
entropy

Article

Multiatom Quantum Coherences in Micromasers as
Fuel for Thermal and Nonthermal Machines
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Abstract: In this paper, we address the question: To what extent is the quantum state preparation of
multiatom clusters (before they are injected into the microwave cavity) instrumental for determining
not only the kind of machine we may operate, but also the quantitative bounds of its performance?
Figuratively speaking, if the multiatom cluster is the “crude oil”, the question is: Which preparation
of the cluster is the refining process that can deliver a “gasoline” with a “specific octane”? We classify
coherences or quantum correlations among the atoms according to their ability to serve as: (i) fuel
for nonthermal machines corresponding to atomic states whose coherences displace or squeeze the
cavity field, as well as cause its heating; and (ii) fuel that is purely “combustible”, i.e., corresponds to
atomic states that only allow for heat and entropy exchange with the field and can energize a proper
heat engine. We identify highly promising multiatom states for each kind of fuel and propose viable
experimental schemes for their implementation.
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1. Introduction

The maser (microwave amplification by stimulated emission of radiation) was conceived of based
on thermodynamic considerations [1,2]. In its micromaser implementation, coherent radiation is
generated by inverted two-level (Rydberg) atoms that are randomly injected into a microwave cavity
one by one [3–5]. For years, the focus of micromaser studies had been on its quantum-electrodynamics
features [4–16], including its extensions to the cooperative regime of multiatom clusters that are
simultaneously present in the cavity [11,12], until Scully et al. [17,18] revived the interest in the
thermodynamics of such devices. They treated the atomic beam as a thermodynamic resource, since
randomly-injected atoms, which are discarded (traced out) after they exit the cavity, constitute an
effective reservoir (bath) for the cavity field mode (in the Markovian approximation).

The surprising finding of Scully et al. [17,18] was that a beam of three-level atoms with coherence
between two of its levels may be viewed as a nonthermal, quantum-coherent (“phaseonium”) bath
that, given an appropriate phase ϕ of the inter-level coherence, can thermalize the cavity field to a
temperature Tϕ > T, where T is the atoms’ temperature without coherence. The dramatic consequence
of the higher temperature attainable by the cavity field owing to the phaseonium coherence is a
transgression of the nominal Carnot efficiency bound in a heat engine, with the cavity field in the role
of a working fluid (WF): if the WF undergoes a cycle where it is coupled to the phaseonium bath in one
stroke and to a cold bath at temperature Tc in another, then the efficiency bound of the engine satisfies
η ≤ 1− Tc/Tϕ, instead of η ≤ 1− Tc/T. This landmark proposal has triggered a variety of proposals
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for engine schemes based on nonthermal baths that are capable of “super-Carnot” operation [19–28],
among them engines fueled by a squeezed nonthermal bath [26].

Some of us have recently asserted [29] that machines fueled by nonthermal baths may be divided
into two categories according to their operation paradigm:

• Machines of the first kind are those fueled by a nonthermal bath, such as a squeezed-thermal or
coherently-displaced thermal bath, that render the WF steady-state non-passive [30–36]. Such baths
change the machine into a thermo-mechanical engine that, unlike a heat engine, is fueled by both
mechanical work and heat imparted by the bath to the WF. The Carnot bound may be transgressed
in such machines at the expense of work supplied by the bath. However, their efficiency bound
cannot be properly compared to the Carnot bound, since the latter is a restriction imposed by the
second law on heat [37], but not on work imparted by the bath.

• Machines of the second kind are those where the WF is thermalized by the nonthermal bath, as is the
case of an engine fueled by a phaseonium bath. Such a machine is a proper heat engine, but the
ability of the phaseonium bath to thermalize the WF to a temperature Tϕ > T elevates its Carnot
bound above that associated with an incoherent bath at temperature T.

Intriguingly, in micromaser setups, a beam of multiatom clusters has been shown to thermalize
the cavity-field WF in some cases [19,20], but also coherently displaces [21,27] or squeezes it [38].
This implies that the WF may receive both work (and thus, become non-passive) and heat from the
bath. The cavity field may thus be the key ingredient in machines of the two kinds surveyed above.
However, the criteria whereby atoms in a micromaser can fuel machines of either the first or the second
kind are generally unknown, notwithstanding several recent results obtained along this line [19,20].

