e−λx

in which k̂ may be determined by an additional constraint. Using this general property for
shift-invariant f in Equation (4), we obtain the classical exponential-Boltzmann form for probability
distributions in Equation (2) as:

qz = ke−λTz (5)

with respect to the canonical scale, Tz. Thus, expressing observations on the canonical shift-invariant
scale, z 7→ Tz, leads to the classical exponential form. If one accepts the primacy of invariance,
the “energy,” E , of the Boltzmann form in Equation (2) arises as a particular interpretation of the
generalized shift-invariant canonical coordinates, Tz.
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3.3. Entropy as a Consequence of Shift Invariance

The transformation to obtain the shift-invariant coordinate Tz follows from Equation (5) as:

− log qz = λTz − log k

This logarithmic expression of probability leads to various classical definitions of entropy and
information [3,10]. Here, the linear relation between the logarithmic scale and the canonical scale
follows from the shift invariance of probability with respect to the canonical scale, Tz, and the
conservation of total probability.

I interpret shift invariance and the conservation of total probability as primary aspects of
probability patterns. Entropy and information interpretations follow as secondary consequences.

One can of course derive shift invariance from physical or information theory perspectives.
My only point is that such extrinsic concepts are unnecessary. One can begin directly with shift
invariance and the conservation of total probability.

3.4. Example: The Gamma Distribution

Many commonly observed patterns follow the gamma probability distribution, which may be
written as:

qz = kzαλe−λz

This distribution is not shift invariant with respect to z, because z 7→ a + z alters the pattern:

qz = kzαλe−λz 6= ka(a + z)αλe−λ(a+z)

There is no value of ka for which this expression holds for all z.
If we write the distribution in canonical form:

qz = ke−λTz = ke−λ(z−α log z) (6)

then the distribution becomes shift invariant on the canonical scale, Tz = z− α log z, because Tz 7→
a + Tz yields:

qz = ke−λ(a+Tz) = kae−λTz

with ka = ke−λa. Thus, a shift by a leaves the pattern unchanged apart from an adjustment to the
constant of proportionality that is set by the conservation of total probability.

The canonical scale, Tz = z− α log z, is log-linear. It is purely logarithmic for small z, purely linear
for large z, and transitions between the log and linear domains through a region determined by the
parameter α.

The interpretation of process in relation to pattern almost always reduces to understanding the
nature of invariance. In this case, shift invariance associates with log-linear scaling. To understand the
gamma pattern, one must understand how a process creates a log-linear scaling relation that is shift
invariant with respect to probability pattern [7–9].

4. Stretch Invariance and Average Values

4.1. Conserved Average Values

Stretch invariance means that multiplying the canonical scale by a constant, Tz 7→ bTz, does not
change probability pattern. This condition for stretch invariance associates with the invariance of the
average value.
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To begin, note that for the incremental measure dψz = dTz, the constant in Equation (5) to satisfy
the conservation of total probability is k = λ, because:∫ ∞

0
λe−λTz dTz = 1

when integrating over Tz.
Next, define 〈X〉ψ as the average value of X with respect to the incremental measure dψz. Then, the

average of λTz with respect to dTz is:

λ 〈T〉T =
∫

λ2 Tz e−λTz dTz = 1 (7)

The parameter λ must satisfy the equality. This invariance of λ 〈T〉T implies that any stretch
transformation Tz 7→ bTz will be canceled by λ 7→ λ/b. See Appendix A for further details.

We may consider stretch invariance as a primary attribute that leads to the invariance of the
average value, λ 〈T〉T, or we may consider invariance of the average value as a primary attribute that
leads to stretch invariance.

4.2. Alternative Measures

Stretch invariance holds with respect to alternative measures, dψz 6= dTz. Note that for qz in
Equation (5), the conservation of total probability fixes the value of k, because we must have:∫

ke−λTz dψz = 1

The average value of λTz with respect to dψz is:∫
λTzke−λTz dψz = λ 〈T〉ψ

Here, we do not have any guaranteed value of λ 〈T〉ψ, because it will vary with the choice of the
measure dψz. If we assume that 〈T〉ψ is a conserved quantity, then λ must be chosen to satisfy that
constraint, and from the fact that λTz occurs as a pair, λ 〈T〉ψ is a conserved quantity. The conservation
of λ 〈T〉ψ leads to stretch invariance, as in the prior section. Equivalently, stretch invariance leads to
the conservation of the average value.

4.3. Example: The Gamma Distribution

The gamma distribution from the prior section provides an example. If we transform the base
scale by a stretch factor, z 7→ bz, then:

qz = kbe−λ(bz−α log bz)

There is no altered value of λ for which this expression leaves qz invariant over all z. By contrast,
if we stretch with respect to the canonical scale, Tz 7→ bTz, in which Tz = z− α log z for the gamma
distribution, we obtain:

qz = ke−λbbTz = ke−λTz

for λb = λ/b. Thus, if we assume that the distribution is stretch invariant with respect to dz, then the
average value λ 〈T〉z = λ 〈z− α log z〉 is a conserved quantity. Alternatively, if we assume that the
average value:

λ 〈T〉z = λ 〈z− α log z〉 = λ 〈z〉 − λα 〈log z〉

is a conserved quantity, then stretch invariance of the canonical scale follows.
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In this example of the gamma distribution, conservation of the average value with respect to
the canonical scale is associated with conservation of a linear combination of the arithmetic mean,
〈z〉, and the geometric mean, 〈log z〉, with respect to the underlying values, z. In statistical
theory, one would say that the arithmetic and geometric means are sufficient statistics for the
gamma distribution.

