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Abstract: This paper presents a novel stochastic predictive tracking control strategy for nonlinear and
non-Gaussian stochastic systems based on the single neuron controller structure in the framework of
information theory. Firstly, in order to characterize the randomness of the control system, survival
information potential (SIP), instead of entropy, is adopted to formulate the performance index, which
is not shift-invariant, i.e., its value varies with the change of the distribution location. Then, the
optimal weights of the single neuron controller can be obtained by minimizing the presented SIP
based predictive control criterion. Furthermore, mean-square convergence of the proposed control
algorithm is also analyzed from the energy conservation perspective. Finally, a numerical example is
given to show the effectiveness of the proposed method.

Keywords: nonlinear and non-Gaussian systems; single neuron controller; stochastic predictive
control; survival information potential criterion; mean square convergence

1. Introduction

Since almost all the control systems are subject to random signals (such as those originating
from system parameter variations and sensor noise, etc.), stochastic systems are widely encountered
in control engineering design. Minimizing the randomness in the closed-loop system is one of the
important practical issues in controller design. Therefore, minimum variance control [1] has been
obtained significant attentions. Its purpose is to minimize variations in the controlled system outputs
or the tracking errors. Indeed, even today, most stochastic control design methods have only focused
on control of the output mean and the variance of stochastic systems. In general, these developments
are done mostly based on the assumptions that the system variables are of Gaussian types. Such
assumptions, although strict, allow control engineers to make use of the well-established stochastic
theory to perform controller design and closed-loop system analysis.

In industrial processes, product quality data can be approximated by the Gaussian probability
density function (PDF) when the system operates normally. However, when abnormality occurs along
the production line, the variabilities of these quality variables would not follow Gaussian distributions.
In this regard, actions need to be taken so that the manipulated variables can be tuned to bring these
quality variables back to certain desired ones. In fact, most industrial processes have difficulty meeting
the Gaussian assumption because of the mixture of different courses with Gaussian disturbances or
other factors. Moreover, the nonlinearity in stochastic systems could lead to non-Gaussian randomness
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even if the disturbances follow a Gaussian distribution. Thus, controlling the mean and variance of
system variables may be far from sufficiently characterizing the statistical property of the stochastic
processes. It is known that, in many cases, the behavior of a stochastic process can be completely
characterized by the shape of its statistical distribution represented by PDF. Therefore, for analysis and
design purposes, it is important to consider the entire PDF. PDF-shaping control design accounts for
the issues mentioned above by selecting a certain shape for the process PDF as the goal of the control
design procedure would provide an accurate and flexible control strategy that can accommodate a
wide class of objectives.

In order to solve the problems existing in paper-making processes, the stochastic distribution
control (SDC) theory was proposed by Wang (1996) [2]. This theory aims at controlling the shape of
the output PDF instead of the mean and variance for stochastic systems [3–5]. After that, SDC has been
used to handle the stochastic systems with non-Gaussian disturbances. Then, a linear-matrix-inequality-
based convex optimization algorithm was developed for control, filter design and fault detection in
non-Gaussian systems [6–8]. Nevertheless, the PDFs of the output are not necessarily measurable;
instead, a more general measure of uncertainty, namely the entropy, has been used to characterize the
uncertainty of the output tracking error. Compared with SDC (PDF shaping strategy) proposed earlier,
it is more straightforward to us a minimum error entropy (MEE) based stochastic control algorithm to
design a controller for tracking errors. It is more appropriate than the traditional minimum mean square
error (MSE) criterion when dealing with nonlinearities and non-Gaussian disturbances. Shannon
entropy is the most important and commonly used method in MEE based stochastic control [9–11].
A well-known generalization of Shannon entropy is Renyi entropy. When the order of Renyi entropy
approaches 1, Renyi entropy will reduce and become Shannon entropy. The argument of the log in
Renyi entropy is named the information potential (IP) and used as an alternative entropy criterion
because of its monotonic property. Puya et al. [12] applied the minimum Renyi entropy control scheme
to decrease the closed-loop randomness of the output under an iterative learning control (ILC) basis for
general nonlinear and unknown non-Gaussian stochastic systems. Besides, information potential (IP)
based dynamic neural networks were used to perform the modeling and control of the plant. In [13],
the quadratic IP of tracking errors was employed to design controllers for nonlinear multivariate and
non-Gaussian systems. ph, φq-entropy is the most generalized definition of entropy [14]. ph, φq-entropy
has been employed in stochastic control systems [15,16]. Ren et al. [15] proposed a new tracking control
algorithm for a class of networked control systems (NCSs) with non-Gaussian random disturbances
and delays. Zhang et al. [16] presented an improved single neuron controller for multivariable
stochastic systems with non-Gaussianities and unmodeled dynamics by minimizing ph, φq-entropy of
tracking errors.

