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Abstract: In the previous papers, the idea of “hidden oscillations” has been applied to explain work
generation in semiconductor photovoltaic cells and thermoelectric generators. The aim of this paper
is firstly to extend this approach to fuel cells and, secondly, to create a unified quantum model for all
types of such devices. They are treated as electron pumps powered by heat or chemical engines. The
working fluid is electron gas and the necessary oscillating element (“piston”) is provided by plasma
oscillation. Those oscillations are localized around the junction that also serves as a diode rectifying
fast electric charge oscillations and yielding a final output direct current (DC). The dynamics of the
devices are governed by the Markovian master equations that can be derived in a rigorous way from
the underlying Hamiltonian models and are consistent with the laws of thermodynamics. The new
ingredient is the derivation of master equations for systems driven by chemical reactions.
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1. Introduction

Photovoltaic cells, thermoelectric generators and fuel cells (PTFs) are devices that produce
electric current from light, heat and chemical energy, respectively. Although all of them were
developed over hundred years ago, the explanations of their operation principle that can be found
in numerous textbooks and popular accounts cannot be complete. While for a battery or a capacitor
the electric current, which can yield work, is produced by a charge flow from the place with a higher
electrochemical potential to the place with a lower one in PTFs, the electric current flows always in a
closed circuit. Therefore, by the very definition of potential, it cannot be driven by a time-independent
electrochemical potential as usually claimed in the literature.

The PTF should rather be treated as a heat engine which powers a pump, in this case pumping
electron gas (or fluid) in the external circuit [1–3]. The macroscopic heat motors or turbines contain
always periodically moving elements like pistons, flywheels or rotors, which perform periodic motion
at the expense of heat or chemical energy provided by the external reservoir. Such self-oscillatory
mechanisms that rely on the feedback are an essential part of the operation of heat engines [4,5].

Another argument supporting the presence of “hidden” self-oscillations in PTFs stem from the
theoretical studies of quantum heat engines within the formalism of quantum open systems [6–15].
It was shown, using a number of different models appropriate for various regimes, that the very
process of work extraction needs a system of a single degree of freedom executing an oscillatory
motion. This system, called a work reservoir, or simply a “piston”, operates in the semi-classical
limit and, usually, can be replaced by a periodic external driving. Only the presence of such a system
can synchronize the individual motions of microscopic subsystems forming PTFs and produce work
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that is a macroscopic and deterministic form of energy (the different approach to work generation in
photovoltaic devices and photosynthesis processes is advocated, e.g., in [16]).

The aim of this paper is to present a universal quantum model of PTF that generalizes and
simplifies the previous proposals for photovoltaic cells and thermoelectric generators. It consists of
two “bands” occupied by electrons in which energy spectrum can be controlled by a certain collective
degree of freedom. This oscillatory degree of freedom acts as a piston and in all PTFs can be identified
with a sort of plasma oscillation. Those self-oscillations of plasma are powered by the coupling of the
electron gas to a non-equilibrium stationary environment. Moreover, a diode mechanism rectifying the
oscillations of electric current is built in the system in a form of non-ohmic junction. The cooperation
of the oscillating piston and the diode mechanism “pumps” the electron gas in the external circuit
similarly to a piston water pump [3].

2. Model of PTF

The aim of this section is to develop a unified general model of heat or chemical engine valid as
an idealized theoretical scheme for all types of PTF devices. All formulas will be written in the natural
units of energy, frequency and temperature such that h̄ = kB = 1. The working medium is an electron
gas occupying effective single-electron states distributed in two bands A and B. The electrons interact
with the cold bath at the temperature T which drives them into the Gibbs state at the same temperature.
Another reservoir called hot bath is either a heat bath at the temperature T1 > T or a chemical bath
supplying chemical energy to the electronic system. Both types of hot bath can be described by the
universal model of a chemical bath characterized by the temperature T1 and the chemical potentials
µ1, µ2, ..., µK.

The other important ingredient is the presence of a collective, essentially macroscopic degree of
freedom, called work reservoir or piston, which can execute oscillatory motion. In all PTFs, this motion
is attributed to plasma oscillations, which are universal phenomena in the presence of freely moving
charges in the background of fixed opposite charges and the boundaries separated materials with
different charge densities. To generate electric current, which can perform work, one needs a positive
feedback mechanism that stimulates the oscillatory motion of the piston at the expense of energy flow
from the hot bath.

2.1. Model Hamiltonians

The electrons distributed in two bands A and B are described by two sets of the annihilation
and creation operators, ak, a†

k and bl , b†
l , respectively, subject to canonical anticommutation relations.

