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Abstract: Based on the fast kernel entropy optimization independent component analysis and the
minimum conditional entropy, this paper proposes a harmonic source localization method which aims
at accurately estimating harmonic currents and identifying harmonic sources. The injected harmonic
currents are estimated by the fast kernel entropy optimization independent component analysis
(FKEO-ICA) in the absence of prior knowledge of harmonic impedances. Then, the minimum
conditional entropy is applied to locate the harmonic sources based on the estimated harmonic
currents. The proposed harmonic source localization method is validated on the IEEE 34-bus system.
By applying the correlation coefficient and three error evaluation indicators, comparison has been
made among the performances of the FKEO-ICA and three other ICA algorithms. The results show
that the FKEO-ICA algorithm could achieve a significantly better accuracy of harmonic current
estimation, while the minimum conditional entropy could determine the locations of harmonic
sources precisely.

Keywords: harmonic current estimation; harmonic source localization; fast kernel entropy
optimization; independent component analysis; minimum conditional entropy

1. Introduction

The growing applications of power electronic apparatus and non-linear loads can result in serious
harmonic pollution in electrical power systems. As a consequence, the harmonic estimation and
localization of harmonic sources have drawn wide concern globally.

Harmonic State Estimation (HSE) [1,2] involves harmonic distribution and harmonic source
identification [3–10]. With regard to the HSE problems, a multitude of methods have been employed,
including least squares (LS) [1,2], singular value decomposition (SVD) [4], Kalman filter [5], neural
networks (NN) [6], sparsity maximization [7], and particle swarm optimization (PSO) [8]. Additionally,
it has been proved that the complete harmonic distribution can be derived based on selected
measurement data [5]. However, in terms of the HSE methods, precise information on network
parameters are required, which are rarely known in practice. Furthermore, sufficient measurements
are also required to guarantee full observability, while considerable computational resources are
demanded to ensure a relatively satisfactory processing speed, especially for a large distribution
system. Consequently, the applications of HSE in the power system are restricted.

To estimate harmonic sources in the absence of prior information relating to the harmonic
impedances, independent component analysis (ICA) [11,12] was conducted [13–16], using one of
the blind source separation (BSS) approaches [17,18], which use measured bus voltages to estimate
the magnitude of harmonic currents. In this process, it is assumed that the harmonic sources are
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statistically independent, non-Gaussian distributed, and linearly mixed [11]. The ICA algorithms
applied include fast independent component analysis (Fast-ICA) [13], efficient variant Fast-ICA
(EFICA) [14], supervised independent component analysis (SICA) [15], and single-channel independent
component analysis (SCICA) [16]. For harmonic current estimation, different ICA algorithms display
different levels of accuracy for different harmonic frequencies. Meanwhile, the estimation error at
lower load levels is, accordingly, increased with the measurement noise [19]. However, the existing
ICA-based harmonic current estimation methods often ignore measurement errors. Additionally,
the orders of the components estimated by ICA algorithms are usually random, in which case it is
difficult to determine the exact locations of harmonic sources. Thus, it appears necessary to propose
a method which can precisely estimate harmonic currents and locate harmonic sources at the most
concerned frequencies with the presence of measurement noises.

This paper proposes a method based on the fast kernel entropy optimization ICA (FKEO-ICA)
aiming at estimating harmonic currents, and based on the minimum conditional entropy, which aims
to identify the exact locations of harmonic sources. The main advantage of this method is that it only
needs to measure the bus harmonic voltage, which is more accessible and more reliable compared with
other harmonic measurements. There is no requirement for the data of system harmonic impedances.
Section 2 discusses the relationship between the harmonic state estimation model and the ICA model.
Additionally, the basic principle of the FKEO-ICA algorithm is elaborated in Section 3. Section 4
and Section 5 present the specific process of harmonic source localization with the employment of
FKEO-ICA and minimum conditional entropy. Furthermore, the estimation and localization results for
the IEEE 34-bus system are shown in Section 6. Lastly, Section 7 concludes the findings.