The Shannon and order-α Renyi entropies of a continuous random variable are both defined
based on the probability density function. This kind of entropy has several drawbacks. (1) The
definition will be ill-suited for the case in which PDF does not exist; (2) the value can be negative;
(3) the approximation using empirical distribution is impossible in general. And the IP criterion is
conservative. It should be maximized to achieve smaller errors only when α ą 1. Some new definitions
of entropy have been made to solve these problems. Rao et al. [17] proposed the cumulative residual
entropy (CRE), which is defined based on the cumulative distribution function. In [18], Zografos
and Nadarajah proposed the survival exponential and the generalized survival exponential entropies,
both of which are broad entropy definitions based on the survival function and include CRE as a
special case.

In this paper, survival information potential (SIP), proposed by Chen et al. [19], will be utilized
to construct the performance index of stochastic control systems. Compared with the MEE criterion,
adding a bias term to the tracking error [6,9,10,13] would not be necessary because of the shift-variance
property of the SIP. In the previous work of MEE control [9–16], although the randomness of control
input exists in practical conditions, the control input was considered as a deterministic variable for
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simplicity, which is unsuitable and conservative. Therefore, in this paper, the performance index with
the integration of SIPs of the control input and the tracking error is proposed.

The predictive control idea was brought up as an industrial approach to process control in the
1970s. Today this technique is the most frequently applied advanced process control method in
the industry. The stochastic distribution control algorithms have been extended by the advanced
control algorithm to increase the control performance. So far mainly two classes of algorithms have
been developed for systems affected by stochastic noise and subject to probabilistic state and/or
input constraints. (1) The randomized, or scenario-based approach [20–22]: It is a very general
methodology that can consider linear or nonlinear systems affected by noise with general distributions
characterized by possibly unbounded and nonconvex support. (2) The probabilistic approximation
approach [23–28]: It is based on the point-wise reformulation of probabilistic or expectation constraints
in deterministic terms to be included in the MPC formulation. Reference [29] gave an overview of
the main developments in the area of stochastic model predictive control (SMPC) in the past decade.
It described different SMPC algorithms and the key theoretical challenges in stochastic predictive
control without undue mathematical complexity. However, the above results were obtained under the
assumption that the system variables obey Gaussian distribution, and only mean value and variance
were considered. As presented above, PDF contains the whole characteristics of random variables.
From this perspective, SMPC approaches to a class of nonlinear systems with unbounded stochastic
uncertainties were proposed in [30,31]. In [30], the Fokker–Planck equation was used for describing
the dynamic evolution of the states’ PDFs and the closed-loop stability was ensured by designing a
stability constraint in terms of a stochastic control Lyapunov function. Polynomial chaos expansions
were utilized to propagate the probabilistic parametric uncertainties through the system model in [31].
In the framework of SDC, SMPC was used to control the molecular weight distribution (MWD) [32,33]
with the existence of non-Gaussian noises. As mentioned previously, considering the non-Gaussian
SMPC in the statistical information framework may be an alternative and effective method.

Based on the preliminary work [19,34–37], in this paper, a single neuron stochastic predictive
control method for nonlinear stochastic discrete systems affected by non-Gaussian noise is proposed.
The proposed algorithm will be detailed in the rest of the sections. In Section 2, the models of
the nonlinear stochastic system and single neuron controller are firstly presented. Then a new
SIP-based predictive criterion, which contains both the randomness of tracking errors and the control
input, is formulated. Based on the established models and the new criterion, the single neuron
stochastic predictive control (SNSPC) algorithm is derived and the online computation procedure is
also summarized. To analyze the convergence of the proposed control algorithm, the energy conversion
principle is used in Section 3. A numerical simulation example is introduced to illustrate the efficiency
of the proposed control strategy in Section 4. The last section concludes this paper.

2. Single Neuron Stochastic Predictive Control (SNSPC)

2.1. System Model and Single Neuron Controller

A general discrete, nonlinear dynamic system with process disturbances and measurement noises
is considered here. It is described in the state-space form as:

#

xk`1 “ f pxk, uk, ζkq

yk “ g pxk, uk, νkq
(1)

where xk P Rn is the state, yk P R is the measured output, and uk P R is the control input. ζk and
νk are external disturbances in the input and the measurement channels, respectively and they may
not follow Gaussian distributions. f p¨q and gp¨q are known nonlinear functions that represent the
system dynamics.