5. Consequences of Shift and Stretch Invariance

5.1. Relation between Alternative Measures

We can relate alternative measures to the canonical scale by dTz = T′dψz, in which T′ = |dTz/dψ|
is the absolute value of the rate of change of the canonical scale with respect to the alternative scale.
Starting with Equation (7) and substituting dTz = T′dψz, we have:

λ
〈
TT′
〉

ψ
=
∫

λ2TzT′e−λTz dψz = 1

Thus, we recover a universally conserved quantity with respect to any valid alternative
measure, dψz.

5.2. Entropy

Entropy is defined as the average value of − log qz. From the canonical form of qz in Equation (2),
we have:

− log qz = λTz − log k (8)

Average values depend on the incremental measure, dψz, so we may write entropy [11] as:

〈− log qz〉ψ = 〈λTz − log k〉ψ = λ 〈T〉ψ − log kψ

The value of log kψ is set by the conservation of total probability, and λ is set by stretch invariance.
The value of 〈T〉ψ varies according to the measure dψz. Thus, the entropy is simply an expression
of the average value of the canonical scale, T, with respect to some incremental measurement scale,
ψ, adjusted by a term for the conservation of total probability, k.

When ψ ≡ T, then kψ = λ, and we have the classic result for the exponential distribution:

〈− log qz〉T = λ 〈T〉T − log λ = 1− log λ = log e/λ

in which the conserved value λ 〈T〉T = 1 was given in Equation (7) as a consequence of
stretch invariance.

5.3. Cumulative Measure

Shift and stretch invariance lead to an interesting relation between − log qz and the scale at which
probability accumulates. From Equation (8), we have:

− 1
λ

d log qz = dTz = T′dψz

Multiplying both sides by qz, the accumulation of probability with each increment of the associated
measure is:

− 1
λ

qz d log qz = qzdTz = qzT′dψz

The logarithmic form for the cumulative measure of probability simplifies to:

− 1
λ

qz d log qz = −
1
λ

dqz = qzdTz
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This expression connects the probability weighting, qz, for each incremental measure, to the rate
at which probability accumulates in each increment, dqz = −λqzdTz. This special relation follows
from the expression for qz in Equation (2), arising from shift and stretch invariance and the consequent
canonical exponential form.

5.4. Affine Invariance and the Common Scales

Probability patterns are invariant to shift and stretch of the canonical scale, Tz.
Thus, affine transformations Tz 7→ a + bTz define a group of related canonical scales. In previous
work, we showed that essentially all commonly observed probability patterns arise from a simple
affine group of canonical scales [7–9]. This section briefly summarizes the concept of affine invariant
canonical scales. Appendix B provides some examples.

A canonical scale T(z) ≡ T is affine invariant to a transformation G(z) if:

T [G(z)] = a + bT(z)

for some constants a and b. We can abbreviate this notion of affine invariance as:

T ◦ G ∼ T (9)

in which “∼” means affine invariance in the sense of equivalence for some constants a and b.
We can apply the transformation G to both sides of Equation (9), yielding the new invariance

T ◦ G ◦ G ∼ T ◦ G. In general, we can apply the transformation G repeatedly to each side any number
of times, so that:

T ◦ G n ∼ T ◦ G m

for any nonnegative integers n and m. Repeated application of G generates a group of invariances,
a symmetry group. Often, in practical application, the base invariance in Equation (9) does not hold,
but asymptotic invariance:

T ◦ G(n+1) ∼ T ◦ G n

holds for large n. Asymptotic invariance is a key aspect of pattern [12].

6. Rotational Invariance and the Gaussian Radial Measure

The following sections provide a derivation of the Gaussian form and some examples. This section
highlights a few results before turning to the derivation.

Rotational invariance transforms the total probability qzdTz from the canonical exponential form
into the canonical Gaussian form:

λe−λTz dTz 7→ ve−πv2R2
z dRz (10)

This transformation follows from the substitution λTz 7→ πv2R2
z , in which the stretch-invariant

canonical scale, λTz, becomes the stretch-invariant circular area, πv2R2
z , with squared radius v2R2

z .
The new incremental scale, vdRz, is the stretch-invariant Gaussian radial measure.

We can, without loss of generality, let v = 1 and write Λ = πR2
z as the area of a circle. Thus, the

canonical Gaussian form:
qzdψz = e−ΛdRz (11)

describes the probability, − log qz = Λ, in terms of the area of a circle, Λ, and the incremental
measurement scale, dψz, in terms of the radial increments, dRz.

Feynman [3] noted the relation between entropy, radial measure and circular area. In my notation,
that relation may be summarized as:

〈− log qz〉R = 〈Λ〉R
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However, Feynman considered the circular expression of entropy as a consequence of the
underlying notion of statistical mechanics. Thus, his derivation followed from an underlying canonical
ensemble of particles

By contrast, my framework derives from primary underlying invariances. An underlying
invariance of rotation leads to the natural Gaussian expression of circular scaling. To understand how
rotational invariance leads to the Gaussian form, it is useful to consider a second parametric input
dimension, θ, that describes the angle of rotation [13]. Invariance with respect to rotation means that
the probability pattern that relates q(z, θ) to ψ(z, θ) is invariant to the angle of rotation.