2. The Relationship between HSE Model and ICA Model

The model of HSE at the harmonic order h without noise is as follows:

Uhptiq “ ZhIhptiq, i “ 1, 2, ¨ ¨ ¨ , T (1)

where ti is the sampling time; T is the number of samples; Uhptiq are the measured harmonic voltage
vectors which have been known previously; Ihptiq are the unknown harmonic current vectors; and
Zh is the harmonic impedance matrix, which can be obtained by Zh “ Y´1

h , where Yh is the nodal
harmonic admittance matrix, as defined in [3].

BSS is to estimate P statistically-independent zero-mean signals, SpNq “ rS1pNq, S2pNq, ¨ ¨ ¨ , SPpNqs
T,

from K measured signals, XpNq “ rX1pNq, X2pNq, ¨ ¨ ¨ , XKpNqs
T, where K ě P; N represents the number

of signal samples. Generally, the model of ICA without noise [14] can be described as:

X “ MS (2)

where M is a Kˆ P mixture matrix.
The ICA algorithm aims to obtain the separation matrix W so as to eliminate the mixing. That is,

the estimation of the sources can be given as:

Y “ WX (3)

where Y is the estimation value of S.
In accordance with Equations (1) and (2), Uhptiq, Zh, and Ihptiq in the HSE model are associated

with X, M, and S in the ICA model, respectively. Therefore, the harmonic state estimation problem can
be formulated as an ICA problem.

3. The Principle of the FKEO-ICA Algorithm

In view of the high dimension and large sample size of harmonic data involved in the electric
power systems, the fast kernel optimization ICA method based on the FFT-based fast convolution,
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as presented in [20], is applied to estimate harmonic currents in this paper. The basic principle of the
FKEO-ICA algorithm is described as follows.

The set of independent signal sources is denoted as ts1, s2, ¨ ¨ ¨ , sPu, where sp “ rspp1q, spp2q, ¨ ¨ ¨ , sppNqsT

represents each individual source, p “ 1, 2, ¨ ¨ ¨ , P. With regard to the linear mixture of x1, x2, ¨ ¨ ¨ , xP,
the set of measured signals is denoted as tx1, x2, ¨ ¨ ¨ , xPu. Additionally, tŝ1, ŝ2, ¨ ¨ ¨ , ŝPu is assumed to
be the set of estimated sources.

According to Equation (3), rŝ1, ŝ2, ¨ ¨ ¨ , ŝPs
T
“ Wrx1, x2, ¨ ¨ ¨ , xPs

T can be obtained. The aim of ICA
is to calculate separation matrix W which can make the estimated sources independent. The common
criterion is the mutual information of the estimated signal sources [14]. Furthermore, the mutual
information of ŝ1, ŝ2, ¨ ¨ ¨ , ŝP is expressed as follows:

MIpŝ1, ŝ2, ¨ ¨ ¨ , ŝPq “

P
ÿ

p“1

Hŝp ´ log |detpWq| ´ HC (4)

where Hŝp is the entropy of estimated signal ŝp, and HC is a constant, generally, which can be ignored
in the optimization process. Accordingly, the minimization problem to be solved becomes:

min
W

$

&

%

P
ÿ

p“1

Hŝp ´ log |detpWq| `β
P
ÿ

p“1

p||ŝp ´ 1||q2

,

.

-

(5)

where β is a constant weight, β
P
ř

p“1
p||ŝp ´ 1||q2 is a weighted sum which is applied to solve the

ambiguities issue from the scale invariance of mutual information, and its impact for the calculation
accuracy is negligible [20].

Based on Parzen-windows (PW), the estimation of Hŝp is capable of differentiating estimated
entropies, while an approximate expression is required for the differential entropy gradients [20]. For a
given r, the PW estimator for the probability density function is:

p̂pr
ˇ

ˇŝp q ” p1{Nq
N
ÿ

n“1

ζrr´ ŝppnqs (6)

where ŝppnq is sampled from estimated signal ŝp and ζr¨s represents the smoothing kernel function.
The PW estimator for Hŝp is:

Ĥŝp “ ´
1
N

N
ÿ

t“1

logp̂rŝpptq
ˇ

ˇŝp s “ ´
1
N

N
ÿ

t“1

log

#

1
N

N
ÿ

n“1

ζrŝpptq
ˇ

ˇŝppnq s

+

(7)