The goal of the control design is to find the optimal control input to make the output track the
desired set-point rk as soon as possible. Due to the nonlinearity and disturbances involved in the
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system (1), the traditional PID control algorithm cannot have excellent performance here. In the past
work, a single neuron adaptive PID controller has the advantages of neural network intelligent control
and PID control. Single neuron adaptive PID controller achieves control system’s self-organization,
adaptive function by adjusting weighting coefficients with the changes of the control parameters [35].
The controller is a multiple input and single output nonlinear processing unit with self-learning ability.
The output of the single neuron adaptive PID controller is shown as Equation (2):

uk “ uk´1 ` K
3
ÿ

l“1

wlkxlk{‖ Σk ‖ (2)

where Σk “
3
ř

l“1
wlk, K ą 0 is the proportional coefficient of the neuron. wlk pl “ 1, 2, 3q stands for the

weight corresponding to each input. xlk pl “ 1, 2, 3q is the input of the neuron from the tracking error
ek and it can be defined as:

$

’

&

’

%

x1k “ ek
x2k “ ek ´ ek´1
x3k “ ek ´ 2ek´1 ` ek´2

(3)

Remark 1. xlk pl “ 1, 2, 3q is the input of the neuron from the tracking error ek. The weights
xlk pl “ 1, 2, 3q reflect the dynamic characteristics of the controlled object and the process response.
The neuron weights can be updated through self-learning strategy, and the tracking error can be
correspondingly eliminated and approach to the steady state effected by three kinds of control
parts together.

2.2. SIP-Based Predictive Criterion

If noises ζk and νk are not Gaussian, the variance of the output tracking error ek “ rk ´ yk would
not be sufficient to characterize the randomness of the tracking error dynamic systems. Therefore,
an alternative measure of uncertainty, survival information potential (SIP), is given to construct the
performance index for measuring the dispersion of the stochastic systems.

Firstly, the definition and properties of SIP are presented as follows.

Definition 1. Definition of SIP [19]: For a random vector X in Rm, SIP of order αpα ą 0q is defined by

Sα pXq “
ż

Rm
`

Fα
|X| pxq dx (4)

where F|X| pxq “ P p|X| ą xq “ E rI p|X| ą xqs is the multivariate survival function (or equivalently, the
distribution function) of the random vector |X|, andRm

` “ tx P Rm : x “ px1, ¨ ¨ ¨ , xmq , xi ě 0, i “ 1, ¨ ¨ ¨ , mu.
Note that |X| ą x means |Xi| ą xi, i “ 1, . . . , m and I p¨q is the indicator function. Similarly, when α “ 2, SIP
is called the quadratic survival information potential (QSIP).

Property 1. Property 1 of SIP [19]: Sα pXq ě 0, with equality if and only if P pX “ 0q “ 1.

Property 2. Property 2 of SIP [19]: Let X be an m-dimensional random vector, and let another
m-dimensional random vector Y “ pY1, Y2, ¨ ¨ ¨Ymq

T with Yi “ ciXi, ci P R, i “ 1, 2, ¨ ¨ ¨m, then
Sα pYq “

`
śm

i“1 |ci|
˘

Sα pXq.

Remark 2. SIP has some advantages over the IP: (1) It has consistent definition in the continuous and
discrete domains; (2) it is not shift-invariant (i.e., its value would vary with the location of distribution);
(3) it can be computed more easily from the sample data (without kernel computation and the choice
of the kernel width), and the estimation asymptotically converges to the true value; (4) it is a more
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robust measure since the distribution function is more regular than the density function. (Note that
the density is computed as the derivative of the distribution.)

Because of the nonlinearity and noises involved in the system, the tracking error is a non-Gaussian
stochastic variable at a typical instant. Therefore, the control input is also non-Gaussian according
to the single neuron controller Equations (2) and (3). However, in the previous work on stochastic
distribution control [9–13,15,16], the control input is considered as a deterministic variable, which
is conservative. And moreover, the multi-step predictive control strategy which can achieve better
performance in industrial processes is adopted to design the optimal control input here.

The cost function of a SIP-based predictive controller for set point control is similar to that of a
conventional predictive control with a continuous actor, but the SIP criterion is used in the control
design instead of the MSE criterion

J “
P
ÿ

i“1

Sα pek`i´1q ` λ
M
ÿ

j“1

Sα

´

uk`j´1

¯

(5)

where ek`i is the i-step ahead prediction of the system tracking error. P and M are the prediction
horizon and the control horizon, respectively, and M ď P. It is assumed that the control variable
would not change after M steps, i.e., uk`j´1 “ uk`M´1 pj ą Mq.

