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Abstract: Entropy has been widely employed as a measure of variability for problems, such as
machine learning and signal processing. In this paper, we provide some new insights into the
behaviors of entropy as a measure of multivariate variability. The relationships between multivariate
entropy (joint or total marginal) and traditional measures of multivariate variability, such as total
dispersion and generalized variance, are investigated. It is shown that for the jointly Gaussian
case, the joint entropy (or entropy power) is equivalent to the generalized variance, while total
marginal entropy is equivalent to the geometric mean of the marginal variances and total marginal
entropy power is equivalent to the total dispersion. The smoothed multivariate entropy (joint or total
marginal) and the kernel density estimation (KDE)-based entropy estimator (with finite samples) are
also studied, which, under certain conditions, will be approximately equivalent to the total dispersion
(or a total dispersion estimator), regardless of the data distribution.
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1. Introduction

The concept of entropy can be used to quantify uncertainty, complexity, randomness, and
regularity [1–4]. Particularly, entropy is also a measure of variability (or dispersion) of the associated
distribution [5]. The most popular entropy functional is the Shannon entropy which is a central concept
in information theory [1]. In addition to Shannon entropy, there are many other entropy definitions,
such as Renyi and Tsallis entropies [2,3]. Renyi entropy is a generalized entropy which depends on a
parameter α and includes Shannon entropy as a limiting case ( α Ñ 1). In this work, to simplify the
discussion, we focus mainly on the Shannon and Renyi entropies.

Entropy has found applications in many fields such as statistics, physics, communication,
ecology, etc. In the past decades, especially in recent years, entropy and related information
theoretic measures (e.g., mutual information) have also been successfully applied in machine
learning and signal processing [4,6–10]. Information theoretic quantities can capture higher-order
statistics and offer potentially significant performance improvement in machine learning applications.
In information theoretic learning (ITL) [4], the measures from information theory (entropy, mutual
information, divergences, etc.) are often used as an optimization cost instead of the conventional
second-order statistical measures such as variance and covariance. In particular, in many machine
learning (supervised or unsupervised) problems, the goal is to optimize (maximize or minimize) the
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variability of the data, and in these cases one can optimize the entropy of the data so as to capture
the underlying structure in the data. For example, in supervised learning, such as regression, the
problem can be formulated as that of minimizing the entropy of the error between model output and
desired response [11–17]. This optimization criterion is called in ITL the minimum error entropy (MEE)
criterion [4,6].

In most practical applications, the data are multidimensional and multivariate. The total dispersion
(i.e., the trace of the covariance matrix) and generalized variance (i.e., the determinant of the
covariance matrix) are two widely used measures of multivariate variability, although both have some
limitations [18–20]. However, these measures of multivariate variability involve only second-order
statistics and cannot describe well non-Gaussian distributions. Entropy can be used as a descriptive
and comprehensive measure of multivariate variability especially when data are non-Gaussian, since
it can capture higher-order statistics and information content of the data rather than simply their
energy [4]. There are strong relationships between entropy and traditional measures of multivariate
variability (e.g., total dispersion and generalized variance). In the present work, we study this problem
in detail and provide some new insights into the behavior of entropy as a measure of multivariate
variability. We focus mainly on two types of multivariate entropy (or entropy power) measures, namely
joint entropy and total marginal entropy. We show that for the jointly Gaussian case, the joint entropy
and joint entropy power are equivalent to the generalized variance, while total marginal entropy
is equivalent to the geometric mean of the marginal variances and total marginal entropy power is
equivalent to the total dispersion. Further, we study the smoothed multivariate entropy measures
and show that the smoothed joint entropy and smoothed total marginal entropy will be equivalent
to a weighted version of total dispersion when the smoothing vector has independent entries and
the smoothing factor approaches infinity. In particular, if the smoothing vector has independent and
identically distributed entries, the two smoothed entropy measures will be equivalent to the total
dispersion as the smoothing factor approaches infinity. Finally, we also show that with finite number
of samples, the kernel density estimation (KDE) based entropy (joint or total marginal) estimator will
be approximately equivalent to a total dispersion estimator if the kernel function is Gaussian with
covariance matrix being an identity matrix and the smoothing factor is large enough.