6.1. Gaussian Distribution

I now show that rotational invariance transforms the canonical shift and stretch invariant
exponential form into the Gaussian form, as in Equation (10). To begin, express the incremental
measure in terms of the Gaussian radial measure as:

λdTz = πv2dR2
z = 2πv2RzdRz

from which the canonical exponential form qzdTz = λe−λTz dTz may be expressed in terms of the radial
measure as:

λe−λTz dTz = 2πv2Rze−πv2R2
z dRz (12)

Rotational invariance means that for each radial increment, vdRz, the total probability in that
increment given in Equation (12) is spread uniformly over the circumference 2πvRz of the circle at
radius vRz from a central location.

Uniformity over the circumference implies that we can define a unit of incremental length
along the circumferential path with a fraction 1/2πvRz of the total probability in the circumferential
shell of width vdRz. Thus, the probability along an increment vdRz of a radial vector follows the
Gaussian distribution:

(1/2πvRz) qzdTz = ve−πv2R2
z dRz

invariantly of the angle of orientation of the radial vector.
Here, the total probability of the original exponential form, qzdTz, is spread evenly over the

two-dimensional parameter space (z, θ) that includes all rotational orientations. The Gaussian
expression describes the distribution of probability along each radial vector, in which a vector intersects
a constant-sized area of each circumferential shell independently of distance from the origin.

The Gaussian distribution varies over all positive and negative values, Rz ∈ (−∞, ∞),
corresponding to an initial exponential distribution in squared radii, R2

z = Tz ∈ (0, ∞). We can
think of radial vectors as taking positive or negative values according to their orientation in the upper
or lower half planes.

6.2. Radial Shift and Stretch Invariance

The radial value, Rz, describes the distance from the central location. Thus, the average radial
value is zero, 〈R〉R = 0, when evaluated over all positive and negative radial values. Shift invariance
associates with no change in radial distance as the frame of reference shifts the location of the center of
the circle to maintain constant radii.

Stretch invariance associates with the conserved value of the average circular area:

λ 〈T〉R = πv2
〈

R2
〉

R
= πv2σ2 =

1
2

in which the variance, σ2, is traditionally defined as the average of the squared deviations from the
central location. Here, we have squared radial deviations from the center of the circle averaged over
the incremental radial measure, dRz.
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When λ = v2 = 1, we have σ2 = 1/2π, and we obtain the elegant expression of the Gaussian as
the relation between circular area and radial increments in Equation (11). This result corresponds to an
average circular area of one, because

〈
2πR2〉 = 2πσ2 = 1.

It is common to express the Gaussian in the standard normal form, with σ2 = 1, which yields
v2 = 1/2π and the associated probability expression obtained by substituting this value
into Equation (10).

6.3. Transforming Distributions to Canonical Gaussian Form

Rotational invariance transforms the canonical exponential form into the Gaussian form, as in
Equation (10). If we equate Rz =

√
Tz and λ = πv2, we can write the Gaussian form as:

qzdRz =

√
λ

π
e−λTz d

√
Tz (13)

in which:
σ̃2 = 〈T〉√T

is a generalized notion of the variance.
The expression in Equation (13) may require a shift of Tz so that Tz ∈ (0, ∞), with associated

radial values Rz = ±
√

Tz. The nature of the required shift is most easily shown by example.

6.4. Example: The Gamma Distribution

The gamma distribution may be expressed as qzdψz with respect to the parameter z when we set
Tz = z− α log z and dψz = dz, yielding:

qzdz = ke−λ(z−α log z)dz

for z ≥ 0. To transform this expression to the Gaussian radial scale, we must shift Tz so that the
corresponding value of Rz describes a monotonically increasing radial distance from a central location.

For the gamma distribution, if we use the shift Tz 7→ Tz − α = (z− α log z)− α for α ≥ 0, then the
minimum of Tz and the associated maximum of qz correspond to Rz = 0, which is what we need
to transform into the Gaussian form. In particular, the parametric plot of the points (±Rz, qz) with
respect to the parameter z ∈ (0, ∞) follows the Gaussian pattern.

In addition, the parametric plot of the points (Tz, qz) follows the exponential-Boltzmann pattern.
Thus, we have a parametric description of the probability pattern qz in terms of three alternative
scaling relations for the underlying parameter z: the measure dz corresponds to the value of z itself and
the gamma pattern; the measure dRz corresponds to the Gaussian radial measure; and the measure
dTz corresponds to the logarithmic scaling of qz and the exponential-Boltzmann pattern. Each measure
expresses particular invariances of scale.

6.5. Example: The Beta Distribution

A common form of the beta distribution is:

qzdz = kzα−1(1− z)β−1dz

for z ∈ (0, 1). We can express this distribution in canonical exponential form ke−λTz by the
scaling relation:

−λTz = (α− 1) log z + (β− 1) log(1− z)
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with λ > 0. For α and β both greater than one, this scaling defines a log-linear-log pattern [8], in the
sense that −λTz scales logarithmically near the endpoints of zero and one and transitions to a linear
scaling interiorly near the minimum of Tz at:

z∗ =
α− 1

α + β− 2
(14)

When 0 < α < 1, the minimum (extremum) of Tz is at z∗ = 0. For our purposes, it is useful to let
α = λ for λ > 0 and to assume β > 1.

Define T∗ as the value of Tz evaluated at z∗. Thus, T∗ is the minimum value of Tz, and Tz increases
monotonically from its minimum. If we shift Tz by its minimum, Tz 7→ Tz − T∗, and use the shifted
value of Tz, we obtain the three standard forms of a distribution in terms of the parameter z ∈ (0, 1),
as follows.

