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Abstract: In order to detect hearing loss more efficiently and accurately, this study proposed
a new method based on fractional Fourier transform (FRFT). Three-dimensional volumetric
magnetic resonance images were obtained from 15 patients with left-sided hearing loss (LHL),
20 healthy controls (HC), and 14 patients with right-sided hearing loss (RHL). Twenty-five FRFT
spectrums were reduced by principal component analysis with thresholds of 90%, 95%, and 98%,
respectively. The classifier is the single-hidden-layer feed-forward neural network (SFN) trained by
the Levenberg–Marquardt algorithm. The results showed that the accuracies of all three classes are
higher than 95%. In all, our method is promising and may raise interest from other researchers.

Keywords: artificial neural network; fractional Fourier transform; Levenberg–Marquardt algorithm;
principal component analysis; hearing loss; computer-aided diagnosis; unified time-frequency domain

1. Introduction

Sensorineural hearing loss (SNHL) is a type of deafness. It is characterized by the gradual decrease
of frequency response thresholds [1]. SNHL is composed of sensory hearing loss and neural hearing
loss [2]. The former is mainly because of poor cochlear hair cell function, and the latter is due to
damage to the cochlear nerve [3,4].

From the point of neuroimaging, SNHL is featured in slight atrophy in several brain regions [5–7].
Nevertheless, it is rather difficult for physicians to investigate the alternation areas. Hence,
computer-aided diagnosis (CAD) is commonly used to assist physicians.
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The common three stages of a CAD system are feature extraction, feature selection, and
classification. The feature extraction process needs to obtain distinguishing features. The feature
selection process reduces the number of features, and this process may be omitted when the feature
number is small. The final classification process generates a classifier to recognize the input features.

Scholars tend to use discrete wavelet transform (DWT). Fatemizadeh and Shooshtari [8] used
region-based DWT and an adaptive mesh design to realize Magnetic Resonance (MR) image
compression. Gareis et al. [9] utilized discrete dyadic wavelet transform to extract features on
brain-computer interfaces. Arizmendi et al. [10] employed DWT and Bayesian neural networks
over Magnetic Resonance Spectroscopy (MRS) data to classify human brain tumors. Vivas et al. [11]
used DWT and an adaptive neuro-fuzzy inference system to develop a brain-machine interface.
Nayak et al. [12] used DWT to classify brain magnetic resonance (MR) images. Saber et al. [13] used
DWT to detect parallel transmission line faults. Yang et al. [14] used DWT to analyze a spectrum
for detecting brain tumors. Sharma et al. [15] used DWT to identify focal electroencephalogram
signals. Sours et al. [16] used DWT to investigate multiple frequency ranges of resting state functional
connectivity in mild traumatic brain injury patients.

However, it is difficult to determine the optimal wavelet function. Besides, DWT suffers from
translational variance. Although stationary wavelet transform and wavelet packet transform can solve
this problem, they increase the computing burden significantly [17–19].

In this paper, we suggested the use of a new transform method—the fractional Fourier transform
(FRFT) [20]. FRFT is related to the fractional derivative [21], fractal geometry [22], the conformable
derivative [23], and fractal theory [24]. FRFT can transform a given image to the so-called “unified
time-frequency domain (UTFD)”. FRFT is proven to deliver better performance than DWT in many
applications [25,26].

The remainder of this paper is below: Section 2 presents the materials. Section 3 gives the
preprocessing steps. Section 4 describes the methodology. Section 5 offers the results and discussions.
Finally, Section 6 concludes the paper and raises some potential research directions.

2. Materials

The study cohort included 15 patients with left-sided hearing loss (LHL), 14 patients with
right-sided hearing loss (RHL) and 20 age- and sex-matched healthy controls (HC). Subjects, not only
healthy but also of sudden sensorineural unilateral hearing loss (UHL) with a moderate-to-severe
degree, were enrolled from the outpatients of a department of otorhinolaryngology and head-neck
surgery and the community by advertisement. Subjects were excluded when there was evidence of
known psychiatric or neurological diseases, brain lesions such as tumors or strokes, taking psychotropic
medications, as well as contraindications to MR imaging. Informed written consent was obtained
from all subjects and the study was approved by the Ethics Committee of Zhongda Hospital which is
associated with Southeast University.

Magnetic resonance imaging (MRI) was performed using a 3.0-T MRI system (Siemens Verio
System, Erlangen, Germany). The imaging parameters were as follows: 3D SPGR-TR 1900 ms,
TE 2.48 ms, TI 900 ms, Flip 9˝, FOV 256 mm ˆ 256 mm, voxel dimension 1 mm ˆ 1 mm ˆ 1 mm voxels,
and 1.0 mm sagittal slices.