The rest of the paper is organized as follows. In Section 2, we present some entropy measures of
multivariate variability and discuss the relationships between entropy and traditional measures of
multivariate variability. In Section 3, we study the smoothed multivariate entropy measures and gain
insights into the links between the smoothed entropy and total dispersion. In Section 4, we investigate
the KDE based entropy estimator (with finite samples), and prove that under certain conditions the
entropy estimator is approximately equivalent to a total dispersion estimator. Finally in Section 5, we
give the conclusion.

2. Entropy Measuresfor Multivariate Variability

2.1. Shannon’s Entropy

Entropy has long been employed as a measure of variability (spread, dispersion, or scatter) of
a distribution [5]. A common measure of multivariate variability is the joint entropy (JE). Given a
d-dimensional random vector X “ rX1, ¨ ¨ ¨ , Xds P Rd, with probability density function (PDF) pXpxq,
where x “ rx1, ¨ ¨ ¨ , xds, Shannon’s joint entropy of X is defined by [1]:

HpXq “ ´
ż

Rd
pXpxqlogpXpxqdx (1)

Another natural measure of multivariate variability is the Total Marginal Entropy (TME), defined as:

TpXq “
d
ÿ

i“1

HpXiq “ ´

d
ÿ

i“1

ż

R
pXipxiqlogpXipxiqdxi (2)
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where pXipxiq denotes the marginal density, and HpXiq the corresponding marginal entropy. We have
TpXq ě HpXq, with equality if and only if all elements of X are independent. Further, the following
theorem holds.

Theorem 1. If X is jointly Gaussian, with PDF:

pXpxq “
1

p2πqd{2 |Σ|1{2
exp

ˆ

´
1
2
px´ µqT Σ´1 px´ µq

˙

(3)

where µ denotes the mean vector, Σ stands for the covariance matrix, and |Σ| denotes the determinant of Σ, then:

HpXq “
d
2

log2π`
d
2
`

1
2

log |Σ| (4)

TpXq “
d
2

log2π`
d
2
`

1
2

log
d
ź

i“1

Σii (5)

where Σii denotes the i-th diagonal element of Σ, i.e., the variance of Xi.

Proof. Using Equation (3), we derive:

HpXq “ ´
ş

Rd pXpxqlogpXpxqdx

“ ´
ş

Rd pXpxqlog
ˆ

1
p2πqd{2|Σ|1{2

exp
´

´ 1
2 px´ µqT Σ´1 px´ µq

¯

˙

dx

“ log
´

p2πqd{2 |Σ|1{2
¯

ş

Rd pXpxqdx` 1
2
ş

Rd px´ µqT Σ´1 px´ µq pXpxqdx

“ d
2 log2π` 1

2 log |Σ| ` 1
2 Tr

`

Σ´1Σ
˘

“ d
2 log2π` d

2 `
1
2 log |Σ|

where Trp.q denotes the trace operator. In a similar way, we get:

TpXq “
d
ř

i“1
HpXiq

“
d
ř

i“1

´

1
2 log2π` 1

2 `
1
2 logΣii

¯

“ d
2 log2π` d

2 `
1
2 log

d
ś

i“1
Σii

˝

Remark 1. Since the logarithm is a monotonic function, for the jointly Gaussian case, the joint entropy
HpXq is equivalent to the generalized variance (GV), namely the determinant of Σ [18–20], and the total

marginal entropy TpXq is equivalent to the geometric mean of the d marginal variances (

˜

d
ś

i“1
Σii

¸1{d

).

The concept of the generalized variance, which can be traced back to Wilks [21], was suggested by
Sokal [22] to measure the overall variability in multivariate biometrical studies, and was applied by
Goodman [23] to get easily interpretable results on corn and cotton populations, and recently was also
applied by Barrett, Barnett, and Seth [24,25] to multivariate Granger Causality analysis. The generalized
variance plays an important role in Maximum Likelihood Estimation (MLE) and model selection. Some
limitations of the generalized variance, however, were discussed in [18–20].

The covariance matrix Σ can be expressed as:

Σ “ ∆P∆ (6)
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where P is the correlation matrix, and ∆ is a diagonal matrix with the d marginal standard deviations,
?

Σii, along the diagonal. Thus, the generalized variance and the geometric mean of the marginal
variances have the following relationship:

|Σ| “ |P|
d
ź

i“1

Σii (7)

where |P| is the determinant of P. From Equation (7), one can see that the generalized variance
depends on both |P| and the geometric mean of the marginal variances. If the correlation matrix P is
near-singular, however, the generalized variance will collapse to a very small value regardless of the
values of the marginal variances. This is a significant disadvantage of the generalized variance [18].