The measure dz and parametric plot (z, qz) are the standard beta distribution form; the measure
dRz and parametric plot (±Rz, qz) are the standard Gaussian form; and the measure dTz and
parametric plot (Tz, qz) are the standard exponential-Boltzmann form.

7. Rotational Invariance and Partitions

The Gaussian radial measure often reveals the further underlying invariances that shape pattern.
Those invariances appear from the natural way in which the radial measure can be partitioned into
additive components.

7.1. Overview

Conserved quantities may arise from an underlying combination of processes. For example,
we might know that a conserved quantity, R2 = x + y, arises as the sum of two underlying processes
with values x and y. We do not know x and y, only that their conserved sum is invariantly equal to R2.

The partition of an invariant quantity into a sum may be interpreted as rotational
invariance, because:

R2 = x + y =
√

x2
+
√

y2

defines a circle with conserved radius R along the positive and negative values of the coordinates(√
x,
√

y
)
. That form of rotational invariance explains much of observed pattern, many of the classical

results in probability and dynamics, and the expression of those results in the context of mechanics.
The partition can be extended to a multidimensional sphere of radius R as:

R2 = ∑
√

xi
2 (15)

One can think of rotational invariance in two different ways. First, one may start with a variety of
different dimensions, with no conservation in any particular dimension. However, the aggregate may
satisfy a conserved total that imposes rotational invariance among the components.

Second, every conserved quantity can be partitioned into various additive components.
That partition starts with a conserved quantity, and then, by adding dimensions that satisfy the
total conservation, one induces a higher dimensional rotational invariance. Thus, every conserved
quantity associates with higher-dimensional rotational invariance.

7.2. Rotational Invariance of Conserved Probability

In the probability expression qzdψz, suppose the incremental measure dψz is constant, and we
have a finite number of values of z with positive probability. We may write the conserved total
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probability as ∑z qz = 1. Then, from Equation (15), we can write the conservation of total probability
as a partition of R2 = 1 confined to the surface of a multidimensional sphere:

∑
z

√
qz

2 = 1

There is a natural square root spherical coordinate system,
√

qz, in which to express conserved
probability. Square roots of probabilities arise in a variety of fundamental expressions of physics,
statistics and probability theory [14,15].

7.3. Partition of the Canonical Scale

The canonical scale equals the square of the Gaussian radial scale, Tz = R2
z . Thus, we can write a

two-dimensional partition from Equation (15) as:

Tz =
√

x1
2 +
√

x2
2

Define the two dimensions as:

√
x1 = w ≡ w(z, s)
√

x2 = ẇ ≡ ẇ(z, s)

yielding the partition for the canonical scale as:

Tz = w2 + ẇ2 (16)

This expression takes the input parameter z and partitions the resulting value of Tz = R2
z into a

circle of radius Rz along the path (w, ẇ) traced by the parameter s.
The radial distance, Rz, and associated canonical scale value, Tz = R2

z , are invariant with respect
to s. In general, for each dimension we add to a partition of Tz, we can create an additional invariance
with respect to a new parameter.

7.4. Partition into Location and Rate

A common partition separates the radius into dimensions of location and rate. Define ẇ = ∂w/∂s
as the rate of change in the location w with respect to the parameter s. Then, we can use the notational
equivalence Hz ≡ Tz = R2

z to emphasize the relation to a classic expression in physics for a conserved
Hamiltonian as:

Hz = w2 + ẇ2 (17)

in which this conserved square of the radial distance is partitioned into the sum of a squared location,
w2, and a squared rate of change in location, ẇ2. The squared rate, or velocity, arises as a geometric
consequence of the Pythagorean partitioning of a squared radial distance into squared component
dimensions. Many extensions of this Hamiltonian interpretation can be found in standard textbooks
of physics.

With the Hamiltonian notation, Hz ≡ Tz, our canonical exponential-Boltzmann distribution is:

qzdHz = λe−λHz dHz

The value H is often interpreted as energy, with dH as the Gibbs measure. For the simple circular
partition of Equation (17), the total energy is often split into potential, w2, and kinetic, ẇ2, components.

In this article, I emphasize the underlying invariances and their geometric relations as
fundamental. From my perspective, the interpretation of energy and its components are simply
one way in which to describe the fundamental invariances.
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The Hamiltonian interpretation is, however, particularly useful. It leads to a natural expression of
dynamics with respect to underlying invariance. For example, we can partition a probability pattern
into its currently observable location and its rate of change:

e−λHz = e−λw2
e−λẇ2

The first component, w2, may be interpreted as the observable state of the probability pattern at a
particular time. The second component, ẇ2, may be interpreted as the rate of change in the probability
pattern. Invariance applies to the combination of location and rate of change, rather than to either
component alone. Thus, invariance does not imply equilibrium.

8. Summary of Invariances

Probability patterns, qz, express invariances of shift and stretch with respect to a canonical scale, Tz.
Those invariances lead to an exponential form:

qzdψz = ke−λTz dψz

with respect to various incremental measures, dψz. This probability expression may be regarded
parametrically with respect to z. The parametric view splits the probability pattern into two scaling
relations, qz and ψz, with respect to z, forming the parametric curve defined by the points (ψz, qz).

For the canonical scale, Tz, we may consider the sorts of transformations that leave the scale shift
and stretch (affine) invariant, T ◦ G ∼ T, as in Equation (9). Essentially, all of the canonical scales of
common probability patterns [7–9] arise from the affine invariance of T and a few simple types of
underlying invariance with respect to z.

For the incremental measure scale, dψz, four alternatives highlight different aspects of probability
pattern and scale.