The gradient of log |detpWq| is pW´1q
T

[16]. Thus, the gradient of MIpŝ1, ŝ2, ¨ ¨ ¨ , ŝPq can be
expressed as:

∇WMIpŝ1, ŝ2, ¨ ¨ ¨ , ŝPq “ ∇W

P
ÿ

p“1

Hŝp ´ pW
´1q

T
(8)

where ∇W
P
ř

p“1
Hŝp can be calculated from:

∇W
P
ř

p“1
Hŝp “

“

∇ŝ1 Hŝ1 ,∇ŝ2 Hŝ2 , ¨ ¨ ¨ ,∇ŝP HŝP

‰T
rx1, x2, ¨ ¨ ¨ , xPs

∇ŝp “

„

BHŝp
Bŝpp1q

,
BHŝp
Bŝpp2q

, ¨ ¨ ¨ ,
BHŝp
BŝppNq

T (9)
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The derivatives of Equation (7) are:

BHŝp
Bŝpplq

“ ´ 1
N

N
ř

t“1

p1{Nq
N
ř

n“1
ζ1rŝpptq´ŝppnqsrδtl´δnls

p1{Nq
N
ř

n“1
ζrŝpptq´ŝppnqs

“ ´ 1
N

p1{Nq
N
ř

n“1
ζ1rŝpplq´ŝppnqs

p̂rŝpplq|ŝp s
` 1

N

N
ř

t“1

p1{Nqζ1rŝpptq´ŝpplqs
p̂rŝpptq|ŝp s

(10)

where ζ1r¨s represents the derivatives of ζr¨s, and δtl represents the kroneker delta,

δtl “

#

0 i f t ‰ l
1 i f t “ l

.

Based on the above-mentioned derivation process, the gradient equations have been converted
into accurate analytical formulae, and the separation matrix W can, thus, be obtained. Further
acceleration based on the FFT-based fast convolution is described in [20], which has proved that
the estimation error is reasonably small. Moreover, through the FKEO-ICA algorithm, both high
computational accuracy and low computational complexity can be achieved.

The harmonic current estimation model using FKEO-ICA is illustrated in Figure 1.
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Figure 1. The harmonic current estimation model using FKEO-ICA. 
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Figure 1. The harmonic current estimation model using FKEO-ICA.

4. Identification of Harmonic Source Localization Using Minimum Conditional Entropy

Similar to other ICA methods, FKEO-ICA is not capable of determining the exact bus of
harmonic sources. The relationship between the harmonic currents and the bus voltages is

Uhptiq “ ZhIhptiq, i “ 1, 2, ¨ ¨ ¨ , T , which indicates that the injected harmonic current Ih produced
by the harmonic source at the injected bus has a certain correlation with the bus harmonic voltage Uh.
As a consequence, the bus harmonic voltage Uh and the injected harmonic current Ih can be
considered as two random variables with associated distributions. In accordance with the information
theory [21–23], the conditional entropy has been employed to measure the correlation between
two random variables in case one of them is known. The pair-wise conditional entropy between
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the estimated harmonic current rIh_est and the measured bus voltage Uh at each frequency can be
expressed as follows:

HprIh_est |Uh q “

T
ÿ

ti“1

ppUhptiq, rIh_estptiqqlogrprpUhptiqq{ppUhptiq, rIh_estptiqqs (11)

where ppUhptiq, rIh_estptiqq is the joint probability distribution of the measured bus voltage

and the estimated harmonic current; ppUhptiq, rIh_estptiqq “ pprIh_estptiq
ˇ

ˇ

ˇ
UhptiqqppUhptiqq, where

pprIh_estptiq
ˇ

ˇ

ˇ
Uhptiqq is the probability of the estimated harmonic current under the given measured bus

voltage; prpUhptiqq is the marginal probability distribution of the measured bus voltage averaging over
information about the estimated harmonic current, and it can be calculated by summing the joint
probability distribution over the estimated harmonic current.