Here, we pose the question: To what extent is the quantum state preparation of multiatom clusters
(before they are injected into the cavity) instrumental for determining not only the kind of machine
we may operate, but also the quantitative bounds of its performance? Figuratively speaking, if the
multiatom cluster is the “crude oil”, the question is: Which preparation of the cluster is the refining
process that can deliver a “gasoline” with a “specific octane”?

To answer this question, we first derive (in Section 2) a master equation that governs the cavity
field under the standard assumption of a short interaction of each atom with the cavity field, gτ � 1,
where g is the atom-field coupling strength and τ is the interaction time. In this regime, the steady-state
density matrix of the cavity field may only be a Gaussian state: thermal, coherently-displaced or
squeezed [39,40]. This restriction is shown to imply (Section 3) that two- or three-atom clusters
suffice for the preparation of all Gaussian states of the field, thus making larger clusters qualitatively
redundant. Sections 4.1 and 4.2 are devoted, respectively, to the classification of coherences or quantum
correlations among the atoms that may be associated with: (i) fuel for machines of the first kind
that correspond to states whose coherences displace or squeeze the cavity field, as well as cause its
heating; and (ii) fuel for machines of the second kind that is purely “combustible”, i.e., corresponds to
atomic states that only allow for heat and entropy exchange with the field. In both Sections 4.1 and 4.2,
we identify highly promising multiatom states for each kind of fuel and infer the best parameters
relevant to the machine operation. In Section 5, we discuss the results and propose viable experimental
protocols for their implementation.

2. Model and Effective Master Equation

We consider a micromaser-type setup wherein the cavity-field mode is the working fluid
(WF) that is energized (fueled) by a beam of two-level atoms, which are injected into the cavity
at random, Poisson-distributed, times [4,15]. In contrast to the standard micromaser scenario [5,41],
the atomic beam is here assumed to be composed of N-atom clusters that are prepared in a controlled
quantum-correlated (entangled) state prior to their injection into the cavity, where they interact with
the cavity field simultaneously (see Figure 1). Yet, the replacement of single atoms by N-atom clusters
does not change the basic premise of micromaser theory, whereby their random injections allow one to
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treat the atom clusters as an ergodic “bath” that is continuously coupled to the cavity mode, so that the
latter is governed by a master equation (upon tracing out this “bath”) [5,15,41]. Nevertheless, we will
show that quantum coherence or interatomic quantum correlations (entanglement) in the cluster may
crucially influence the dynamics of the cavity field. Experimentally feasible schemes for the present
scenario will be discussed in Section 5.

Figure 1. A schematic of the two- and three-atom micromaser model, where clusters of two-level atoms
are injected into a single-mode cavity repeatedly in a Poissonian random sequence. The transition
time of the atoms through the cavity is much shorter than the cavity lifetime, atomic relaxation and
dephasing times or the mean free-time between the interactions, so that there can be at most one cluster
present in the cavity at a time. The cavity-mode steady-state crucially depends on the state of the
cluster, as shown here.

In keeping with the standard assumptions of micromaser theory [16,41], we take the transition
time of the atoms through the cavity to be short enough to neglect atomic relaxation and dephasing, as
well as cavity loss, and to assume that there can be at most one cluster present in the cavity at a given
time. Under these standard assumptions, we may derive a master equation for the dynamics of the
cavity field.

The interaction of the atomic cluster with the cavity is described by the Tavis–Cummings
model [42]:

HTC = Ha + Hc + Hint, (1)

where the atom, cavity and interaction Hamiltonians are respectively given by:

Ha =
h̄ωa

2

N

∑
k=1

σz
k ; (2a)

Hc = h̄ωca†a; (2b)

Hint = h̄g
N

∑
k=1

(aσ+
k + a†σ−k ). (2c)

Here, a, a† are the annihilation and creation operators for the cavity field and σz
k , σ+

k , σ−k are the
z, raising and lowering Pauli operators for the k-th atom with k = 1, . . . , N. The atomic transition
frequency ωa is resonant with the cavity frequency ωc. The interaction between the atoms and the
cavity is assumed to be spatially homogeneous with strength g.