The scale dz leads to the traditional expression of probability pattern, qzdz, which highlights the
invariances that set the canonical scale, Tz.

The scale dTz leads to the universal exponential-Boltzmann form, qzdTz, which highlights the
fundamental shift and stretch invariances in relation to the conservation of total probability.

This conservation of total probability may alternatively be described by a cumulative probability
measure, dqz = −λqzdTz.

Finally, rotational invariance leads to the Gaussian radial measure, dRz. That radial measure
transforms many probability scalings, qz, into Gaussian distributions, qzdRz.

Invariances typically associate with conserved quantities [16]. For example, the rotational
invariance of the Gaussian radial measure is equivalent to the conservation of the average area
circumscribed by the radial measure. That average circular area is proportional to the traditional
definition of the variance. Thus, rotational invariance and conserved variance are equivalent in the
Gaussian form.

The Gaussian radial measure often reveals the further underlying invariances that shape pattern.
That insight follows from the natural way in which the radial measure can be partitioned into
additive components.

9. The Primacy of Invariance and Symmetry

“It was Einstein who radically changed the way people thought about nature, moving away
from the mechanical viewpoint of the nineteenth century toward the elegant contemplation
of the underlying symmetry principles of the laws of physics in the twentieth century”
(Lederman and Hill [17] (p. 153)).

The exponential-Boltzmann distribution in Equation (2) provides the basis for statistical mechanics,
Jaynesian maximum entropy and my own invariance framework. These approaches derive the
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exponential form from different assumptions. The underlying assumptions determine how far one may
extend the exponential-Boltzmann form toward explaining the variety of commonly observed patterns.

I claim that one must begin solely with the fundamental invariances in order to develop a
proper understanding of the full range of common patterns. By contrast, statistical mechanics and
Jaynesian maximum entropy begin from particular assumptions that only partially reflect the deeper
underlying invariances.

9.1. Statistical Mechanics

Statistical mechanics typically begins with an assumed, unseen ensemble of microscopic particles.
Each particle is often regarded as identical in nature to the others. Statistical averages over the
underlying microscopic ensemble lead to a macroscopic distribution of measurable quantities.
The exponential-Boltzmann distribution is the basic equilibrium macroscopic probability pattern.

In contrast with the mechanical perspective of statistical physics, my approach begins with
fundamental underlying invariances (symmetries). Both approaches arrive at roughly the same
intermediate point of the exponential-Boltzmann form. That canonical form expresses essentially the
same invariances, no matter whether one begins with an underlying mechanical perspective or an
underlying invariance perspective.

From my point of view, the underlying mechanical perspective happens to be one particular way
in which to uncover the basic invariances that shape pattern. However, the mechanical perspective
has limitations associated with the unnecessarily particular assumptions made about the underlying
microscopic ensemble.

For example, to derive the log-linear scaling pattern that characterizes the commonly observed
gamma distribution in Equation (6), a mechanical perspective must make special assumptions about
the interactions between the underlying microscopic particles.

Some may consider the demand for explicit mechanical assumptions about the underlying
particles to be a benefit. However, in practice, those explicit assumptions are almost certainly false
and, instead, simply serve as a method by which to point in the direction of the deeper underlying
invariance that shapes the scaling relations and associated probability patterns.

I prefer to start with the deeper abstract structure shaped by the key invariances. Then, one may
consider the variety of different particular mechanical assumptions that lead to the key invariances.
Each set of particular assumptions that are consistent with the key invariances define a special case.

There have been many powerful extensions to statistical mechanics in recent years. Examples include
generalized entropies based on assumptions about underlying particle mechanics [18], superstatistics as
the average over heterogeneous microscopic sets [19] and invariance principles applied to the
mechanical aspects of particle interactions [20].

My own invariance and scaling approach subsumes essentially all of those results in a simple
and elegant way, and goes much further with regard to providing a systematic understanding of the
commonly observed patterns [7–9]. However, it remains a matter of opinion whether an underlying
mechanical framework based on an explicit microscopic ensemble is better or worse than a more
abstract approach based purely on invariances.

9.2. Jaynesian Maximum Entropy

Jaynes [4,5] replaced the old microscopic ensemble of particles and the associated mechanical
entropy with a new information entropy. He showed that maximum entropy, in the sense of information
rather than particle mechanics, leads to the classic exponential-Boltzmann form. A large literature
extends the Jaynesian framework [21]. Axiomatic approaches transcend the original justifications
based on intuitive notions of information [22].

Jaynes’ exponential form has a kind of canonical scale, Tz. In Jaynes’ approach, one sets the
average value over the canonical scale to a fixed value, in our notation a fixed value of 〈T〉z. That
conserved average value defines a constraint (an invariance) that determines the associated probability
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pattern [23]. The Jaynesian algorithm is the maximization of entropy, subject to a constraint on the
average value of some quantity, Tz.

Jaynes struggled to go beyond the standard constraints of the mean or the variance.
Those constraints arise from fixing the average values of Tz = z or Tz = z2, which lead to the
associated exponential or Gaussian forms. Jaynes did discuss a variety of additional invariances [6]
and associated probability patterns. However, he never achieved any systematic understanding of the
common invariances and the associated commonly observed patterns and their relations.

I regarded Jaynes’ transcendence of the particle-based microscopic ensemble as a strong move in
the right direction. I followed that direction for several years [7–9,12]. In my prior work, I developed
the intrinsic affine invariance of the canonical scale, Tz, with respect to the exponential-Boltzmann
distribution of maximum entropy. The recognition of that general affine invariance plus the variety
of common invariances of scale [24,25] led to my systematic classification of the common probability
patterns and their relationships [7–9].