The stronger the correlation between the two random variables, the smaller their conditional
entropy is. Owing to the current division effect between branches, the injected harmonic current has
minimum conditional entropy with the voltage of its injected bus, compared with the conditional
entropies with other bus voltages. Thus, The minimum pair-wise conditional entropy HprIh_est |Uh q can
be used to determine the harmonic source location, whererIh_est is the normalized estimated harmonic
current, and Uh is the normalized measured bus voltage. The principle of harmonic source localization
based on the minimum pair-wise conditional entropy is shown in Figure 2.
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Figure 2. The principle of harmonic source localization based on the minimum pair-wise conditional entropy. 

5. Harmonic Source Localization Using FKEO-ICA and Minimum Conditional Entropy 
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(1) Measurement of bus harmonic voltages 

Figure 2. The principle of harmonic source localization based on the minimum pair-wise
conditional entropy.

5. Harmonic Source Localization Using FKEO-ICA and Minimum Conditional Entropy

The process of the harmonic source localization based on FKEO-ICA and minimum conditional
entropy is as follows:

(1) Measurement of bus harmonic voltages

The harmonic voltages at all buses are measured and represented as vector Uh.
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(2) Centralization of the harmonic voltage data

The first pre-processing procedure is centralization, which aims to transform vector Uh into the
zero-mean vector UhC by subtracting the mean of Uh.

(3) Whitening of the centralized data

The second pre-processing procedure is to whiten the centralized data. This means that the
centralized vector UhC can be linearly transformed into rUhC. In the process, the components of
rUhC are independent, while the variances of rUhC are normalized into a unity. The linear whitening
transformation can be defined as:

rUhC “ pOΛ´1{2OTqUhC (12)

where O “ po1, o2, ¨ ¨ ¨ , onq indicates the orthogonal matrix with vectors po1, o2, ¨ ¨ ¨ , onq
T as the unit

norm eigenvectors of the covariance matrix relating to UhC, and Λ “ diagpΛ1, Λ2, ¨ ¨ ¨ , Λnq is the
diagonal matrix of the eigenvalues concerned with the covariance matrix of UhC.

(4) Determination of the number of independent components

Prior to the estimation of harmonic currents, the number of independent components needs to be
identified through the principal component analysis [24].

(5) Estimation of harmonic currents

The FKEO-ICA algorithm elaborated in Section 3 can be used to obtain the separation matrix W.
Then the harmonic currents Ih_est can be estimated based on Equation (3).

(6) Localization of the harmonic sources

The last procedure is to calculate the conditional entropies HprIh_est |Uh q between the normalized
estimated currents and the normalized voltages based on Equation (11), and find the precise location
of harmonic sources based on the minimum conditional entropy.

In summary, the process of the proposed algorithm for harmonic source localization can be
illustrated in Figure 3.Entropy 2016, 18, 214 7 of 15 
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6. Example Test

The IEEE 34-bus power system [25] as shown in Figure 4 is selected as the test system, with the
system parameters listed in the Appendix.

Entropy 2016, 18, 214 7 of 15 

 

 
Figure 3. Process of the harmonic source localization algorithm. 

6. Example Test 

The IEEE 34-bus power system [25] as shown in Figure 4 is selected as the test system, with the 
system parameters listed in the Appendix. 

 
Figure 4. The IEEE 34-bus system. 

In the simulation, the fundamental frequency of the system is 50 Hz. The harmonic loads are 
modeled as constant power loads in the fundamental frequency power flow calculations. Then the 
power flow solution, together with the spectrum of the six-pulse HVDC as shown in Table 1, are used 
to obtain the harmonic current source models. In our work, the 5th, 7th, and 11th harmonics are 
selected for the test, as the amplitude of them is larger than that of the higher order harmonics. Then, 
the three harmonic sources containing the 5th, 7th, and 11th harmonic orders are located at bus 12, 
30, and 34, respectively. To simulate altered operating situations, all loads are multiplied with the 
random variables, which are statistically independent and obey a Laplace distribution with the 
variance of 0.002. Furthermore, the Backward/Forward Sweep-based algorithm [26] has been applied 
to calculate harmonic power flow and generate harmonic voltages. To take measurement noises into 

Figure 4. The IEEE 34-bus system.