2.3. SNSPC Algorithm

Based on the structure of the single neuron adaptive controller Equations (2) and (3) and the
performance index Equation (5), the optimal weights of the single neuron can be solved by the
stochastic gradient method

w˚k “ argmin
WkPR3M

J “ argmin
wkPR3M

$

&

%

P
ÿ

i“1

Sα pek`i´1q ` λ
M
ÿ

j“1

Sα

´

uk`j´1

¯

,

.

-

(6)

where wk “
“

w1k w2k w3k w1,k`1 w2,k`1 w3,k`1 ¨ ¨ ¨ w1,k`M´1 w2,k`M´1 w3,k`M´1
‰T
P R3M.

According to the definition of SIP, the optimal weights w˚k can be calculated from

B J
Bwk

“
B

Bwk

$

&

%

P
ÿ

i“1

ż `8

´8

F|ek`i´1|
pxq dx` λ

M
ÿ

j“1

ż `8

´8

F|uk`j´1|
pzq dz

,

.

-

“ 0 (7)

where F|ek`i´1|
and F|uk`j´1|

are the survival functions of the tracking error ek`i´1 and the control input
uk`j´1, respectively.

In the practical application, it is generally difficult to develop a comprehensive first-principle
model to describe the distribution of the error ek. Instead of the theoretical SIP, the data-driven
empirical SIP used as the cost function would be useful alternative to timely online prediction of the
errors. Given a sequence of error samples

`

e1k, e2k, ¨ ¨ ¨ , eNk
˘

, assuming, without the loss of generality,
that |e1k| ď |e2k| ď

ˇ

ˇeNk
ˇ

ˇ, the empirical SIP would be [20]

pSα pekq “

N
ÿ

j“1

µj

ˇ

ˇ

ˇ
ejk

ˇ

ˇ

ˇ
(8)

where µj “
´

N´j`1
N

¯α
´

´

N´j
N

¯α
.

Similarly, the empirical SIP of uk`j´1, pSα

´

uk`j´1

¯

, can also be formulated. The empirical cost
Equation (8) is the weighted sum of the ordered absolute errors. One drawback of this empirical SIP
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criterion is that it is not smooth at ejk “ 0 and ujk “ 0. To address this problem, a more general cost
can be defined using the empirical SIP of any mapped errors and inputs; that is,

J pek:k`P´1q “
P
ř

i“1

pSα

´

φ
´

ek`i´1

¯¯

` λ
M
ř

j“1

pSα

´

φ
´

uk`j´1

¯¯

“
P
ř

i“1

N
ř

l“1
µlφ

`

el,k`i´1
˘

` λ
M
ř

j“1

N
ř

l“1
σlφ

`

ul,k`j´1
˘

(9)

where ek:k`P´1 “
”

ek ek`1 ¨ ¨ ¨ ek`P´1

ıT
, µl “

´

N´l`1
N

¯α
´

´

N´l
N

¯α
. The mapping function φ p¨q

usually satisfies
$

’

&

’

%

piqpositivity : φ p¨q ě 0
piiq symmetry : φ pxq “ φ p´xq
piiiqmonotonicity : |x1| ă |x2| ñ φ px1q ď φ px2q

(10)

Remark 3. As the data-driven empirical SIP-based performance index is not smooth at ejk “ 0 and
ujk “ 0, a proper function transformation method can be used to establish an equivalent SIP-based
criterion, which can be formulated as Equation (9) and (10). In the simulation, the empirical SIP of
the square errors

´

e2
1k, e2

2k, ¨ ¨ ¨ , e2
Nk

¯

and the square control inputs
´

u2
1k, u2

2k, ¨ ¨ ¨ , u2
Nk

¯

as an alternative
adaptation cost is used here, given by

J “
P
ÿ

i“1

pSα

´

e2
k`i´1

¯

` λ
M
ÿ

j“1

pSα

´

u2
k`j´1

¯

“

P
ÿ

i“1

N
ÿ

l“1

µle2
l`i´1 ` λ

M
ÿ

j“1

N
ÿ

l“1

σlu2
l`j´1

The above cost is the weighted sum of the ordered square errors with the popular minimum mean
square error (MSE) criterion as a special case (when α = 1).

Based on the general cost Equation (9), the weight update equation for adaptive system training is

wk`1 “ wk ´ η
B J
Bwk

“ wk ´ η
BeT

k:k`P´1
Bwk

B J
Bek:k`P´1

(11)

where η ą 0 denotes the step-size (or adaptation gain).
According to the above presentation, the optimal input can be computed. The procedure below

describes the steps of implementing SNSPC specifically.
Step 1: Initialize the weight vector of the single neuron w0. Choose the α value, step-size η, and

the sliding window length N.
Step 2: Estimate the performance index using empirical SIPs of the output tracking error and the

control input in (9).
Step 3: Solve the optimal weight vector w˚k by (11).
Step 4: Compute the next control input

uk “ uk´1 `
K

‖ Σk ‖

”

x1k x2k x3k

ı ”

I3ˆ3 03ˆp3P´3q

ı

w˚k (12)

and implement the input on the process.
Step 5: Collect the process outputs to update the SIPs of the output tracking error and the control

input. Then repeat the procedure from Step 2 to Step 5 for the next time step, k “ k` 1.