A pure tone audiometry with six different octave frequencies (250, 500, 1000, 2000, 4000 and
8000 Hz) was used to evaluate the pure tone average (PTA) and to reflect hearing performance.
Note that all patients were diagnosed with normal hearing in one ear (PTA ď 25 dB) and UHL in the
other one (PTA ě 40 dB). The hearing loss was persistent and sudden for each patient. No patients
used any hearing aid over the impaired ear. Subject characteristics are shown in Table 1.
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Table 1. Characteristics of subjects.

– LHL RHL Control F/x2/t p Value

Gender (m/f) 8/7 6/8 8/12 – –
Age (year) 51.7 ˘ 9.6 53.9 ˘ 7.6 53.6 ˘ 5.4 0.305 0.739

Education level (year) 12.5 ˘ 1.7 12.1 ˘ 2.4 11.5 ˘ 3.2 0.487 0.618
Disease duration (year) 17.6 ˘ 17.3 14.2 ˘ 14.9 – 0.517 0.610

PTA of left ear (dB) 78.1 ˘ 17.9 21.8 ˘ 3.2 22.2 ˘ 2.1 156.427 0.00
PTA of right ear (dB) 20.4 ˘ 4.2 80.9 ˘ 17.4 21.3 ˘ 2.2 167.796 0.00

3. Preprocessing

FMRIB Software Library (FSL) v5.0 was used to perform preprocessing. We use the brain
extraction tool (BET) to extract the brain and remove skulls. The results were shown in Figure 1,
where the red lines outline the edges of extracted brains.
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Figure 1. Brain extraction result. (a) Saggital; (b) Coronal; (c) Axial directions.

Then, all brains of subjects were normalized into standard stereotaxic anatomical Montreal
Neurological Institute (MNI) space using FMRIB’s Linear Image Registration Tool (FLIRT) and
FMRIB’s Nonlinear Image Registration Tool (FNIRT) tools. The former performs linear registration,
i.e., it translates, rotates, zooms, and shears the brain image to the standard MNI template, and the
latter permits local deformation so as to achieve better registration results. The normalized images
were resampled to 2 mm isotropic voxels.

Finally, the images were spatially smoothed via isotropic Gaussian filter with a full-width
at a half-maximum of 10 mm. Three experienced radiologists were instructed to select the
most distinctive (around the 40th) slice between SNHLs and HCs which contains the significant
discrepancy information.

4. Methodology

Fractional Fourier transform (FRFT) [27–29] can be viewed as a transform than obtains spectrums
in a unified time-frequency domain (UTFD). Ran et al. [30] researched the progress of FRFT, and they
pointed out FRFT can be regarded as a rotation in the time-frequency plane, and thus defined the
UTFD. Deng and Tao [31] also believed FRFT was a unified time-frequency transform. Zhang et al. [32]
employed FRFT to obtain the unified time-frequency spectrum.

The unified time-frequency spectrum of a time-domain signal is a representation of that signal in
the UTFD. It has been reported that the UTFD offers better classification performance than discrete
wavelet transform (DWT) in many fields. The reason is that UTFD can permit the rotational angle of
arbitrary precision; however, the DWT usually has an upper limit of decomposition levels. For example,
Pan et al. [33] offered a UTFD orthogonal frequency division multiplexing transmission with a
self-interference cancellation system. Zhu et al. [34] used UTFD to analyze time-modulated arrays.
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Tripathy et al. [35] employed UTFD and a differential relaying scheme to create a double-circuit
transmission line.

Mathematically, the fractional Fourier transform (FRFT) [36–38] is a powerful tool to analyze
signals in UTFD. Suppose the one-dimensional (1D) or two-dimensional (2D) signal is x(t), and its
FRFT with rotational angle α is [39]

Xαpuq “
ż 8

´8

xptqKαpu, tqdt (1)

where u denotes the spectral frequency (not angular frequency). K denotes for a transform kernel
as [40]

Kαpu, tq “
a

1´ jcotαexp
´

jπpt2cotα´ 2utcscα` u2cotαq
¯

(2)

where j denotes for the imaginary unit. When α takes the value of the multiple of the ratio of the
circumferences to diameter π, we can use the limit of the function to obtain the final result [41–43].

To illustrate, a simulated sigmoid function sin(t) with two periods is used. Figure 2 shows the
FRFT results in which α increases from 0 to 1 with an equal step of 0.2. We know that these FRFT results
correspond to the UTFD in the way that α works as an adjusting parameter. When α increases to 1, the
UTFD will approximate to the traditional frequency spectrum. On the contrary, when α decreases to 0,
the UTFD will approximate the time domain (for the time signal) and spatial domain (for image).
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Figure 2. FRFT results of (a) sin function with different α values: (b) 0.2, (c) 0.4; (d) 0.6; (e) 0.8; (f) 1.0.
(red represents the real part, and blue represents the imaginary part. The horizont denotes x-axis, and
the vertical denotes y-axis.).