In this article, I have taken the next step by doing away with the Jaynesian maximization of entropy.
I replaced that maximization with the fundamental invariances of shift and stretch, from which I
obtained the canonical exponential-Boltzmann form.

With the exponential-Boltzmann distribution derived from shift and stretch invariance rather
than Jaynesian maximum entropy, I added my prior work on the general affine invariance of the
canonical scale and the additional particular invariances that define the common scaling relations and
probability patterns. We now have a complete system based purely on invariances.

9.3. Conclusions

Shift and stretch invariance set the exponential-Boltzmann form of probability patterns.
Rotational invariance transforms the exponential pattern into the Gaussian pattern. These fundamental
forms define the abstract structure of pattern with respect to a canonical scale.

In a particular application, observable pattern arises by the scaling relation between the natural
measurements of that application and the canonical scale. The particular scaling relation derives from
the universal affine invariance of the canonical scale and from the additional invariances that arise in
the particular application.

Together, these invariances define the commonly observed scaling relations and associated
probability patterns. The study of pattern often reduces to the study of how particular generative
processes set the particular invariances that define scale.

Diverse and seemingly unrelated generative processes may reduce to the same simple invariance
and, thus, to the same scaling relation and associated pattern. To test hypotheses about generative
process and to understand the diversity of natural pattern, one must understand the central role of
invariance. Although that message has been repeated many times, it has yet to be fully deciphered.
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Appendix A. Technical Issues and Extensions

Appendix A.1. Conserved Total Probability

The relations between shift invariance and the conservation of total probability in Section 3.1 form
a core part of the article. Here, I clarify the particular goals, assumptions and consequences.

In Section 3.1, I assumed that the conservation of total probability and shift invariance
hold. From those assumptions, Equation (4) follows and, thus, also the exponential-Boltzmann
form of Equation (5).
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I am not claiming that conservation of total probability by itself leads to shift invariance. Instead,
my goal is to consider the consequences that follow from a primary assumption of shift invariance.

The justification for a primary assumption of invariance remains an open problem at the
foundation of much of modern physics. The opening quote from Weinberg expresses the key role of
invariances and also the uncertainty about why invariances are fundamental. My only goal concerns
the consequences that follow from the assumption of primary invariances.

Appendix A.2. Conserved Average Values: Equation (7)

Below Equation (7), I stated that the average value λ 〈T〉T = 1 remains unchanged after stretch
transformation, Tz 7→ bTz. This section provides additional details. The problem begins with
Equation (7), repeated here:

λ 〈T〉T =
∫

λ2 Tz e−λTz dTz = 1

Make the substitution Tz 7→ bTz, which yields:

λb 〈T〉T =
∫

λ2b2 Tz e−λbTz dTz = 1

noting that Tz 7→ bTz implies dTz 7→ bdTz, which explains the origin of the b2 term on the right-hand
side. Thus, Equation (7) remains one under stretch transformation, implying that 〈T〉T = 1/λb.

Appendix A.3. Primacy of Invariance

This article assumes the primacy of shift and stretch invariance. The article then develops the
consequences of primary invariance. There are many other ways of understanding the fact that
the foundational exponential-Boltzmann distribution expresses shift and stretch invariance, and the
Gaussian distribution expresses rotational invariance. One can derive those invariances from other
assumptions, rather than assume that they are primary.

Classical statistical mechanics derives shift and stretch invariance as consequences of the aggregate
behavior of many particles. Jaynesian maximum entropy derives shift and stretch invariance as
consequences of the tendency for entropy to increase plus the assumptions that total probability
is conserved and that the average value of some measurement is conserved. In my notation,
the conservation of 〈λTz〉 is equivalent to the assumption of stretch invariance. Often, this kind
of assumption is similar to various conservation assumptions, such as the conservation of energy.

Another way to derive invariance is by the classic limit theorems of probability. Gnedenko and
Kolmogorov [26] beautifully summarized a key aspect:

“In fact, all epistemologic value of the theory of probability is based on this: that large-scale
random phenomena in their collective action create strict, nonrandom regularity.”

The limit theorems typically derive from assumptions such as the summation of many independent
random components or, in more complicated studies, the aggregation of partially correlated random
components. From those assumptions, certain invariances may arise as consequences.

It may seem that the derivation of invariances from more concrete assumptions provides a
better approach. However, from a mathematical and perhaps ultimate point of view, invariance is
often tautologically related to supposedly more concrete assumptions. For example, conservation of
energy typically arises as an assumption in many profound physical theories. In those theories, one
could choose to say that stretch invariance arises from conservation of energy or, equivalently, that
conservation of energy arises from stretch invariance. It is not at all clear how we can know which is
primary, because mathematically, they are often effectively the same assumption.

My point of departure is the opening quote from Weinberg, who based his statement on the
overwhelming success of 20th century physics. That success has partly (mostly?) been driven by
studying the consequences that follow from assuming various primary invariances. The ultimate
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basis for those primary invariances remains unclear, but the profoundly successful consequences of
proceeding in this way are very clear. These issues are very important. However, a proper discussion
would require probing the basis of modern physics, as well as many deep recent developments in
mathematics, which is beyond my scope. I simply wanted to analyze what would follow from the
assumption of a few simple primary invariances.