Remark 4. The computations of the SIP-based performance index in Equation (9) are easier than the
minimum error entropy (MEE) criterion, because the index is directly computed from the sample data
without kernel computation and the choice of the kernel width, but the major computations of the

partial derivative,
BeT

k:k`P´1
Bwk

, in the control algorithm Equation (12) would be done.
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3. Mean-Square Stability

In order to analyze the convergence of the proposed control algorithm, the nonlinear stochastic
system Equation (1) is firstly linearized as

$

’

&

’

%

∆xk`1 “
B f
Bx

ˇ

ˇ

ˇ

xk´1
∆xk `

B f
Bu

ˇ

ˇ

ˇ

uk´1
∆uk `

B f
Bζ

ˇ

ˇ

ˇ

ζk´1
∆ζk

∆yk “
Bg
Bx

ˇ

ˇ

ˇ

xk´1
∆xk `

Bg
Bu

ˇ

ˇ

ˇ

uk´1
∆uk `

Bg
Bν

ˇ

ˇ

ˇ

νk´1
∆νk

(13)

where ∆uk “ uk ´ uk´1, ∆xk “ xk ´ xk´1 “ rxk, ∆ζk “ ζk ´ ζk´1 “
rζk, ∆yk “ yk ´ yk´1 “ ryk, and

∆νk “ νk ´ νk´1 “ rνk. It can be simply denoted as

#

rxk`1 “ Akrxk `Bk∆uk `N1k
rζk

ryk “ Ckrxk `Dk∆uk `N2krνk
(14)

where Ak “
B f
Bx

ˇ

ˇ

ˇ

xk´1
, Bk “

B f
Bu

ˇ

ˇ

ˇ

uk´1
, Ck “

Bg
Bx

ˇ

ˇ

ˇ

xk´1
, Dk “

Bg
Bu

ˇ

ˇ

ˇ

uk´1
, N1k “

B f
Bζ

ˇ

ˇ

ˇ

ζk´1
, N2k “

Bg
Bν

ˇ

ˇ

ˇ

νk´1
.

Based on the state space representation, an extended state space model can be formulated as [36]

y f
k “ Lv

kmp
k ` Lu

k u f
k ` Lς

kς
f
k (15)

where y f
k “

”

ryk ¨ ¨ ¨ ryk`M´1

ıT
, u f

k “
”

∆uk ¨ ¨ ¨ ∆uk`M´1

ıT
, mp

k “

„

´

vp
1k

¯T ´

vp
2k

¯T
T

,

vp
1k “

”

ryk´M ¨ ¨ ¨ ryk´1

ıT
, vp

2k “
”

∆uk´M ¨ ¨ ¨ ∆uk´1

ıT
. Lv

k , Lu
k and Lς

k can be obtained from

Equation (14); ς
f
k is the composite noise, including external noises (ζk and νk) and the model mismatch

randomness, and it may be non-Gaussian noises.
From Equation (2), Equation (15) can be reformulated as

y f
k “ Lv

kmp
k ` Lu

k χkwk ` Lς
kς

f
k (16)

where χk is the input matrices of the single neural network, which consists of tracking errors:

χk “

»

—

—

—

—

–

zk 0 0 0
zk zk`1 0 0
...

...
. . .

...
zk zk`1 ¨ ¨ ¨ zk`M

fi

ffi

ffi

ffi

ffi

fl

where zk “
”

K
‖Σk‖

x1k
K

‖Σk‖
x2k

K
‖Σk‖

x3k

ı

and 0 “
”

0 0 0
ı

.
Thus, the difference between the future predictions and the set-point trajectory is

e f
k “ Lv

kmp
k ` Lu

k χkwk ` Lς
kς

f
k ´ ∆r f

k (17)

where ∆r f
k “ r f

k ´ r f
k´1 is the change of the set-point at time point k and θk “ Lv

kmp
k `Lς

kς
f
k ´∆r f

k , which
is a new random vector; then Equation (17) can be rewritten as

e f
k “ Lu

k χkwk ` θk (18)

Now a priori error vector and a posteriori error vector, ea f
k and ep f

k , are defined as:

#

ea f
k “ Lu

k χkwk

ep f
k “ Lu

k χkwk`1
(19)
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Obviously, ea f
k and ep f

k have the following relationship

ep f
k “ ea f

k ` Lu
k χk pwk`1 ´wkq (20)