The electrons are treated as non-interacting fermions moving in a self-consistent potential with the
unperturbed Hamiltonian:

H0 = ∑
k

Ea(k)a†
k ak + ∑

l
Eb(l)b†

l bl . (1)

The system of electrons creates an equilibrium charge distribution which minimizes free energy.
The collective perturbation of this distribution produces macroscopic charge oscillations called plasma
oscillations with the frequency Ω described by a single collective variable ξ(t) = g sin Ωt. The coupling
of this collective mode with individual electrons in bands is given by Coulomb and exchange
interactions and can be described by a mean field modulation Hamiltonian:

Hmod = ξNa = ξ ∑
k

a†
k ak. (2)

Here, the parameter ξ absorbs all relevant coupling constants and hence can be interpreted as a shift
of the single electron energy in a band A. The coupling Equation (2) involves only the number of
electrons in the A-band because the total number of electrons in both bands is a constant of motion
and hence the number of electrons in B-band can be eliminated at the cost of an overall shift of the
energy scale.
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The system of electrons perturbed periodically by the piston interacts with a non-equilibrium
environment composed at least of two baths. One of these baths is assumed to be a thermal reservoir
at the device ambient temperature T. We assume also that, practically, this cold bath can cause only
intraband transitions and serves as a dump for a part of the supplied energy. The corresponding
interaction Hamiltonian can be written as:

Hintra = ∑
k~k′

a†
k ak′ ⊗ R(a)

kk′ + ∑
ll′

b†
l bl′ ⊗ R(b)

ll′ , (3)

where R(a)
kk′ , R(b)

ll′ are hermitian matrices consisting of operators acting on the baths Hilbert spaces.
The second component of the environment is the source of energy either in the form of heat

supplied at the higher temperature T1 > T, or chemical energy. In this case, the interaction
Hamiltonian reads:

Hinter = ∑
kl

(
a†

k bl + b†
l ak
)
⊗ R(ab)

kl (4)

and describes the interband transitions.

2.2. Markovian Master Equations

A generic quantum open system coupled to a stationary environment is described by the “bare”
system Hamiltonians H0, the bath Hamiltonian HR, and the weak interaction Hamiltonian:

Hint = S⊗ R. (5)

(S (R) is a Hermitian system (reservoir) operator) and the stationary state of the reservoir satisfying

[ρR, HR] = 0, Tr(ρR R) = 0. (6)

The Schroedinger picture Markovian Master equation (MME) for the system reduced density
matrix has the following standard form:

dρ

dt
= −i[H, ρ] +

1
2 ∑
{ω≥0}

{
G(ω)

(
[Sω, ρS†

ω ] + [Sωρ, S†
ω ]
)
+ G(−ω)

(
[S†

ω, ρSω ] + [S†
ωρ, Sω ])

)}
, (7)

where
S(t) = eiHtSe−iHt = ∑

{ω≥0}

(
e−iωtSω + eiωtS†

ω

)
, (8)

with {ω ≥ 0} denoting the set of all non-negative Bohr frequencies.
Notice, that S(t) is defined with respect to the renormalized, physical Hamiltonian H containing

Lamb-shift corrections. The influence of the reservoir on the relaxation processes is entirely described
by the coupling spectrum defined as:

G(ω) =
∫ ∞

−∞
eiωt Tr

(
ρR R(t)R

)
dt, R(t) = eiHRtRe−iHRt. (9)

The term in Equation (7) proportional to G(ω) characterizes the dissipation rate of energy ω into
bath, while the term proportional to G(−ω) is the reverse process of excitation.

The generalization of the form of MME to more complicated interactions like, e.g.,
Equation (3) or Equation (4) is straightforward.

2.3. Thermal and Chemical Baths

Two particular types of baths are important for the models of PTF—a thermal bath and a
chemical bath.
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A thermal bath is described by the Gibbs state at the temperature T given by the density matrix

ρR = Z−1 exp
{
− 1

T
HR
}

. (10)

The so-called Kubo–Martin–Schwinger condition (KMS) implied by the form Equation (10) and
valid in the thermodynamic limit leads to the following relation (detailed balance) satisfied by the
coupling spectrum

G(−ω) = e−ω/TG(ω). (11)

Under the condition Equation (11), the Gibbs state at the same temperature T is a stationary
solution of the MME Equation (7).