Remark 2. Although for the jointly Gaussian case, there is a simple relationship between the entropy
based measures of variability and the traditional variance based measures, the two kinds of measures
are quite different. The entropy may be related to higher-order moments of a distribution and can
provide a much more comprehensive characterization of the distribution. Only when the distribution
(e.g., Gaussian) can be well characterized by the first two moments, or when a quadratic approximation
is satisfactory, the variance based measures are justifiable [4,6].

2.2. Renyi's Entropy

There are many extensions to Shannon’s measure of entropy. Renyi’s entropy of order-α is a
well-known generalization of Shannon entropy [2,4]. Based on Renyi’s definition of entropy, the
order-α joint entropy and total marginal entropy of X are:

HαpXq “
1

1´ α
logVαpXq (8)

TαpXq “
d
ÿ

i“1

HαpXiq “
1

1´ α
log

d
ź

i“1

VαpXiq (9)

where α ą 0, α ‰ 1, and VαpXq denotes the order-α Information Potential (IP) [4] of X:

VαpXq “
ż

Rd
pα

Xpxqdx (10)

Remark 3. In recent years, Renyi’s entropy of order-α is widely accepted as an optimality criterion
in Information Theoretic Learning (ITL) [4]. The nonparametric kernel (Parzen window) estimator of
Renyi entropy (especially when α “ 2) has been shown to be more computationally efficient than that
of Shannon entropy [11,12].

Remark 4. The information potential is actually the Information Generating Function defined in [26].
It is called information potential since each term in its kernel estimator can be interpreted as a
potential between two particles [4]. As the logarithm is a monotonic function, minimizing Renyi
entropy is equivalent to minimizing (when α ă 1) or maximizing (when α ą 1) the information
potential. Thus, the information potential can be used as an alternative to Renyi entropy as a measure
of variability.

It is easy to verify that Renyi’s entropy will approach Shannon’s entropy as α Ñ 1 . In addition,
Theorem 1 can be extended to the Renyi entropy case.



Entropy 2016, 18, 196 5 of 14

Theorem 2. If X is jointly Gaussian, with PDF given by Equation (3), then:

HαpXq “
d

1´ α
logβ`

1
2

log |Σ| (11)

TαpXq “
d

1´ α
logβ`

1
2

log
d
ź

i“1

Σii (12)

where β “ p2πq
p1´αq

2 α´
1
2 .

Proof. One can derive:

VαpXq “
ş

Rd pα
Xpxqdx

“
ş

Rd

ˆ

1
p2πqd{2|Σ|1{2

exp
´

´ 1
2 px´ µqT Σ´1 px´ µq

¯

˙α

dx

“ 1
p2πqαd{2

|Σ|α{2
ş

Rd exp
´

´ 1
2 px´ µqT

`

α´1Σ
˘´1

px´ µq
¯

dx

“ 1
p2πqαd{2

|Σ|α{2
ˆ p2πqd{2

ˇ

ˇα´1Σ
ˇ

ˇ

1{2

“ βd |Σ|p1´αq{2

(13)

Similarly, we have:
VαpXiq “ βΣii

p1´αq{2 (14)

Substituting Equations (13) and (14) into Equations (8) and (9), respectively, yields Equations (11)
and (12). ˝

Remark 5. From Theorem 2 we find that, for the jointly Gaussian case, Renyi’s joint entropy HαpXq
is also equivalent to the generalized variance |Σ|, and the order-α total marginal entropy TαpXq is
equivalent to the geometric mean of the d marginal variances.

2.3. Entropy Powers

In [5], the variability (or the extent) of a distribution was measured by the exponential entropy, or
equivalently, the entropy power. Shannon and Renyi’s joint entropy powers (JEP) are defined by [27]:

NpXq “ exp
„

2
d

HpXq


(15)

NαpXq “ exp
„

2
d

HαpXq


(16)

Similarly, the total marginal entropy powers (TMEP) are:

MpXq “
d
ÿ

i“1

NpXiq “

d
ÿ

i“1

exp r2HpXiqs (17)

MαpXq “
d
ÿ

i“1

NαpXiq “

d
ÿ

i“1

exp r2HαpXiqs (18)