By incorporating Equation (11), the following equation is gotten,

ep f
k “ ea f

k ´ Lu
k χkη

B

´

e f
k

¯T

Bwk

B J

Be f
k

“ ea f
k ` ηLu

k χkχT
k LT

uh
´

e f
k

¯

(21)

where h
´

e f
k

¯

“
B J
Be f

k

“

”

B J
Bek

B J
Bek`1

¨ ¨ ¨
B J

Bek`M´1

ıT
. Rk “ Lu

k χk
`

Lu
k χk

˘T is an MˆM -dimensional

symmetric matrix. Assume Rk is invertible (i.e., detRk ‰ 0),

ep f
k “ ea f

k ` ηRkh
´

e f
k

¯

R´1
k

´

ep f
k ´ ea f

k

¯

“ ηh
´

e f
k

¯

χT
k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯

“ ηχT
k
`

Lu
k
˘T h

´

e f
k

¯

χT
k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯

“ pwk`1 ´wkq

(22)

And hence
wk`1 “ wk ` χT

k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯

(23)

Both sides of Equation (23) should have the same energy; that is

wT
k`1wk`1 “

”

wk ` χT
k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯ıT
ˆ

”

wk ` χT
k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯ı

“ wT
k wk ` 2wT

k χT
k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯

`

´

ep f
k ´ ea f

k

¯T
R´T

k

`

Lu
k
˘

χkχT
k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯

(24)

From Rk “ Lu
k χk

`

Lu
k χk

˘T, we have

wT
k`1wk`1 “ wT

k wk ` 2wT
k χT

k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯

`

´

ep f
k ´ ea f

k

¯T
R´1

k

´

ep f
k ´ ea f

k

¯

“ wT
k wk ` 2wT

k χT
k
`

Lu
k
˘T R´1

k

´

ep f
k ´ ea f

k

¯

`

´

ep f
k

¯T
R´1

k ep f
k

´ 2
´

ea f
k

¯T
R´1

k ep f
k `

´

ea f
k

¯T
R´1

k ea f
k

(25)

Since R´1
k “

`

Lu
k
˘´T

χ´T
k χ´1

k

`

Lu
k
˘´1, ea f

k “ Lu
k χkwk, then

wT
k`1wk`1 “ wT

k wk ` 2wT
k χT

k
`

Lu
k
˘T `Lu

k
˘´T

χ´T
k χ´1

k

`

Lu
k
˘´1

´

ep f
k ´ Lu

k χkwk

¯

`

´

ep f
k

¯T
R´1

k ep f
k ´ 2

`

Lu
k χkwk

˘T `Lu
k
˘´T

χ´T
k χ´1

k

`

Lu
k
˘´1 ep f

k `

´

ea f
k

¯T
R´1

k ea f
k

“ wT
k wk ` 2wT

k χ´1
k

`

Lu
k
˘´1 ep f

k ´ 2wT
k χ´1

k

`

Lu
k
˘´1 Lu

k χkwk

`

´

ep f
k

¯T
R´1

k ep f
k ´ 2wT

k χ´1
k

`

Lu
k
˘´1 ep f

k `

´

ea f
k

¯T
R´1

k ea f
k

“ ´wT
k wk `

´

ep f
k

¯T
R´1

k ep f
k `

´

ea f
k

¯T
R´1

k ea f
k

(26)

Adding
´

ea f
k

¯T
R´1

k ea f
k to both sides of the above equation and substituting ea f

k “ Lu
k χkwk and

R´1
k “

`

Lu
k
˘´T

χ´T
k χ´1

k

`

Lu
k
˘´1 into it, one can calculate the energy conservation relation of wT

k`1wk`1
and wT

k wk:



Entropy 2016, 18, 218 9 of 16

wT
k`1wk`1 `

´

ea f
k

¯T
R´1

k ea f
k

“ ´wT
k wk `

´

ep f
k

¯T
R´1

k ep f
k ` 2

`

Lu
k χkwk

˘T
”