A chemical bath is a collection of K separated baths each consisting of many molecules of a given
type. The whole bath is described by the density matrix corresponding to the grand canonical ensemble
at the temperature T1 and the chemical potentials µj

ρ̃R = Z−1 exp
{
− 1

T1

(
HR −

K

∑
j=1

µjNj
)}

(12)

Here, Nj is the operator describing the number of j-type molecules in the bath and HR is the total
Hamiltonian of the chemical bath satisfying

[Nj, HR] = 0, for all j = 1, 2, ..., K. (13)

The Condition (13) means that the molecules in the chemical bath do not undergo chemical
reactions unless they became coupled by the quantum system. This coupling can be described by the
rotating-wave approximation version of the Hamiltonian Equation (5):

Hint = S− ⊗ R+ + S+ ⊗ R−, S+ = (S−)†, R+ = (R−)†. (14)

Here, S+ increases the energy of the system and the operator R− describes the possible transitions from
higher to lower energy levels of the bath including chemical reactions. One can think about R− as a
sum of products of operators describing transitions preserving all numbers of molecules, “annihilation
operators” corresponding to reactants and “creation operators” corresponding to reaction products,
respectively. Hence, R− satisfies the following relation

[
K

∑
j=1

µjNj, R−] =
( K

∑
j=1

νjµj
)

R−, (15)

where νj are stoichiometric coefficients, negative for reactants and positive for reaction products. The sum

K

∑
j=1

νjµj = ∆g (16)

can be interpreted as the Gibbs free energy released in a single reaction. Obviously, the operator
S− ⊗ R+ describes the reverse processes consuming energy from the system. If the operators R±

commute with all number operators Nj, then ∆g = 0, no chemical reactions occur, and the bath acts as
a purely thermal bath at the temperature T1.

Applying again the standard derivation of the MME, one obtains the Equation (7) with G(ω)

(ω > 0) replaced by the relaxation coefficient:

G(ω)→ γ↓(ω) =
∫ ∞

−∞
eiωt Tr

(
ρ̃R R−(t)R+

)
dt, (17)
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and G(−ω) (ω > 0) is replaced by the excitation coefficient:

G(ω)→ γ↑(ω) =
∫ ∞

−∞
eiωt Tr

(
ρ̃R R+(t)R−

)
dt. (18)

The fictitious dynamics governed by the extended Hamiltonian H̃R = HR −∑K
j=1 µjNj and applied

to the operators R± yields:

R̃±(t) = eiH̃RtR±e−iH̃Rt = R±(t)e∓i∆g t. (19)

Using Equation (19) and the KMS condition again for the grand canonical ensemble ρ̃R treated as
an “extended” Gibbs state and the “extended” operators R̃±(t), one obtains the following relation:

γ↑(ω) = exp
{
− 1

T1
(ω + ∆g)

}
γ↓(ω), (20)

which generalizes the detailed balance Condition (11) to chemical baths. A chemical bath is more
general than a thermal one and reduces to the latter for ∆g = 0, hence it will be used as a universal
model of the hot bath for PTFs.

2.4. A Generic Model of a Quantum Engine

In the PTF model, the electron gas, interacting with a stationary environment and collective
degree of freedom (plasma oscillation), can be considered as a particular example of slowly driving
quantum open system. In other words, it can be interpreted as a version of the generic quantum heat
engine model introduced in [6] (compare also [7]) and successfully used in the context of solar cells [1]
and thermoelectric generators [2].

In this scheme, the quantum system corresponding to “working medium” interacts weakly with
a stationary non-equilibrium environment typically, but not always, consisting of two heat baths at
different temperatures. The external periodic driving Hmod(t) added to the free Hamiltonian H0 of
the system describes the action of a macroscopic piston which supplies and extracts work. If the
average net power extracted from the working medium is positive, then the oscillations of the piston
are self-sustained (self-oscillations), and the whole system acts as an engine yielding useful work.

Under certain standard assumptions: (i) weak system-environment coupling; (ii) ergodic
properties of the stationary environment; (iii) slowly varying Hmod(t) in comparison to the fast internal
dynamics; the irreversible evolution of the reduced density matrix ρ(t) of the working medium satisfies
the Markovian master equation (MME) of the following form:

d
dt

ρ(t) = −i[H(t), ρ(t)] + L(t)ρ(t). (21)

Here, H(t) = H0 + Hmod(t) is the total Hamiltonian of the working medium and L(t) describes the
influence of an environment.