Under the foregoing assumptions, the combined system of the atomic cluster and the cavity field
evolves unitarily during the short interaction time τ. The unitary propagator U(τ) = exp(−iHintτ)

in the interaction picture can be analytically computed to second order in gτ (see Appendices A–C).
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Denoting the injection time of the j-th cluster into the cavity by tj, the evolution of the reduced density
operator of the field mode, which is obtained upon tracing out the atoms, reads [43,44]:

ρ(tj + τ) = Tra[U(τ)ρa ⊗ ρ(tj)U†(τ)] ≡ S(τ)ρ(tj). (3)

Here, ρa is the initial density operator of the atomic cluster, and S(τ) is a superoperator that
propagates the cavity state ρ(tj) to ρ(tj + τ). The atomic clusters arrive randomly at a rate p and pass
through the cavity within a time interval of (t, t + δt) with a probability of pδt. The field changes
according to S(τ) when a cluster is present and otherwise does not change at all, so that the overall
change of the field state is:

ρ(t + δt) = pδtS(τ)ρ(t) + (1− pδt)ρ(t). (4)

For δt→ 0, we obtain the master equation:

ρ̇(t) = p [S(τ)− 1] ρ(t), (5)

which describes the Markovian dynamics of the single-mode cavity [5,20–22]. Here, we do not include
the usual cavity decay term, in order to clearly identify the role of coherences for the field evolution,
particularly whether it thermalizes or not, but it is straightforward to do so.

The master Equation (5) can be rewritten as:

ρ̇(t) = p

[
N

∑
i,j=1

bij

N

∑
n=1

Uni(τ)ρ(t)[Unj(τ)]
† − ρ(t)

]
, (6)

where bij denote the matrix elements of ρa. In the standard basis of energy-state products, the diagonal
elements bii are the populations and the off-diagonal elements bij with i 6= j the coherences or quantum
correlations, respectively. This standard basis is {|e〉 , |g〉} for one atom and shown in Figure 2 for two
({|ee〉 , |eg〉 , |ge〉 , |gg〉}) and three atoms, respectively.

1	 eee	

3	
ege	

6	 geg	

8	
ggg	

4	 gee	
2	

eeg	

7	
gge	

5	
egg	

1	 ee	

4	 gg	

3	 ge	
2	

eg	

Figure 2. Energy levels of clusters of two- and three two-level atoms. The numbers next to the levels
correspond to the indices used in the text to denote their corresponding position in the natural basis.

Using the explicit forms of the respective propagators U(τ) for one-, two- and three-atom clusters
(Equations (A2), (B9) and (C6) in the Appendix), the master Equation (6) can be expressed in the
illuminating form:

ρ̇ ≈ −i [Heff, ρ] +Lsρ +Lρ. (7)

Here, the first term corresponds to the effect of a coherent drive applied to the cavity, which is
described by the effective Hamiltonian:

Heff = pgτ
(

λa† + λ∗a
)

. (8)
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The Lindbladian Ls in Equation (7) describes a squeezing process and is given by:

Lsρ = µ
(

ξLe
s + ξ∗Ld

s

)
, (9)

where µ = p(gτ)2 is an effective coupling rate. The squeezing excitation and de-excitation
Lindbladians are:

Le
s = 2a†ρa† − a†a†ρ− ρa†a†, (10a)

Ld
s = 2aρa− aaρ− ρaa, (10b)

respectively [39]. The Lindbladian L is given by:

Lρ = µ
( re

2
Le +

rg

2
Ld

)
, (11)

where:

Ld = 2aρa† − a†aρ− ρa†a, (12a)

Le = 2a†ρa− aa†ρ− ρaa†, (12b)

which are the Lindbladians for incoherent de-excitation and excitation, respectively. The coefficients
for different cluster sizes are shown in Table 1.

Table 1. Coefficients of the master Equation (7) for different cluster sizes. For later convenience, we
have defined for three-atom clusters the abbreviations DE = b22 + b33 + b44, DW = b55 + b66 + b77,
CE = b23 + b24 + b32 + b34 + b42 + b43 and CW = b56 + b65 + b57 + b75 + b67 + b76.