`

Lu
k
˘´T

χ´T
k χ´1

k

`

Lu
k
˘´1

ı

`

Lu
k χkwk

˘

wT
k`1wk`1 `

´

ea f
k

¯T
R´1

k ea f
k “ wT

k wk `
´

ep f
k

¯T
R´1

k ep f
k

‖ wk`1 ‖2
`
ˇ

ˇ

ˇ

ˇea f
k

ˇ

ˇ

ˇ

ˇ

2

R´1
k
“ ‖ wk ‖2

`
ˇ

ˇ

ˇ

ˇep f
k

ˇ

ˇ

ˇ

ˇ

2

R´1
k

(27)

where ‖ wk ‖2
“ wT

k wk,
ˇ

ˇ

ˇ

ˇea f
k

ˇ

ˇ

ˇ

ˇ

2

R´1
k

fi

”

ea f
k

ıT
R´1

k ea f
k , and

ˇ

ˇ

ˇ

ˇep f
k

ˇ

ˇ

ˇ

ˇ

2

R´1
k

fi

”

ep f
k

ıT
R´1

k ep f
k . To study the

mean-square behavior of the algorithm, one takes expectations of both sides of (27) and write

E
”

‖ wk`1 ‖2
ı

` E
„

ˇ

ˇ

ˇ

ˇea f
k

ˇ

ˇ

ˇ

ˇ

2

R´1
k



“ E
”

‖ wk ‖2
ı

` E
„

ˇ

ˇ

ˇ

ˇep f
k

ˇ

ˇ

ˇ

ˇ

2

R´1
k



(28)

By substituting ep f
k “ ea f

k ` ηRkh
´

e f
k

¯

into Equation (28), the following equation can be obtained.

E
”

‖ wk`1 ‖2
ı

“ E
”

‖ wk ‖2
ı

` 2ηE
„

´

ea f
k

¯T
h
´

e f
k

¯



` η2E
”

h
T
´

e f
k

¯

Rkh
´

e f
k

¯ı

(29)

In order to evaluate the expectations E
„

´

ea f
k

¯T
h
´

e f
k

¯



and E
”

h
T
´

e f
k

¯

Rkh
´

e f
k

¯ı

, the following

assumptions [37] are used in this paper:

Assumption 1. The noise θk is independent, identically distributed (i.i.d.), and independent of the
input Lu

k χk.

Assumption 2. The a priori error vector ea f
k is jointly Gaussian distributed.

Assumption 3. The input vectors Lu
k χk are zero-mean independent, identically distributed (i.i.d.).

Assumption 4. @ij P t1, ¨ ¨ ¨ , Mu, Rk pijq is independent of
 

ei, ej
(

.
Based on the above assumptions, we have

E
„

´

ea f
k

¯T
h
´

e f
k

¯



“ E
„

´

ea f
k

¯T
h
´

ea f
k ` θk

¯



“

¨

˝

1
b

2πσ2
k

˛

‚

N
ż

γθk pθkq dθkˆ

ż

´

ea f
k

¯T
h
´

ea f
k ´ Lς

kς
f
k

¯

N
ź

i“1

exp

¨

˚

˝

´

´

ea
k`i´1

¯2

2σ2
k

˛

‹

‚

dea f
k

(30)

where γθk pθkq is the density distribution of θk and σk “

d

E
„

´

ea
k`i´1

¯2


.

Therefore, the expectation E
„

´

ea f
k

¯T
h
´

e f
k

¯



can be expressed as a function of σ2
k . Define the

following function

hG

´

σ2
k

¯

fi

E
„

´

ea f
k

¯T
h
´

e f
k

¯



σ2
k

(31)

and then yields
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E
„

´

ea f
k

¯T
h
´

e f
k

¯



“ hG

´

σ2
k

¯

σ2
k (32)

We now evaluate the expectation E
”

h
T
´

e f
k

¯

Rkh
´

e f
k

¯ı

.

E
”

h
T
´

e f
k

¯

Rkh
´

e f
k

¯ı

“
N
ř

i“1

N
ř

j“1
E
”

hi

´

e f
k

¯

hj

´

e f
k

¯

Rk pijq
ı

“
N
ř

i“1
E
”

h
2
i

´

e f
k

¯ı

E rRk piiqs
(33)

where:

hI

´

σ2
k

¯

fi

N
ÿ

i“1

E
”

h
2
i

´

e f
k

¯ı

(34)

Then it is gotten:

E
”

h
T
´

e f
k

¯

Rkh
´

e f
k

¯ı

“ hI

´

σ2
k

¯

E rRk piiqs (35)

By substituting Equations (32) and (35) into Equation (29), the following equation is gotten.

E
”

‖ wk`1 ‖2
ı

“ E
”

‖ wk ‖2
ı

` 2ηhG

´

σ2
k

¯

σ2
k ` η2hI

´

σ2
k

¯

E rRk piiqs (36)

Then the convergent condition for the sequence E
”

‖ wk ‖2
ı

(i.e., E
”

‖ wk`1 ‖2
ı

ď E
”

‖ wk ‖2
ı

)
would be:

η ď
´2

E rRk piiqs
sup
kě0

#

σ2
k hG

`

σ2
k
˘

hI
`

σ2
k

˘

+

(37)

Remark 5. Since the nonlinear system can be approximated by a linear system at the equilibrium, the
convergence of the nonlinear system Equation (1) using the linearizing method is studied here.