In this study, we assign the five values of 0.2, 0.4, 0.6, 0.8, 1.0 to both rotation angles of (i) α for the
row direction and (ii) β for the column direction. There are, in total, 5 ˆ 5 = 25 combination sets of α

and β, and hence the FRFT will yield 25 UTFD spectrums for a brain image. In this study, the programs
of FRFT were downloaded from the website [44].

The UTFD spectrums by FRFT were then combined together, vectorized and aligned into a
column vector C. Afterwards, principal component analysis (PCA) was used to extract features from
the column vector C with three different thresholds of 90%, 95%, and 98%, respectively.

The reduced features were then submitted to a single-hidden-layer feed-forward neural network
(SFN) [45–47]. We did not use multiple hidden layers, since the sample number is small and the
problem is not so complicated. To guarantee the performance, the hidden number is usually assigned
a large value (50 in this study). Then, we decreased its value until the classification performance
deteriorated. To train the weights and biases of SFN, we employed the classical Levenberg–Marquardt
algorithm [48–50] which shows superior performance in many fields.

Our dataset is a bit small, so it will cause overfitting when dividing the dataset into training,
validation, and test sets. Instead, a 10-fold cross-validation was used to help avoid overfitting, and
thus out-of-sample errors can be estimated. We then repeat the 10-fold cross-validation 10 times.
The 10 repetitions can alleviate the random effects, and our experiences showed that increasing the
repetitions will enlarge the computation burdens.

5. Results and Discussion

5.1. Unified Time-Frequency Domain

The 25 UTFD spectrums are displayed in Figure 3. Here we can see that the UTFD will degrade to
the traditional frequency spectrum when both rotation angles are equal to 1.0. Those 25 spectra reflect
the unified time-frequency features that traditional Fourier transform cannot extract.
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5.2. Optimal Threshold of PCA

Next, those vectorized features from above 25 spectrums of each image were formed in a data
matrix. PCA was employed with the thresholds set to 90%, 95%, and 98%, respectively. The average
accuracy (AA) was used as the measure.

We see from Figure 4 that the AA achieved 91.84% for a threshold of 90%, 94.29% for a threshold of
95%, and 95.10% for a threshold of 98%. This suggests an increasing AA when the threshold becomes
larger. Nevertheless, the increase of the threshold will yield more reduced features, and causes a
computational burden. Hence, we finally assign the threshold to 98%.
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5.3. Evaluation

The evaluation results of the 10 repetitions of 10-fold cross-validation are displayed in Table 2.
The overall average accuracy of our method is 95.10%. For the single HC class, we achieved a sensitivity
of 96.50%, a specificity of 97.93%, a precision of 96.98%, and an accuracy of 97.35%. For the single
LHL class, we achieved a sensitivity of 94.00%, a specificity of 97.35%, a precision of 94.00%, and an
accuracy of 96.33%. For the single RHL class, we achieved a sensitivity of 94.29%, a specificity of
97.43%, a precision of 93.62%, and an accuracy of 96.53%.

Table 2. Evaluation.

Class Sensitivity Specificity Precision Accuracy

HC 96.50% 97.93% 96.98% 97.35%
LHL 94.00% 97.35% 94.00% 96.33%
RHL 94.29% 97.43% 93.62% 96.53%

Overall – – – 95.10%

Table 2 shows our method yields satisfying detection results on HC, LHL, and RHL. The detection
accuracies are all higher than 95%. This indicates that our method can be applied in hospitals to assist
physicians in making diagnoses based on magnetic resonance images. Nevertheless, our method does
not achieve 100% accuracy, and this leaves us a future research direction.

6. Conclusions

In this study, we developed a new method for detecting unilateral hearing loss (both left-sided
and right-sided). Our method is based on the combination of fractional Fourier transform and principal
component analysis. The results show our method yields exciting results.

In the future, we will continue to increase the classification performance, and we will test some
advanced classifiers, such as the linear regression classifier [51]. Besides, FLAIR imaging [52] and the
computed tomography (CT) technique will be embedded to increase the classification performance.
Another research direction is to use the fractional derivative [53] to extract hearing loss–related features.
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The following abbreviations are used in this manuscript:

SNHL Sensorineural hearing loss
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RHL Right-sided hearing loss
HC Healthy control
MRI Magnetic resonance imaging
PTA Pure tone average
MNI Montreal neurologic institute
UTFD Unified time-frequency domain
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