Clearly, we have NpXq “ lim
αÑ1

NαpXq, MpXq “ lim
αÑ1

MαpXq. The following theorem holds.
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Theorem 3. If X is jointly Gaussian, with PDF given by Equation (3), then:

NpXq “ 2πe |Σ|
1
d (19)

NαpXq “ β
2

1´α |Σ|
1
d (20)

MpXq “ 2πeTrpΣq (21)

MαpXq “ β
2

1´α TrpΣq (22)

Proof. Since HpXq “ d
2 log2π ` d

2 `
1
2 log |Σ|, HαpXq “ d

1´α logβ ` 1
2 log |Σ|, HpXiq “

1
2 log2π ` 1

2 `
1
2 logΣii, and HαpXiq “

1
1´α logβ` 1

2 logΣii, we have:

NpXq “ exp
„

2
d

HpXq


“ 2πe |Σ|
1
d

NαpXq “ exp
„

2
d

HαpXq


“ β
2

1´α |Σ|
1
d

MpXq “
d
ÿ

i“1

exp r2HpXiqs “ 2πeTrpΣq

MαpXq “
d
ÿ

i“1

exp r2HαpXiqs “ β
2

1´α TrpΣq

˝

Remark 6. For the jointly Gaussian case, the joint entropy powers NpXq and NαpXq are equivalent to the
generalized variance |Σ|, and the total marginal entropy powers MpXq and MαpXq are equivalent to the

well-known total dispersion (TD) or total variation (TV), given by TrpΣq “
d
ř

i“1
Σii [19]. The total dispersion

is widely accepted as a measure of variation in regression, clustering, and principal components
analysis (PCA). Let λ1, λ2, ..., λd be the eigenvalues of the covariance matrix Σ. Then the generalized
variance and total dispersion can be expressed as:

|Σ| “
d
ź

i“1

λi, TrpΣq “
d
ÿ

i“1

λi (23)

Table 1 lists Renyi’s entropy (which includes Shannon’s entropy as a special case) based measures
of variability and their equivalent variance based measures (for the jointly Gaussian case).

Table 1. Renyi’s entropy based measures of variability and their equivalent variance based measures.

Entropy Based Measures Equivalent Variance Based Measures

Renyi’s Joint Entropy: HαpXq Generalized Variance: |Σ|

Renyi’s Total Marginal Entropy: TαpXq Geometric Mean of Marginal Variances:

˜

d
ś

i“1
Σii

¸1{d

Renyi’s Joint Entropy Power: NαpXq Generalized Variance: |Σ|

Renyi’s Total Marginal Entropy Power: MαpXq Total Dispersion: TrpΣq

3. Smoothed Multivariate Entropy Measures

In most practical situations, the analytical evaluation of the entropy is not possible, and one has
to estimate its value from the samples. So far there are many entropy estimators, among which the
k-nearest neighbors based estimators are important ones in a wide range of practical applications [28].
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In ITL, however, the kernel density estimation (KDE) based estimators are perhaps the most popular ones
due to their smoothness [4]. By KDE approach [29], with a fixed kernel function, the estimated entropy
will converge asymptotically to the entropy of the underlying random variable plus an independent
random variable whose PDF corresponds to the kernel function [4]. This asymptotic value of entropy
is called the smoothed entropy [16]. In this section, we will investigate some interesting properties of the
smoothed multivariate entropy (joint or total marginal) as a measure of variability. Unless mentioned
otherwise, the smoothed entropy studied in the following is based on the Shannon entropy, but the
obtained results can be extended to many other entropies.

Given a d-dimensional random vector X “ rX1, ¨ ¨ ¨ , Xds P Rd, with PDF pXpxq, and a smoothing
vector Z “ rZ1, ¨ ¨ ¨ , Zds P Rd that is independent of X and has PDF pZpxq, the smoothed joint entropy of
X, with smoothing factor λ (λ ą 0), is defined by [16]:

HλZ pXq “ H pX` λZq “ ´
ż

Rd
pX`λZpxqlogpX`λZpxqdx (24)

where pX`λZpxq denotes the PDF of X` λZ, which is:

pX`λZpxq “ pXpxq ˝ pλZpxq (25)

where “˝” denotes the convolution operator, and pλZpxq “ 1
λd pZp

x
λ q is the PDF of λZ.