Appendix A.4. Measurement Theory

Classical measurement theory develops a rational approach to derive and understand
measurement scales [24,25]. Roughly speaking, a measurement scale is defined by the transformations
that leave invariant the relevant relations of the measurement process. Different approaches develop
that general notion of invariance in different ways or expand into broader aspects of pattern
(e.g., Grenander [27]).

This article concerns probability patterns in relation to scale. The key is that probability patterns
remain invariant to affine transformation, in other words, to shift and stretch transformations. Thus,
different measurement scales lead to the same invariant probability pattern if they are affine similar. I
discussed the role of affine similarity in several recent articles [7–9]. Here, I briefly highlight the main
points.

Start with some notation. Let T(z) ≡ T be a transformation of underlying observations z that
define a scale, T. Each scale T has the property of being invariant to certain alterations of the underlying
observations. Let a candidate alteration of the underlying observation be the generator, G(z) ≡ G.
Invariance of the scale T to the generator G means that:

T [G(z)] = T(z)

which we can write in simpler notation as:

T ◦G = T

Sometimes, we do not require exact invariance, but only a kind of similarity. In the case
of probability patterns, shift and stretch invariance mean that any two scales related by affine
transformation T = a + bT yield the same probability pattern. In other words, probability patterns are
invariant to affine transformations of scale. Thus, with regard to the generator G, we only require that
T ◦G fall within a family of affine transformation of T. Thus, we write the conditions for two probability
patterns to be invariant to the generator G as:

T ◦G = a + bT ∼ T

and thus, the key invariance relation for probability patterns is affine similarity expressed as:

T ◦G ∼ T

which was presented in the text as Equation (9). My prior publications fully developed this relation
of affine similarity and its consequences for the variety of scales that define the commonly observed
probability patterns [7–9]. Appendix B briefly presents a few examples, including the linear-log scale.

Appendix B. Invariance and the Common Canonical Scales

The variety of canonical scales may be understood by the variety of invariances that hold under
different circumstances. I introduced the affine invariance of the canonical scale in Equation (9).
This section briefly summarizes further aspects of invariance and the common canonical scales.
Prior publications provide more detail [7–9].
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Invariance can be studied by the partition of the transformation, z 7→ Tz, into two steps, z 7→
w 7→ Tz. The first transformation expresses intrinsic invariances by the transformation z 7→ w(z), in
which w defines the new base scale consistent with the intrinsic invariances.

The second transformation evaluates only the canonical shift and stretch invariances in relation to
the base scale, w 7→ a+ bw. This affine transformation of the base scale can be written as T(w) = a+ bw.
We can define T(w) ≡ Tz, noting that w is a function of z.

Appendix B.1. Rotational Invariance of the Base Scale

Rotational invariance is perhaps the most common base scale symmetry. In the simplest case,
w(z) = z2. If we write x = z cos θ and y = z sin θ, then x2 + y2 = z2, and the points (x, y) trace a circle
with a radius z that is rotationally invariant to the angle θ. Many probability distributions arise from
rotationally invariant base scales, which is why squared values are so common in probability patterns.
For example, if w = z2 and Tz ≡ w, then the canonical exponential form that follows from shift and
stretch invariance of the rotationally invariant base scale is:

qz = ke−λw = ke−λz2

which is the Gaussian distribution, as discussed in the text.
Note that the word rotation captures an invariance that transcends a purely angular interpretation.

Instead, we have component processes or measurements that satisfy an additive invariance constraint.
For each final value, z, there exist a variety of underlying processes or outcomes that satisfy the
invariance ∑ x2

i = z2.
The word rotation simply refers to the diversity of underlying Pythagorean partitions that sum

to an invariant Euclidean distance. The set of invariant partitions falls on the surface of a sphere.
That spherical property leads to the expression of invariant additive partitions in terms of rotation.

Appendix B.2. General Form of Base Scale Invariance

The earlier sections established that the canonical scale of probability patterns is invariant
to shift and stretch. Thus, we may consider as equivalent any affine transformation of the base
scale w 7→ a + bw.

We may describe additional invariances of w, such as rotational invariance, in the general form:

w ◦ G ∼ w (B1)

in which w ◦ G ≡ w [G(z)]. We read Equation (B1) as: the base scale w is invariant to transformation
by G, such that w ◦ G = a + bw for some constants a and b. The symbol “∼” abbreviates the affine
invariance of w.

For example, we may express the rotational invariance of the prior section as:

w(z, θ) = z2(cos2 θ + sin2 θ) = z2

because cos2 θ + sin2 θ = 1 for any value of θ. We can describe rotation by the transformation:

G(z, θ) = (z, θ + ε)

so that the invariance expression is:

w ◦ G = w [G(z, θ)] = w(z, θ + ε) = z2
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Thus, the base scale w is affine invariant to the rotational transformation generator, G, as in
Equation (B1). Although this form of rotational invariance seems trivial in this context, it turns out to
be the basis for many classical results in probability, dynamics and statistical mechanics.

Appendix B.3. Example: Linear-Log Invariance of the Base Scale

The invariance expression of Equation (B1) sets the conditions for base scale invariances.
Although there are many possible base scales, a few dominate the commonly observed patterns [7–9].
In this article, I emphasize the principles of invariance rather than a full discussion of the various
common scales.

Earlier, I discussed the log-linear scale associated with the gamma distribution. This section
presents the inverse linear-log scale, which is:

w(z) = α log(1 + βz)

When βz is small, w is approximately αβz, which is linear in z. When βz is large, w is
approximately α log(βz), which is logarithmic in z. This linear-log scale is affine invariant
to transformations:

G(z) =
(1 + βz)α − 1

β

because w ◦ G = αw ∼ w. The transformation, G, is linear for small magnitudes of z and power law
for large magnitudes of z.