In the simulation, the fundamental frequency of the system is 50 Hz. The harmonic loads are
modeled as constant power loads in the fundamental frequency power flow calculations. Then the
power flow solution, together with the spectrum of the six-pulse HVDC as shown in Table 1, are used
to obtain the harmonic current source models. In our work, the 5th, 7th, and 11th harmonics are
selected for the test, as the amplitude of them is larger than that of the higher order harmonics. Then,
the three harmonic sources containing the 5th, 7th, and 11th harmonic orders are located at bus 12, 30,
and 34, respectively. To simulate altered operating situations, all loads are multiplied with the random
variables, which are statistically independent and obey a Laplace distribution with the variance of
0.002. Furthermore, the Backward/Forward Sweep-based algorithm [26] has been applied to calculate
harmonic power flow and generate harmonic voltages. To take measurement noises into account,
the white Gaussian noise with SNR = 60 dB is added to the harmonic power flow data using the
“AWGN” function in the Communications System Toolbox of MATLAB. In this study, 600 samples of
RMS harmonic bus voltages and injected harmonic currents for the 34 buses were created.

Table 1. The harmonic spectrum of the six-pulse HVDC.

Harmonic Order Magnitude (p.u.) Angle (deg.)

1 1.0000 ´49.56
5 0.1941 ´67.77
7 0.1309 11.90

11 0.0758 ´7.13
13 0.0586 68.57
17 0.0379 46.53

Comparison has been made among the estimation performances of FKEO-ICA, Fast-ICA [17],
equivalent robust ICA (ERICA) [27], and unbiased qNewton ICA (UNICA) [27]. All algorithms are
implemented on MATLAB R2014a in an Intel Pentium Dual Core, 2.0 GHz, 1 GB RAM computer.
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The correlation coefficients (CC) between the actual and estimated currents are calculated as shown in
Table 2. Meanwhile, the errors are measured by:

MAE “
1
n

T
ÿ

t“1

|Ih_estptq ´ Ih_actptq| (13)

MSE “
1

n´ 1

T
ÿ

t“1

pIh_estptq ´ Ih_actptqq
2 (14)

MAPE “
1
n

T
ÿ

t“1

p|Ih_estptq ´ Ih_actptq| {Ih_actptqq (15)

where Ih_estptq and Ih_actptq represent the estimated and actual current values under the same conditions
of time and frequency, respectively; MAE indicates the mean absolute error; MSE indicates the mean
squared error; and MAPE indicates the mean absolute percentage error. The errors of four ICA
algorithms are shown in Tables 3–5.

The tables above show that, compared with other two ICA algorithms, the FKEO-ICA and
the Fast-ICA algorithm can estimate harmonic currents more accurately. For all of the concerned
frequencies, the correlation coefficients of the FKEO-ICA algorithm are closer to 1 compared with that
of other ICA algorithms. Meanwhile, the error of the FKEO-ICA algorithm is relatively lower at all
concerned frequencies, thus proving better accuracy of the FKEO-ICA algorithm compared with other
ICA algorithms.

Table 2. CC between actual and estimated currents.

Harmonic Order Bus Number FKEO-ICA Fast-ICA ERICA UNICA

5th harmonic
12 0.9983 0.9961 0.9200 0.8690
30 0.9975 0.9929 0.9821 0.9471
34 0.9990 0.9980 0.9665 0.8942

7th harmonic
12 0.9984 0.9962 0.9193 0.8671
30 0.9973 0.9927 0.9809 0.9451
34 0.9991 0.9977 0.9651 0.8943

11th harmonic
12 0.9984 0.9966 0.9186 0.8653
30 0.9976 0.9927 0.9795 0.9431
34 0.9990 0.9978 0.9662 0.8942

Table 3. MAE between actual and estimated currents.