Let txp1q, xp2q, ¨ ¨ ¨ , xpNqu be N independent, identically distributed (i.i.d.) samples drawn from
pXpxq. By KDE approach, with a fixed kernel function pZp.q, the estimated PDF of X will be [29]:

p̂Xpxq “
1

Nλd

N
ÿ

k“1

pZ

ˆ

x´ xpkq
λ

˙

(26)

where λ ą 0 is the smoothing factor (or kernel width). As sample number N Ñ8 , the estimated
PDF will uniformly converge (with probability 1) to the true PDF convolved with the kernel function.
So we have:

p̂Xpxq
NÑ8
ÝÑ pX`λZpxq (27)

Plugging the above estimated PDF into the entropy definition, one may obtain an estimated
entropy of X, which converges, almost surely (a.s.), to the smoothed entropy HλZ pXq.

Remark 7. Theoretically, using a suitable annealing rate for the smoothing factor λ, the KDE based
entropy estimator can be asymptotically unbiased and consistent [29]. In many machine learning
applications, however, the smoothing factor is often kept fixed. The main reasons for this are basically
two: (1) in practical situations, the training data are always finite; (2) in general the learning seeks
extrema (either minimum or maximum) of the cost function, independently to its actual value, and the
dependence on the estimation bias is decreased. Therefore, the study of the smoothing entropy will
help us to gain insights into the asymptotic behaviors of the entropy based learning.

Similarly, one can define the Smoothed Total Marginal Entropy of X:

TλZpXq “
d
ÿ

i“1

HλZipXiq “ ´

d
ÿ

i“1

ż

R
pXi`λZipxqlogpXi`λZipxqdx (28)

where pXi`λZipxq denotes the smoothed marginal density, pXi`λZipxq “ pXipxq ˝ pλZipxq.
The smoothing factor λ is a very important parameter in the smoothed entropy measures (joint

or total marginal). As λ Ñ 0 , the smoothed entropy measures will reduce to the original entropy
measures, lim

λÑ0
HλZ pXq “ H pXq, lim

λÑ0
TλZ pXq “ T pXq. In the following, we study the case in which λ

is very large. Before presenting Theorem 4, we introduce an important lemma.
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Lemma 1. (De Bruijn's Identity [30]): For any two independent random d-dimensional vectors, X and Z,
with PDFs pX and pZ, such that JpXq exists and Z has finite covariance, where JpXq denotes the dˆ d Fisher
Information Matrix (FIM):

JpXq “ E
”

SpXqSpXqT
ı

(29)

in which SpXq “ 1
pXpXq

B
BX pXpXq is the zero-mean Score of X, then:

d
dt

HpX`
?

tZq
ˇ

ˇ

ˇ

ˇ

t“0
“

1
2

Tr pJpXqΣZq (30)

where ΣZ denotes the dˆ d covariance matrix of Z.

Theorem 4. As λ is large enough, we have:

HλZpXq « HpZq `
1
2

Tr pJpZqΣXq t´
d
2

logt (31)

TλZpXq «
d
ÿ

i“1

HpZiq `
t
2

d
ÿ

i“1

JpZiqσ
2
Xi
´

d
2

logt (32)

where t “ 1{λ2, and σ2
Xi

denotes the variance of Xi.

Proof. The smoothed joint entropy HλZpXq can be rewritten as:

HλZ pXq “ H pX` λZq “ H
ˆ

λ

ˆ

1
λ

X` Z
˙˙

“ H
ˆ

1
λ

X` Z
˙

` dlogλ (33)

Let t “ 1{λ2, we have:

HλZ pXq “ H
´?

tX` Z
¯

´
d
2

logt (34)

Then, by De Bruijn’s Identity:

HλZ pXq “ HpZq ` d
dt H

`?
tX` Z

˘

ˇ

ˇ

ˇ

t“0
t´ d

2 logt` optq

“ HpZq ` 1
2 Tr pJpZqΣXq t´ d

2 logt` optq
(35)

where optq denotes the higher-order infinitesimal term of the Taylor expansion. Similarly, one can
easily derive:

TλZpXq “
d
ÿ

i“1

HpZiq `
t
2

d
ÿ

i“1

JpZiqσ
2
Xi
´

d
2

logt` optq (36)

Thus, as λ is large enough, t will be very small, such that Equations (31) and (32) hold. ˝

Remark 8. In Equation (31), the term
!