If the modulation part Hmod(t) is also “small”, in comparison to H0, we can assume that, according
to the standard perturbation theory, in the lowest order approximation, Hmod(t) commutes with H0.
Then, assuming also harmonic oscillations, we can put

Hmod(t) = ξ(t)M = g(sin Ωt) M, [H0, M] = 0, (22)

where g is a “small” amplitude of oscillations.
The dissipative generator L(t) obtained by the standard weak coupling limit procedure is a

function of the magnitude of perturbation ξ and can be written as

L(t) ≡ L[ξ(t)]. (23)
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Under natural ergodic assumptions, the generator L[ξ] possesses a unique stationary state ρ̄[ξ]

satisfying the identities:
L[ξ]ρ̄[ξ] = 0, L′[ξ]ρ̄[ξ] = −L[ξ]ρ̄′[ξ], (24)

where L′[ξ] ≡ d
dξL[ξ] , ρ̄′[ξ] ≡ d

dξ ρ̄[ξ]. As discussed in [6], the power P(t) provided by the engine and
the net heat current J(t) supplied by the environment are defined as:

P(t) = −Tr
(

ρ(t)
dH(t)

dt

)
, J(t) = Tr

(
H(t)

dρ(t)
dt

)
. (25)

The definitions of the above are consistent with the first and second law of thermodynamics, and
the time-dependence of the Hamiltonian is necessary to define work. The stationary average power
output given by the time averaging of P(t) reads:

P̄ = −gΩ lim
t0→∞

1
t0

∫ t0

0
Tr
(

ρ(t)M
)

cos Ωt dt. (26)

For the reader’s convenience, the following second order approximation with respect to a small
parameter g is derived in the Appendix (compare [1]):

P̄ = −1
2

g2Tr
(

ρ̄′[0]
Ω2

Ω2 + L∗2[0]
L∗[0]M

)
, (27)

where L∗[0] is the Heisenberg picture counterpart of the Schroedinger picture generator L[0].
If, additionally, the modulation frequency Ω is much higher than the relaxation rate of the observable
M then, we can use the following compact expression

P̄ = −1
2

g2Tr
(

ρ̄′[0]L∗[0]M
)

. (28)

The lowest order Formula (28) is still consistent with thermodynamics [1] and is the basic one for
the further analysis of PTF. The stationary output power is proportional to the square of the amplitude
of piston oscillations, which is a free parameter. This amplitude is determined by the energy flux from
the environment and the load attached to the piston, e.g., the resistance, electric motor or battery in the
case of PTF.

2.5. MME for the PTF

The general framework of the previous section can be applied to the PTF model described by
the Hamiltonians Equations (1)–(4). The first element is the MME generator L[0] computed under
the absence of modulation. It is a sum of two generators corresponding to statistically independent
processes of intraband transitions induced by the thermal cold bath at the ambient temperature T and
the interband transitions induced by the chemical hot bath characterized by the temperature T1 and
the Gibbs free energy excess ∆g. The detailed structure of the generators is the following:

L[0] = Lintra[0] + Linter[0], (29)

Lintra[0] = ∑
{kk′}
L(a)

kk′ + ∑
{ll′}
L(b)ll′ , (30)

Linter[0] = ∑
{kl}
L(ab)

kl , (31)
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L(a)
kk′ ρ =

1
2

Γ(a)
kk′

(
[aka†

k′ ρ, ak′ a
†
k ] + [aka†

k′ , ρ ak′ a
†
k ]

+ e−(Ea(k)−Ea(k′)/T([a†
k ak′ ρ, a†

k′ ak] + [a†
k ak′ , ρ a†

k′ ak]
))

, (32)

L(b)ll′ ρ =
1
2

Γ(b)
ll′

(
[blb†

l′ ρ, bl′b
†
l ] + [blb†

l′ , ρ bl′b
†
l ]

+ e−(Eb(l)−Eb(l′)/T([b†
l bl′ ρ, b†

l′bl ] + [b†
l bl′ , ρ b†

l′bl ]
))

, (33)

L(ab)
kl ρ =

1
2

γkl

(
[akb†

l ρ, bla†
k ] + [akb†

l , ρ bla†
k ]

+ e−(Ea(k)−Eb(l)+∆g)/T1
(
[a†

k bl ρ, b†
l ak] + [a†

k bl , ρ b†
l ak]

))
, (34)

where the summations in the formulas of the above are performed over the sets of indices:
{kk′} = {kk′; Ea(k)− Ea(k′) ≥ 0}, {ll′} = {ll′; Eb(l)− Eb(l′) ≥ 0}, {kl} = {kl; Ea(k)− Eb(l) > 0}.

The term in Equations (32) and (33) describes the following intraband processes:

(a) Band A (B) electron relaxation from the state k (l) to the state k′ (l′ ) accompanied by a positive
energy release to the heat bath at the ambient temperature;

(b) The inverse process of electron transfer from the lower energy state to the higher energy one with
the probability suppressed by the Boltzmann factor.