Harmonic Order Bus Number FKEO-ICA Fast-ICA ERICA UNICA

5th harmonic
12 7.5904 ˆ 10´3 1.5510 ˆ 10´2 7.3730 ˆ 10´2 1.0639 ˆ 10´1

30 9.2604 ˆ 10´3 1.5313 ˆ 10´2 3.6112 ˆ 10´2 7.5313 ˆ 10´2

34 5.1122 ˆ 10´3 6.8862 ˆ 10´3 4.4565 ˆ 10´2 8.1041 ˆ 10´2

7th harmonic
12 6.8337 ˆ 10´3 1.6352 ˆ 10´2 7.5081 ˆ 10´2 1.0790 ˆ 10´1

30 9.9669 ˆ 10´3 1.6092 ˆ 10´2 3.5680 ˆ 10´2 7.5697 ˆ 10´2

34 4.7057 ˆ 10´3 7.3396 ˆ 10´3 4.6096 ˆ 10´2 8.1386 ˆ 10´2

11th harmonic
12 7.1430 ˆ 10´3 1.4016 ˆ 10´2 7.5491 ˆ 10´2 1.0900 ˆ 10´1

30 8.7369 ˆ 10´3 1.5055 ˆ 10´2 3.5280 ˆ 10´2 7.5760 ˆ 10´2

34 5.4324 ˆ 10´3 7.3482 ˆ 10´3 4.1690 ˆ 10´2 7.8008 ˆ 10´2
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Table 4. MSE between actual and estimated currents.

Harmonic Order Bus Number FKEO-ICA Fast-ICA ERICA UNICA

5th harmonic
12 9.4362 ˆ 10´5 3.7155 ˆ 10´4 8.1654 ˆ 10´3 1.653 ˆ 10´2

30 1.4417 ˆ 10´4 3.9838 ˆ 10´4 1.7862 ˆ 10´3 7.4094 ˆ 10´3

34 5.0132 ˆ 10´5 8.4152 ˆ 10´5 2.7657 ˆ 10´3 9.0424 ˆ 10´3

7th harmonic
12 9.3467 ˆ 10´5 4.0118 ˆ 10´4 8.4285 ˆ 10´3 1.6989 ˆ 10´2

30 1.6414 ˆ 10´4 4.3235 ˆ 10´4 1.7705 ˆ 10´3 7.5194 ˆ 10´3

34 4.4444 ˆ 10´5 9.2396 ˆ 10´5 2.9502 ˆ 10´3 9.1054 ˆ 10´3

11th harmonic
12 1.0107 ˆ 10´4 3.0905 ˆ 10´4 8.5180 ˆ 10´3 1.7331 ˆ 10´2

30 1.5514 ˆ 10´4 3.8765 ˆ 10´4 1.7543 ˆ 10´3 7.5693 ˆ 10´3

34 5.9595 ˆ 10´5 9.0453 ˆ 10´5 2.4558 ˆ 10´3 8.4541 ˆ 10´3

Table 5. MAPE between actual and estimated currents.

Harmonic Order Bus Number FKEO-ICA Fast-ICA ERICA UNICA

5th harmonic
12 3.0513 ˆ 10´5 6.0647 ˆ 10´5 2.8736 ˆ 10´4 4.1395 ˆ 10´4

30 3.6046 ˆ 10´5 5.8307 ˆ 10´5 1.4993 ˆ 10´4 3.0977 ˆ 10´4

34 2.5417 ˆ 10´5 2.8354 ˆ 10´5 1.6142 ˆ 10´4 2.9292 ˆ 10´4

7th harmonic
12 3.2119 ˆ 10´5 6.4991 ˆ 10´5 2.9288 ˆ 10´4 4.1988 ˆ 10´4

30 3.8687 ˆ 10´5 6.1150 ˆ 10´5 1.4829 ˆ 10´4 3.1145 ˆ 10´4

34 2.3089 ˆ 10´5 3.0296 ˆ 10´5 1.6676 ˆ 10´4 2.9412 ˆ 10´4

11th harmonic
12 3.4319 ˆ 10´5 5.4946 ˆ 10´5 2.9424 ˆ 10´4 4.2399 ˆ 10´4

30 4.0944 ˆ 10´5 5.7622 ˆ 10´5 1.4622 ˆ 10´4 3.1124 ˆ 10´4

34 2.6597 ˆ 10´5 3.0091 ˆ 10´5 1.5252 ˆ 10´4 2.8334 ˆ 10´4

In order to test the running time of different ICA algorithms concerned with harmonic current
estimation, simulations are conducted repeatedly 100 times. It can be shown in Table 6 that the
running time of all algorithms is around three seconds, while the proposed method can reach a higher
estimation precision with a slightly longer time in comparison with other methods.

Table 6. The running time statistics of different methods in 100 simulation tests.