HpZq ´ d
2 logt

)

is not related to X. So, when the smoothing
factor λ is large enough, the smoothed joint entropy HλZ pXq will be, approximately, equivalent to
Tr pJpZqΣXq, denoted by:

HλZ pXq
λÑ8
é Tr pJpZqΣXq (37)

Similarly, we have:

TλZpXq
λÑ8
é

d
ÿ

i“1

JpZiqσ
2
Xi

(38)

In the following, we consider three special cases of the smoothing vector Z.
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Case 1. If Z is a jointly Gaussian random vector, then JpZq “ Σ´1
Z , and JpZiq “ 1{σ2

Zi
, where σ2

Zi
denotes the variance of Zi. In this case, we have:

HλZ pXq
λÑ8
é Tr

´

Σ´1
Z ΣX

¯

(39)

TλZpXq
λÑ8
é

d
ÿ

i“1

σ2
Xi
{σ2

Zi
(40)

Case 2. If Z has independent entries, then JpZq is a diagonal matrix, with JpZiq along the diagonal.
It follows easily that:

HλZ pXq
λÑ8
é TλZpXq

λÑ8
é

d
ÿ

i“1

JpZiqσ
2
Xi

(41)

Case 3. If Z has independent and identically distributed (i.i.d.) entries, then JpZq “ JpZ1qI, where I is
a dˆ d identity matrix. Thus:

HλZ pXq
λÑ8
é TλZpXq

λÑ8
é

d
ÿ

i“1

σ2
Xi

(42)

Remark 9. It is interesting to observe that, if the smoothing vector Z has independent entries, then
the smoothed joint entropy and smoothed total marginal entropy will be equivalent to each other as
λ Ñ8 . In this case, they are both equivalent to a weighted version of total dispersion, with weights
JpZiq. In particular, when Z has i.i.d. entries, the two entropy measures will be equivalent (as λ Ñ8 )
to the ordinary total dispersion. Note that the above results hold even if X is non-Gaussian distributed.
The equivalent measures of the smoothed joint and total marginal entropies as λ Ñ8 are summarized
in Table 2.

Table 2. Equivalent measures of the smoothed joint and total marginal entropies as λ Ñ 8 .

Smoothed Joint Entropy Smoothed Total Marginal Entropy

General case Tr pJpZqΣXq
d
ř

i“1
JpZiqσ2

Xi

If Z is jointly Gaussian Tr
´

Σ´1
Z ΣX

¯ d
ř

i“1
σ2

Xi
{σ2

Zi

If Z has independent entries
d
ř

i“1
JpZiqσ2

Xi

d
ř

i“1
JpZiqσ2

Xi

If Z has i.i.d. entries
d
ř

i“1
σ2

Xi

d
ř

i“1
σ2

Xi

Example 1. According to Theorem 4, if Z has independent entries, the smoothed joint entropy HλZ pXq
and the smoothed total marginal entropy TλZpXq will approach a same value with λ increasing.
Below we present a simple example to confirm this fact.

Consider a two-dimensional case in which X is mixed-Gaussian with PDF:

pXpxq “ 1
4π
?

1´ρ2

"

exp
ˆ

´
x2

2´2ρx2px1´µq`px1´µq2

2p1´ρ2q

˙

` exp
ˆ

´
x2

2`2ρx2px1`µq`px1`µq2

2p1´ρ2q

˙*
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where µ “ 0.5, ρ “ 0.95, and Z is uniformly distributed over r´1.0, 1.0sˆ r´1.0, 1.0s. Figure 1 illustrates
the smoothed entropies (joint and total marginal) with different λ values. As one can see clearly, when
λ is small (close to zero), the smoothed total marginal entropy is larger than the smoothed joint entropy,
and the difference is significant; while when λ gets larger (say, larger than 2.0), the discrepancy between
the two entropy measures will disappear.
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where ix  denotes the i-th element of vector x . With the above estimated PDF, a sample-mean 
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Similarly, an estimator for the total marginal entropy can be obtained as follows: 
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4. Multivariate Entropy Estimators with Finite Samples