The term in Equation (34) describes the following interband processes:

(c) Electron transfer from the higher energy state k in the band A to the lower energy state l in the
band B;

(d) The inverse process of electron transfer with the probability suppressed or enhanced by suitable
Boltzmann factors including chemical energy.

The analysis of the stationary state for the MME governed by the generator Equation (29) is based
on the following facts:

(i) The intraband thermalization processes governed by Equations (32) and (33) preserve the number
of electrons in each band and for a fixed initial numbers of electrons drive the system into a
product of two canonical Gibbs states at the temperature T;

(ii) The interband transitions described by Equation (34) preserve the total number of electrons but
modify the relative occupation of both bands;

(iii) Because the number of electrons in a macroscopic PTF device is very large, we can use the
equivalence of canonical and grand canonical ensembles to derive the approximate form of the
stationary state for L[0];

(iv) Due to the form of the modulation Equation (2), the stationary state of the generator L[ξ] can be
obtained from the stationary state of the generator L[0] by replacing the single electron energy
Ea(k) by Ea(k) + ξ.

Taking (i)–(iv) into account, one concludes that the approximate stationary state of the generator
L[ξ] has a form of the product of grand canonical ensembles at the ambient temperature T but with
two different electrochemical potentials µa, µb:

ρ̄[ξ] =
1

Z[ξ]
exp

{
− 1

T

[
∑
k

(
Ea(k) + ξ − µa

)
a†

k ak + ∑
l

(
Eb(l)− µb

)
b†

l bl

]}
. (35)

The electro-chemical potentials µa, µb are determined by the average numbers of electrons in both
bands. Therefore, they are functions of the hot bath temperature T1, the density of electrons in the
material and the load which is attached to the device. This load might be described by the additional
generator which takes into account the exchange of electrons between the PTF device and the external
circuit. This generator does not depend on ξ and hence does not explicitly enter the formula for the
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power output Equation (28) (see Equation (24) for the explanation), but contributes to the form of
the stationary state. Therefore, the electro-chemical potentials µa, µb may be treated as adjustable
parameters depending on the external load.

The difference of electro-chemical potentials between bands can be interpreted as the measured
voltage V of the PTF device, i.e.,

µa − µb = eV. (36)

Indeed, the band A supplies electrons to the external circuit at the higher energy µa per electron while
the band B accepts electrons at the lower energy µb per electron.

2.6. The Formula for the Output Power

The results of the previous section can be inserted into the general formula for power output
Equation (28). The derivative ρ̄′[0] is given by

ρ̄′[0] = −Z′[0]
Z[0]

ρ̄[0]− 1
T

Naρ̄[0]. (37)

Inserting Equation (37) into Equation (28) and remembering that now M = Na = ∑k a†
k ak one can

simplify the expression for power,

P̄ = −1
2

g2Tr
(

ρ̄′[0]L∗[0]M
)
=

1
2T

g2Tr
(

ρ̄[0]NaL∗[0]Na

)
=

1
2T

g2Tr
(

ρ̄[0]NaLinter∗[0]Na

)
, (38)

where one uses the fact that the intraband relaxation does not change the number of electrons in
each band.

The further computation involves the action of the Heisenberg picture generator on Na for the
chemical hot bath:

L(ab)∗
kl Na = γkl

(
[bla†

k , Na]akb†
l + bla†

k [Na, akb†
l ]

+ e−(Ea(k)−Eb(l)+∆g)/T1
(
[b†

l ak, Na]a†
k bl + b†

l ak[Na, a†
k bl ]
))

= γkl

(
e−(Ea(k)−Eb(l)+∆g)/T1 n(b)

l
(
1− n(a)

k
)
− n(a)

k
(
1− n(b)

l
))

, (39)

where n(a)
k = a†

k ak and n(b)
l = b†

l bl .
After inserting Equation (39) into Equation (38), one can use the properties of quantum grand

canonical ensembles Equation (35) and reduce the averages of even products of annihilation and
creation fermionic operators into sums of products of the only non-vanishing two-point correlations:

〈a†
k ak′〉0 = δkk′ fc(k), 〈aka†

k′〉0 = δkk′ (1− fc(k)) ,

〈b†
l bl′〉0 = δll′ fb(l), 〈blb†

l′〉0 = δll′ (1− fb(l)) . (40)

Here, 〈· · · 〉0 denotes the quantum average with respect to the state ρ̄[0] given by Equation (35), and
fa(k) and fb(l) are the Fermi–Dirac statistical distribution functions:

fa(k) =
1

eβ(Ea(k)−µa) + 1
, fb(l) =

1
eβ(Eb(l)−µb) + 1

, (41)
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with β = 1/T. The straightforward computation yields the leading order term