4. Simulation Results

In order to illustrate the efficiency of the presented SNSPC algorithm, consider a nonlinear
stochastic system described by

#

xk`1 “
1

p1`xkq
2 ` 1.2uk `

a

ζk

yk “ xk ` 0.1sinxk ` vk
(38)

At each time point k, PDFs of ζk and vk are given by

γζ pxq “

#

β´1 pα1 ` 1, λ1 ` 1q xα1 p1´ xqλ1 , x P p0, 1q
0, otherwise

γv pxq “

#

“

2α2`λ2`1β pα1 ` 1, λ1 ` 1q
‰´1 xα2 p2´ xqλ2 , x P p0, 2q

0, otherwise

(39)

where β pα` 1, λ` 1q “
r 1

0 xα p1´ xqλ dx, α1 “ 1, λ1 “ 2, α2 “ 2, λ2 “ 1.

In this example, the set point of the system Equation (38) is set to be rk “

$

’

&

’

%

1, 0s ď k ă 50s
2, 50s ď k ă 100s
3, k ě 100s

.

The prediction horizon and control horizon, P “ M “ 5, are chosen. The sampling period is T “ 1. The
initial control input (u0 “ 0) and the state variable (x0 “ 0) are selected. The step size in Equation (12)
is η “ 0.0001. In the performance function Equation (9), we choose φ pxq “ x2, α “ 2 and λ “ 0.5.
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In this simulation, the corresponding control inputs based on SIP and entropy criteria respectively
are implemented on the system Equation (38) at each time point. Some comparative results are
given to illustrate the superiority of the proposed SIP based stochastic predictive tracking control
algorithm. In Figure 1, it is clear that the proposed control algorithm based on the SIP criterion has
better performance, the fluctuation of the output response is smaller, and the response is quicker using
the SIP method. In Figure 2, the trend of the performance index Equation (9) is presented. It is found
that the performance index is overall decreasing with the progress of the time although some small
variations can be recorded. The variances of the single neuron weights are presented in Figure 3.
Figures 4 and 5 demonstrate the PDFs of the output tracking errors using the entropy-based controller,
while Figures 6 and 7 illustrate the PDFs of the tracking errors using the proposed SNSPC method.
Compared with Figure 4, the shape of the PDF of the tracking error in Figure 6 turns to be narrower
and sharper over the control process, which indicates that the proposed SNSPC control system has
achieved a smaller uncertainty in the tracking error distribution. In addition, it can also be seen that the
peak of the tracking error PDF locates in the vicinity of zero using the proposed method. In Figure 8,
the final PDF of the tracking error under the proposed control law is sharper and narrower than that
under the entropy-based control law.Entropy 2016, 18, 218 12 of 16 
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Figure 2. The performance index.
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5. Conclusions

In the past, several different approaches, such as PDF shaping control, minimum entropy control,
generalized minimum entropy control, etc. have been proposed to solve the control problem for
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non-Gaussian stochastic systems. These control strategies can achieve good performance, but there
are still two main issues to be further improved: (1) The entropy value can be negative and it is
shift-invariant. More suitable statistical information that describes objective functions is necessary;
(2) Control input in a stochastic system is also a random variable. The randomness of control input
should be considered.

In this work, a convergent SNSPC algorithm is presented for the controlled system with
non-Gaussian disturbance. The proposed SNSPC is obtained by minimizing a SIP-based predictive
criterion, in which the randomness of the control input is also considered besides randomness of the
tracking error. Compared with the entropy or IP, the randomness measure SIP has some advantages,
such as validity in a wide range of distributions, robustness, and the simplicity in computation.
Moreover, the multistep predictive control strategy, rather than single step control is developed in
this paper as it is more robust to disturbances and nonlinearities involved in the systems. Also, the
convergent condition of the proposed SNSPC based on the energy conservation principle is proposed.
The proposed control strategy is applied in a nonlinear and non-Gaussian stochastic numerical example.
The simulation results confirm that this new SIP based predictive control method can achieve a good
tracking performance.

Compared with the previous work in the field of stochastic distribution control, the contributions
of this paper are three folds: (1) the randomness of control inputs is considered for the first
time; (2) instead of the instantaneous performance index, a novel SIP-based cumulative criterion
is formulated; (3) a single neuron multi-step predictive control algorithm is obtained, and it is much
better than the single-step control method. However, most of the practical industrial processes have
multi-inputs and multi-outputs, and there are also many constraints when the controller is designed.
Future research should be focused on such problems.
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