The smoothed entropy is of only theoretical interest since in practical applications, the number of
samples is always limited, and the asymptotic value of the entropy estimator can never be reached.
In the following, we show, however, that similar results hold for finite samples case. Consider again the
kernel density estimator Equation (26). For simplicity we assume that the kernel function is Gaussian
with covariance matrix ΣZ “ I, where I is a dˆ d identity matrix. In this case, the estimated PDF of
X becomes:

p̂Xpxq “ 1
N

´

1?
2πλ

¯d N
ř

k“1
exp

ˆ

´
||x´xpkq||2

2λ2

˙

“ 1
N

´

1?
2πλ

¯d N
ř

k“1

d
ś

i“1
exp

ˆ

´
pxi´xipkqq

2

2λ2

˙ (43)

where xi denotes the i-th element of vector x. With the above estimated PDF, a sample-mean estimator
of the joint entropy HpXq is [4]:

ĤpXq “ ´ 1
N

N
ř

j“1
logp̂Xpxpjqq

“ ´ 1
N

N
ř

j“1
log

"

1
N

´

1?
2πλ

¯d N
ř

k“1
exp

ˆ

´
||xpjq´xpkq||2

2λ2

˙*

(44)

Similarly, an estimator for the total marginal entropy can be obtained as follows:

T̂pXq “
d
ÿ

i“1

¨

˝´
1
N

N
ÿ

j“1

log

#

1
N

N
ÿ

k“1

1
?

2πλ
exp

˜

´
pxipjq ´ xipkqq

2

2λ2

¸+

˛

‚ (45)

The following theorem holds.
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Theorem 5. As λ is large enough, we have:

ĤpXq « T̂pXq « dlog
´?

2πλ
¯

`
1

λ2

d
ÿ

i“1

σ̂2
Xi

(46)

where σ̂2
Xi
“ 1

N

N
ř

j“1

„

xipjq ´ 1
N

N
ř

k“1
xipkq

2

is the estimated variance of Xi.

Proof. When λ Ñ8 , we have ||xpjq´xpkq||2

2λ2 Ñ 0 . It follows that:

ĤpXq “ dlog
`?

2πλ
˘

´ 1
N

N
ř

j“1
log

"

1
N

N
ř

k“1
exp

ˆ

´
||xpjq´xpkq||2

2λ2

˙*

paq
« dlog

`?
2πλ

˘

´ 1
N

N
ř

j“1
log

ˆ

1´ 1
N

N
ř

k“1

||xpjq´xpkq||2

2λ2

˙

pbq
« dlog

`?
2πλ

˘

` 1
N2

N
ř

j“1

N
ř

k“1

||xpjq´xpkq||2

2λ2

“ dlog
`?

2πλ
˘

` 1
2N2λ2

N
ř

j“1

N
ř

k“1

d
ř

i“1
pxipjq ´ xipkqq

2

“ dlog
`?

2πλ
˘

` 1
2λ2

d
ř

i“1

˜

1
N2

N
ř

j“1

N
ř

k“1
pxipjq ´ xipkqq

2

¸

pcq
“ dlog

`?
2πλ

˘

` 1
λ2

d
ř

i“1
σ̂2

Xi

(47)

where (a) comes from exp pxq « 1` x as x Ñ 0 , (b) comes from log p1` xq « x as x Ñ 0 , and (c)
comes from:

1
N2

N
ř

j“1

N
ř

k“1
pxipjq ´ xipkqq

2

“ 1
N2

N
ř

j“1

N
ř

k“1

`

x2
i pjq ` x2

i pkq ´ 2xipjqxipkq
˘

“ 1
N2

«

N
ř

j“1

N
ř

k“1
x2

i pjq `
N
ř

j“1

N
ř

k“1
x2

i pkq ´ 2
N
ř

j“1

N
ř

k“1
xipjqxipkq

ff

“ 1
N2

«

N
ř

j“1

N
ř

k“1
x2

i pjq `
N
ř

j“1

N
ř

k“1
x2

i pkq ´ 2

˜

N
ř

j“1
xipjq

¸

ˆ N
ř

k“1
xipkq

˙

ff

“ 2
N2

«

N
ř

j“1

N
ř

k“1
x2

i pjq ´

˜

N
ř

j“1
xipjq

¸

ˆ N
ř

k“1
xipkq

˙

ff

“ 2
N2

«

N
ř

j“1

N
ř

k“1
x2

i pjq ´ 2

˜

N
ř

j“1
xipjq

¸

ˆ N
ř

k“1
xipkq

˙

`

ˆ N
ř

k“1
xipkq

˙2ff

“ 2
N

N
ř

j“1

„

xipjq ´ 1
N

N
ř

k“1
xipkq

2

“ 2σ̂2
Xi

(48)
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In a similar way, we prove:

T̂pXq “
d
ř

i“1

˜

´ 1
N

N
ř

j“1
log

"

1
N

N
ř

k“1

1?
2πλ

exp
ˆ

´
pxipjq´xipkqq

2

2λ2

˙*

¸

« dlog
`?