P̄ =
g2

T
〈Na〉0 ∑

{kl}
γkl

(
e−(Ea(k)−Eb(l)−∆g/)/T1

[
1− fa(k)

]
fb(l)−

[
1− fb(l)

]
fa(k)

)
=

g2

T
〈Na〉0 ∑

{kl}
Gkl

(
exp

{ 1
T

([
1− T

T1

](
Ea(k)− Eb(l)

)
− T

T1
∆g− eV

)}
− 1
)

, (42)

where
Gkl = γkl

[
1− fb(l)

]
fa(k). (43)

The presence of the factor Equation (43) in the sum Equation (42) essentially restricts the range of
positive energy differences Ea(k)− Eb(l) which can be replaced in the exponent by a single “average”
denoted by Eg. This leads to the following final formula for the output power:

P̄ =
g2

T
〈Na〉0 Ḡ

(
exp

{ 1
T

([
1− T

T1

]
Eg −

T
T1

∆g− eV
)}
− 1
)

, (44)

where Ḡ = ∑kl Gkl .
A direct consequence of the formula Equation (44) is the condition for work generation in

PTF devices:
eV < eVoc = (Eg + ∆g)

(
1− T

T1

)
− ∆g. (45)

Here, Voc can be interpreted as an open-circuit voltage because, when the external circuit is closed, the
voltage is reduced and the positive output power maintains collective plasma oscillations (positive
feedback). These charge oscillations are subsequently rectified by the diode mechanism due to the
build-in non-ohmic junctions, which are present in all PTF devices.

For a purely thermal hot bath, the Carnot factor 1− T/T1 also suggests the interpretation of
the Equation (45) in terms of thermodynamical efficiency. A single electron excited from the band
B to A requires, on average, Eg of thermal energy extracted from the hot bath. Then, a part of Eg is
transformed into useful work, equal at most to eVoc per single electron flowing in the external circuit.
For a purely chemical hot bath, in principle, the whole Gibbs energy can be transformed into work.

Obviously, for real systems, the efficiency is much smaller than the theoretical bound because
heat conductivity and damping of plasma oscillations dissipate a large portion of the supplied thermal
and chemical energy.

3. Implementations of the Model

The general universal model of PTFs presented above can be used as an idealized model of
thermoelectric generators, photovoltaic cells and fuel cells.

3.1. Thermoelectric Generators

The idealized model of a thermoelectric generator is a special case of the PTF model developed in
the previous section (see Figure 1). Consider first the case of a semiconductor device composed of two
semiconductors of p-type and n-type. They are connected by a conducting material which is heated by
a thermal bath at the temperature T1 higher than the ambient temperature T. A finite heat conductivity
is neglected and the electrons in bulk are assumed to thermalize quickly to the temperature T by the
electron-phonon interactions.
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Figure 1. Operation principles of a semiconductor thermoelectric generator (x-axis represents position,
y-axis represents electronic energy): (i) a pn-junction is heated by a hot bath increasing the rate of
transition over the build-in potential barrier; (ii) the electrons and holes in bulk are cooled down by a
cold bath; (iii) the excess electrons and holes modify the shape of the build-in potential supporting
self-oscillations of the interface; (iv) periodic oscillations of the charge density are rectified by the
pn-diode, the averaged direct current (DC) flows in the outer circuit from the right contact to the
left one.

The electronic states in n-type material form the band A, while those in p-type the band B.
Here, both valence and conduction bands are included in a single band A or B. In the formed
pn-junction, a build-in potential produces the energy barrier Eg separating the A-electrons from
B-electrons. The notation Eg is consistent with that used in Equation (44) because most of the thermally
induced transitions from the band B to A satisfy the relation Ea(k)− Eb(l) ' Eg. Therefore, one can
apply the Equation (45) with ∆g = 0 and express the open circuit voltage as

Voc =
Eg

eT1
∆T, ∆T = T1 − T, (46)

where Eg
eT1

can be interpreted as the relative Seebeck coefficient. Indeed, for a typical T1 ∼ 500 K,
the relative Seebeck coefficient given by Equation (46) is of the order of mV/K, which is comparable to
the highest values obtained for some semiconductors.