Running Times FKEO-ICA Fast-ICA ERICA UNICA

Maximum value (s) 3.2792 3.0620 3.5602 2.6382
Minimum value (s) 3.0463 2.3236 2.4081 2.4381

Mean value (s) 3.1246 2.3714 2.5059 2.4913
Standard deviation 0.0474 0.0726 0.1141 0.0392

Based on the FKEO-ICA algorithm, the comparisons of normalized actual and estimated harmonic
currents of bus 12, 20, and 34 at h = 5 are shown in Figures 5–7, which indicate that the estimated
harmonic currents are highly consistent with the actual harmonic currents.



Entropy 2016, 18, 214 10 of 15
Entropy 2016, 18, 214 10 of 15 

 

 
Figure 5. The normalized actual and estimated harmonic currents of bus 12 at h = 5. 

 
Figure 6. The normalized actual and estimated harmonic currents of bus 30 at h = 5. 

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples of bus 12 

5t
h 

no
rm

al
iz

ed
 h

ar
m

on
ic

 c
ur

re
nt

s

 

 
Estimated currents

Actual currents

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples of bus 30

5t
h 

no
rm

al
iz

ed
 h

ar
m

on
ic

 c
ur

re
nt

s

 

 
Estimated currents

Actual currents

Figure 5. The normalized actual and estimated harmonic currents of bus 12 at h = 5.
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Figure 6. The normalized actual and estimated harmonic currents of bus 30 at h = 5.
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To find the exact bus position of harmonic sources, the pair-wise conditional entropy HprIh_est |Vh q

is calculated for each concerned frequency. The results are shown in Figures 8–10, where the base of
the algorithm in Equation (11) is assumed as 2.
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Figure 9. The conditional entropy between estimated harmonic currents and measured harmonic
voltages at h = 7.
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Figure 10. The conditional entropy between estimated harmonic currents and measured harmonic
voltages at h = 11.

As indicated in Figures 8–10, although the orders of the estimated independent components
(i.e., estimated harmonic currents) are random, the harmonic injection bus can be accurately identified
when its voltage exhibits the minimum conditional entropy with the estimated harmonic currents.

7. Conclusions

This paper presents a method to identify harmonic sources based on FKEO-ICA and the minimum
conditional entropy. In this study, the injected harmonic currents are estimated through the FKEO-ICA
algorithm, in which the processed harmonic bus voltages are used as inputs. The advantage of the
FKEO-ICA algorithm lies in that it does not require the prior information about system parameters.
Additionally, the minimum conditional entropy is applied to locate the bus position of harmonic
sources. The results indicate that the FKEO-ICA could achieve a better accuracy of harmonic current
estimation, while the minimum conditional entropy can precisely locate the harmonic sources. In the
simulations, only weak measurement noises are taken into consideration. In practice, the harmonic
measurement quality and the detection technology can be further improved so as to avoid the increase
of estimation errors caused by strong measurement noises.
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Appendix: The Parameters of the IEEE 34 Bus System

Bus No.
Load Bus No. Line Impedance

P (kW) Q (kvar) From To R (Ω/km) X (Ω/km) Length (km)

1 Infinite Bus

2 230 142.5 1 2
0.195 0.080

0.60

3 0 0 2 3
0.55

4
230 142.5

3 4
0.299 0.0835 4 5

0.50
6

0 0
5 6

7 6 7

0.524 0.090

0.60

8
230 142.5

7 8 0.40

9 8 9 0.60

10 0 0 9 10 0.40

11 230 142.5 10 11 0.25

12 137 84 11 12 0.20

13
72 45

3 13 0.30

14 13 14 0.40

15 14 15 0.20

16 13.5 7.5 15 16 0.10

17

230 142.5

6 20
0.299 0.083

0.60

18 20 21
0.55

19 21 22
0.378 0.08620 22 23

0.5021 23 24

22 24 25

0.524 0.090

23 25 26

24 26 27 0.60

25 27 28 0.40

26 28 29 0.25

27 137 85 29 30
0.2028

75 48
7 17

29 17 18

30 18 19
0.30

31

57 34.5

10 31

32 31 32 0.40

33 32 33 0.30

34 33 34 0.20
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