2πλ
˘

`
d
ř

i“1

˜

´ 1
N

N
ř

j“1
log

"

1´ 1
N

N
ř

k“1

pxipjq´xipkqq
2

2λ2

*

¸

« dlog
`?

2πλ
˘

`
d
ř

i“1

˜

1
N2

N
ř

j“1

N
ř

k“1

pxipjq´xipkqq
2

2λ2

¸

“ dlog
`?

2πλ
˘

` 1
λ2

d
ř

i“1
σ̂2

Xi

(49)

Combining Equations (47) and (49) we obtain Equation (46). ˝

Remark 10. When the kernel function is Gaussian with covariance matrix being an identity matrix,
the KDE based entropy estimators (joint or total marginal) will be, approximately, equivalent to the

total dispersion estimator (
d
ř

i“1
σ̂2

Xi
) as the smoothing factor λ is very large. This result coincides with

Theorem 4. For the case in which the Gaussian covariance matrix is diagonal, one can also prove
that the KDE based entropy (joint or total marginal) estimators will be approximately equivalent
to a weighted total dispersion estimator as λ Ñ8 . Similar results hold for other entropies such as
Renyi entropy.

Example 2. Consider 1000 samples drawn from a two-dimensional Gaussian distribution with

zero-mean and covariance matrix ΣX “

«

1 0.99
0.99 1

ff

. Figure 2 shows the scatter plot of the samples.

Based on these samples, we evaluate the joint entropy and total marginal entropy using Equations (44)
and (45), respectively. The estimated entropy values with different λ are illustrated in Figure 3, from
which we observe that when λ becomes larger, the difference between the two estimated entropies will
disappear. The results support the Theorem 5.
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5. Conclusions 

Measures of the variability of data play significant roles in many machine learning and signal 
processing applications. Recent studies suggest that machine learning (supervised or unsupervised) 
can benefit greatly from the use of entropy as a measure of variability, especially when data possess 
non-Gaussian distributions. In this paper, we have studied the behaviors of entropy as a measure of 
multivariate variability. The relationships between multivariate entropy (joint or total marginal) and 
traditional second-order statistics based multivariate variability measures, such as total dispersion 
and generalized variance, have been investigated. For the jointly Gaussian case, the joint entropy (or 
entropy power) is shown to be equivalent to the generalized variance, while total marginal entropy 
is equivalent to the geometric mean of the marginal variances, and total marginal entropy power is 
equivalent to the total dispersion. We have also gained insights into the relationships between the 
smoothed multivariate entropy (joint or total marginal) and the total dispersion. Under certain 
conditions, the smoothed multivariate entropy will be, approximately, equivalent to the total 
dispersion. Similar results hold for the multivariate entropy estimators (with finite number of 
samples) based on the kernel density estimation (KDE). The results of this work can help us to 
understand the behaviors of multidimensional information theoretic learning. 
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5. Conclusions

Measures of the variability of data play significant roles in many machine learning and signal
processing applications. Recent studies suggest that machine learning (supervised or unsupervised)
can benefit greatly from the use of entropy as a measure of variability, especially when data possess
non-Gaussian distributions. In this paper, we have studied the behaviors of entropy as a measure of
multivariate variability. The relationships between multivariate entropy (joint or total marginal) and
traditional second-order statistics based multivariate variability measures, such as total dispersion
and generalized variance, have been investigated. For the jointly Gaussian case, the joint entropy (or
entropy power) is shown to be equivalent to the generalized variance, while total marginal entropy
is equivalent to the geometric mean of the marginal variances, and total marginal entropy power
is equivalent to the total dispersion. We have also gained insights into the relationships between
the smoothed multivariate entropy (joint or total marginal) and the total dispersion. Under certain
conditions, the smoothed multivariate entropy will be, approximately, equivalent to the total dispersion.
Similar results hold for the multivariate entropy estimators (with finite number of samples) based on
the kernel density estimation (KDE). The results of this work can help us to understand the behaviors
of multidimensional information theoretic learning.
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