The plasma oscillations in the THz domain of frequencies localized at the pn-junction were
observed by several experimental groups [17,18]. They provide here the necessary macroscopic degree
of freedom—a piston. The fast current oscillations are rectified by the pn-junction possessing diode
characteristic of the voltage-current relation. Physically, this rectifying property is due to the build-in
potential which acts similarly to a non-perfect one-way valve in a piston water pump.
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For a bimetallic thermoelectric generator, the band A corresponds to the metal with a higher
density of electrons in the conduction band while the band B to a lower density. Again, the energy
barrier Eg appears at the metal–metal junction, which is also a source of its non-ohmic characteristic
expected, at least, for high enough frequencies, leading to rectification of current oscillations. The origin
of slow (THz) plasma oscillations at the metal–metal contact has been discussed in [2]. However, for
metals, the neglected irreversible transport processes reduce the relative Seebeck coefficient by two
or three orders of magnitude. As a consequence, the discussed model can give only a very rough
qualitative picture in this case.

3.2. Photovoltaic Cells

The typical semiconductor solar cell consists of a moderately doped p-type absorber, on both
sides of which a highly doped layer is formed, n-type on the top side and p-type on the back side,
respectively (see Figure 2). The electronic bands A and B correspond to the absorber valence and
conduction bands, respectively. The bands are separated by the semiconductor energy gap Eg.

Figure 2. Processes of work generation in the photovoltaic cell (x-axis represents position, y-axis
represents electronic energy): (i) a photon is absorbed in the p-type phase of the semiconductor,
generating a conducting pair (electron and hole); (ii) the pair thermalizes with the phonons in the
lattice, dissipating the energy excess above the band gap; (iii) the photo-generated electrons and
holes interact with the electrons in n-phase supporting self-oscillations of the interface; (iv) periodic
oscillations of the charge density are rectified by the pn-diode, the averaged DC flows in the outer
circuit from the right contact to the left one.
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The incoming photon flux can be treated as a hot bath which is stationary but not equilibrium
one. The hot bath is fully characterized by the frequency-dependent photon population number n(ω),
which determines the local temperature T(ω) by the following relation [19]:

e−ω/T[ω] =
n(ω)

1 + n(ω)
. (47)

For sunlight on Earth (neglecting the effect of the atmosphere), one can use the rough approximation

nsun(ω) =
λ

eω/Ts − 1
, (48)

where Ts ' 6000 K is the temperature of the Sun surface and λ = [Rsun/Rse]2 ' 2 × 10−5 is
the geometrical factor (Rsun—Sun radius, Rse—Sun-Earth distance), which takes into account the
photon density reduction at a large distance from the source. For a typical semiconductor energy gap
Eg ≡ ω0 ' 1 eV, the effective temperature of sunlight T[ω0] ' 1000 K. The cold bath is essentially a
phonon bath at the ambient temperature T ' 300 K.

The THz plasma oscillation at the pn-junction between the top n-type layer and the p-type absorber
provides the self-oscillating piston interacting with the electron gas in the absorber. The junction acts
also as a rectifier yielding, finally, a direct current.

One can apply the universal model of PTF, in particular Equation (45), which gives the formula
for the open-circuit voltage:

Voc =
Eg

e

(
1− T

T1

)
, (49)

where T1 can be identified with T[ω0] averaged over the absorber. The Carnot factor in Equation (49)
provides an upper bound on the thermodynamic efficiency of the solar cell and under standard
illumination conditions agrees with the Shockley–Queisser (detailed balance) limit [1,20].

3.3. Fuel Cells

Fuel cell is an example of a PTF where the hot bath is a chemical reservoir at the ambient
temperature. The basic chemical reaction for the hydrogen cell is

2H2 + O2 ↔ 2H2O, (50)

which takes several steps and is associated with the release of four electrons at the anode and absorption
of four electrons at the cathode. The fundamental mechanism of work generation in a fuel cell does
not change if we replace the actual reaction Equation (50) by the simpler fictitious one (see Figure 3)

X → X+ + e−, Y + e− → Y−, X+ + Y− → XY, (51)

which involves the chemical reservoir consisting of separated substances X, Y, and XY with the
chemical potentials µX , µY and µXY, respectively.

In the reduced description, the final effect of Equation (51) is a transfer of a single electron
from the electronic state in the cathode (band B) to the electronic state in the anode (band A).
Therefore, this process can be described by the generator Equation (34). For T1 = T, one obtains
from Equation (45) the formula for the open-circuit voltage

Voc = −
∆g
e

, ∆g = µXY − µX − µY, (52)

which agrees with the standard one for the ideal “reversible” voltage [21]. Obviously, a number of
various types of losses reduces substantially the open-circuit voltage.
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The question of the physical nature of a fuel cell piston is less clear than for the other instances of
PTFs. However, the existence of plasma oscillations in electrolytes is discussed in a number of papers,
and the frequencies of such oscillations are again placed in the far infrared region [22,23]. The role
of interfaces between electrodes and electrolyte in the onset of plasma oscillations also needs further
theoretical and experimental studies.