The linear-log base scale, w, yields the probability distribution:

qz = ke−λw = k(1 + βz)−γ

for γ = λα. This expression is the commonly observed Lomax or Pareto type II distribution, which is
equivalent to an exponential-Boltzmann distribution for small z and a power law distribution in the
upper tail for large z.

We can combine base scales. For example, if we start with w1, a rotationally invariant scale,
z 7→ z2, and then transform those rotationally invariant values to a linear-log scale, w2, we obtain
w2 [w1(z)] = α log(1 + βz2). This scale corresponds to the generalized Student’s distribution:

qz = k(1 + βz2)−γ

For small magnitudes of z, this distribution is linear in scale and Gaussian in shape. For large
magnitudes of z, this distribution has power law tails. Thus, a rotationally invariant linear-log scale
grades from Gaussian to power law as magnitude increases.

Appendix B.4. The Family of Canonical Scales

The canonical scale, Tz, determines the associated probability pattern, qz = ke−λTz .
What determines the canonical scale? The answer has two parts.

First, each problem begins with a base scale, w(z) ≡ w. The base scale arises from the invariances
that define the particular problem. Those invariances may come from observation or by assumption.
The prior sections gave the examples of rotational invariance, associated with squared-value scaling,
and linear to power law invariance, associated with linear to log scaling. When the base scale
lacks intrinsic invariance, we may write w ≡ z. Earlier publications provided examples of common
base scales [7–9].

Second, the canonical scale arises by transformation of the base scale, Tz = T(w). The canonical
scale must satisfy both the shift and stretch invariance requirements. If the base scale itself satisfies
both invariances, then the base scale is the canonical scale, Tz = w. In particular, if the probability



Entropy 2016, 18, 192 20 of 22

pattern remains invariant to affine transformations of the base scale w 7→ δ + γw, then the shift- and
stretch-invariant distribution has the form:

qz = ke−λw (B2)

Alternatively, w may satisfy the shift invariance requirement, but fail the stretch invariance
requirement [8,9]. We therefore need to find a canonical transformation T(w) that achieves affine
invariance with respect to the underlying shift, G(w) = δ + w. The transformation:

Tz = T(w) = eβw (B3)

changes a shift invariance of w into a stretch invariance of Tz, because:

T(δ + w) = eβ(δ+w) = eβδeβw = bT ∼ T

for b = eβδ. We can write T(δ + w) = T ◦ G, thus, this expression shows that we have satisfied the
affine invariance T ◦ G ∼ T of Equation (9).

Thus, shift invariance with respect to w generates a family of scaling relations described by the
parameter β. The one-parameter family of canonical scales in Equation (B3) expands the canonical
exponential form for probability distributions to:

qz = ke−λTz = ke−λeβw
. (B4)

The simpler form of Equation (B2) arises as a limiting case for β → 0. That limiting form
corresponds to the case in which the base scale, w, is itself both shift and stretch invariant [8,9].
Thus, we may consider the more familiar exponential form as falling within the expanded
one-parameter symmetry group of scaling relations in Equation (B3).

The expanded canonical form for probability patterns in Equation (B4) and a few simple base
scales, w, include essentially all of the commonly observed continuous probability patterns [8,9].

Appendix B.5. Example: Extreme Values

In some cases, it is useful to consider the probability pattern in terms of the canonical scale
measure, dTz = |T′|dz. Using Tz = eβw, distributions take on the form often found in the extreme
value problems [8,9]:

qzdz = kw′eβw−λeβw
dz

in which w′ = |dw/dz|. For example, w = z yields the Gumbel distribution, and w = log z yields the
Fréchet or Weibull form.

Appendix B.6. Example: Stretched Exponential and Lévy

Suppose the base scale is logarithmic, w(z) = log z. Then, from Equation (B4), a candidate form
for probability pattern is:

qz = ke−λzβ
(B5)

This important distribution arises in various contexts [9], including the stretched exponential
distribution and the Fourier domain spectral distribution that associates with the basic
Lévy distributions [12].

In this case, the probability pattern is not shift and stretch invariant to changes in the value of z,
because z 7→ δ + γz changes the pattern. By contrast, if we start with the base scale w = log z, then the
probability pattern is shift and stretch invariant with respect to the canonical scale:

Tz = eβw = zβ
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because the affine transformation of the canonical scale, zβ 7→ δ + γzβ, does not alter the probability
pattern in Equation (B5), given that we adjust k and λ to satisfy the conservation of probability and the
conservation of average value.

The way in which I presented these invariances may seem trivial. If we begin with Equation (B5),
then of course, we have shift and stretch invariance with respect to zβ 7→ δ+ γzβ. However, in practical
applications, we may begin with an observed pattern and then try to infer its structure. In that case,
analysis of the observations would lead to the conclusion of shift and stretch invariance with respect
to the canonical power law scaling, zβ.

Alternatively, we may begin with a theory that includes a complicated interaction of various
dynamical processes. We may then ask what invariance property matches the likely outcome of those
processes. The conclusion may be that, asymptotically, shift and stretch invariance hold with respect to
zβ 7→ δ + γzβ, suggesting the power law form of the canonical scale.

In general, the particular invariant canonical scale derives from observations or from assumptions
about process. The theory here shows the ways in which basic required invariances strongly constrain
the candidate canonical scales. Those generic constraints shape the commonly observed patterns
independently of the special attributes of each problem.
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