The electrolyte conducts only ions (protons in real devices) but not electrons and hence acts as a
membrane that rectifies the self-oscillations of charge carriers.

Figure 3. Operation principles of a fuel cell illustrated by the model based on the simplified reaction
X + Y → XY: (i) the final effect of the reaction is the transport of a single electron from the cathode
(band B) to the anode (band A); (ii) the excess heat is dissipated to the cold bath; (iii) the transferred
electric charges modify the shape of the build-in potential supporting self-oscillations of the interface;
(iv) periodic oscillations of the charge density are rectified by the semi-penetrable membranes yielding
an output DC.

4. Conclusions

The aim of this paper is to show that there is a common mechanism of “hidden” plasma
self-oscillations behind the operation principle of photoelectric cells, thermoelectric generators and
fuell cells. This is illustrated by the idealized model in which thermal and chemical baths are treated
on the same footing. The experimental tests of this theory could involve the detection of weak THz
radiation emitted by the devices and proportional to the output power. Another possibility could
be the observation of the resonant phenomena like the increased output power stimulated by the
appropriate external and coherent THz radiation. It is also plausible that the similar models can
explain work generation in biological systems fueled by radiation (photosynthesis) and chemical
energy (proton pumps). The self-oscillation mechanism can be provided either by a sort of plasma
oscillation or coherent molecular oscillation. The important role of the latter, played in the energy and
charge transfer in biological systems, has been already noticed (see, e.g., [24,25]).
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Appendix. Derivation of the Formula for Power Output

For the reader’s convenience, the derivation of the basic formula Equation (27) for the model
described in the Section 2.4 is outlined.

The lowest order expansion with respect to ξ of the total generator Ltot[ξ] = −i[H[ξ], ·] + L[ξ]

Ltot[ξ] = Ltot[0] + ξL′tot[0] +O(ξ2) (A1)

can be inserted into the MME Equation (21) yielding

d
dt

ρ(t) = Ltot[0]ρ(t) + ξ(t)L′tot[0]ρ(t). (A2)

The lowest order solution with respect to a small modulation amplitude reads

ρ(t) = etLtot [0]ρ(0) +
∫ t

0
ξ(s)e(t−s)Ltot [0]L′tot[0]e

sLtot [0]ρ(0) ds. (A3)

Each generator Ltot[ξ] possesses a unique stationary state ρ̄[ξ] hence

lim
t→∞

etLtot [0]ρ(0) = ρ̄[0]. (A4)

In the formula for the stationary average power output (compare Equation (26))

P̄ = −gΩ lim
t0→∞

1
t0

∫ t0

0
Tr
(

ρas(t)M
)

cos Ωt dt, (A5)

one can insert the asymptotic form of ρ(t) denoted by ρas(t) which is valid for t longer than any
relevant relaxation time and for small g

ρas(t) = ρ̄[0] + g
(∫ t

0
e(t−s)Ltot [0] sin(Ωs) ds

)
L′tot[0]ρ̄[0]. (A6)

The generator L[ξ] is derived using a weak coupling limit approach and hence automatically
commutes with the Hamiltonian part −i[H[ξ], ·]. As a consequence, etLtot [0] = e−it[H[0],·]etL[0] and,
when inserted into Equation (A5), can be replaced by etL[0] because [H[0], M] = 0. For the same reason,
in Equation (A5), L′tot[0]ρ̄[0] can be replaced by L′[0]ρ̄[0] .

The integral in Equation (A6) (with Ltot[0] replaced by L[0]) can be computed as follows:

∫ t

0
e(t−s)L[0] sin(Ωs) ds = −

[
L[0]2 + Ω2]−1( sin(Ωt)L[0] + Ω cos(Ωt)−ΩetL[0]). (A7)

The only term which survives the time-averaging procedure in Equation (A5) is that proportional
to cos(Ωt) in Equation (A7) yielding

P̄ =
1
2

g2Ω2Tr
(

M[L[0]2 + Ω2]−1L′[0]ρ̄[0]
)

. (A8)

Using the identity L′[0]ρ̄[0] = −L[0]ρ̄′[0] (compare Equation (24)) and introducing the Heisenberg
version of the generator, one obtains the final expression

P̄ = −1
2

g2Tr
(

ρ̄′[0]
Ω2

Ω2 + L∗2[0]
L∗[0]M

)
. (A9)
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