1 Atom 2 Atoms 3 Atoms

re b11 2b11 + b22 + b33 + b23 + b32 3b11 + 2DE + DW + CE + CW
rg b22 2b44 + b22 + b33 + b23 + b32 3b88 + 2DW + DE + CE + CW

λ b12 b12 + b13 + b24 + b34
b25 + b35 + b46 + b47 + b26 + b37
+b12 + b13 + b14 + b58 + b68 + b78

ξ 0 b14 b28 + b38 + b48 + b15 + b16 + b17

The master Equation (7) is a central result of our work. It describes the dynamics of the cavity
field mode that is induced by the passage of the atomic clusters. It allows for the generation of arbitrary
(Gaussian) field states, i.e., thermal, displaced and squeezed states. Higher-order (i.e., non-Gaussian)
processes cannot be induced by a second-order master equation. The case N = 2 is the minimal cluster
generating these processes: adding another particle (N = 3) does not make a qualitative difference
compared to Equation (7).

3. Classification of Coherences as Different Types of Fuel

The key observation we infer from Equation (7) is that coherences or correlations in the multiatom
cluster may be classified according to the disjoint blocks in the density matrix ρa that are associated
with qualitatively different terms in the master equation, each term giving rise to a different kind of
field dynamics. Figuratively, the different coherences are different types of fuel for the cavity-field
WF (Figure 3):

• The blocks adjacent to the main diagonal of the ρa matrix in the standard basis of Figure 2 contain
coherences that can only induce absorption and emission processes in the field (WF), as they are
associated with Lρ in the master Equation (7). We shall refer to these elements as heat-exchange
coherences. They have a caloric (“flammable”) value, i.e., they may contribute to the thermalization



Entropy 2016, 18, 244 6 of 19

of the cavity field. Heat-exchange coherences do not arise in the single-atom case, as they correlate
states of the same energy, e.g., |eg〉〈ge| in two-atom clusters and |eeg〉〈ege| in three-atom clusters.

• Displacement coherences associated with the −i[Heff, ρ] term in the master Equation (7) arise
for all cluster sizes as they correlate states differing by one excitation, i.e., |e〉〈g| and |g〉〈e|
in single atoms, |eg〉〈ge| and its Hermitian conjugate in two-atom clusters and, say, |eeg〉〈geg| in
three-atom clusters.

• Squeezing coherences correspond to an exchange of two excitations and may exist in two-atom
clusters in the form of |ee〉〈gg| and its Hermitian conjugate or in three-atom clusters in, say, the
form |eeg〉〈ggg|.

Ineffec0ve	coherences	

Popula0ons	

Heat-exchange	coherences	

Displacement	coherences	

Squeezing	coherences	

one		atom	 two	atoms	 three	atoms	

Figure 3. Density matrix of the atomic cluster for one (left), two (middle) and three (right) atoms,
respectively, with color- and pattern-filled squares representing the different roles of the coherences
with respect to the cavity-field evolution described by the master Equation (7). Red plain dark squares
are populations, and light blue squares are ineffective coherences. Yellow diagonal striped squares are
zeroth order coherences that can contribute to thermalization. Dark blue vertical striped squares are first
order coherences that can contribute to the coherent displacement of the cavity field. Green horizontal
striped squares are second order coherences contributing to the squeezing of the cavity field.

Those matrix elements of ρa that do not contribute to the field evolution shall be called
ineffective coherences.

Larger cluster sizes will not change the qualitative features of the master Equation (7), which
holds to second order in gτ and, thus, may only induce the same second-order (Gaussian) processes
as listed above. The different types of coherences and their relation to the number of excitations
are illustrated in the tree diagram of Figure 4 (which should not be confused with the same term in
graph theory).
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Displacement	coherences	

Heat-exchange	coherences	

Squeezing	coherences	

|ei

|gi
|ggi

|gei |egi

|eei

|gggi

|ggei

|gegi

|eggi

|eeei

|egei |geei

|eegi

Figure 4. Trees of coherence for one- (left), two- (middle) and three- (right) atom clusters, respectively.
The circles are the basis states, where the same color indicates the same number of excitations. Blue solid
lines indicate heat-exchange coherences that may contribute to thermalization of the cavity field.
These coherences between states with the same number of excitations only appear in the multipartite
case. Displacement coherences (red dotted lines) between states differing by one excitation arise
for all particle numbers. Squeezing coherences (green dashed lines) are between states differing by
two excitations.

4. Correlated Atomic Clusters as Fuel for Machines of the First and Second Kind

The beam of atomic clusters interacting with a cavity mode can realize one of two operation
paradigms [29]:

• If displacing or squeezing coherences are present in the bath, the cavity state becomes non-passive
(displaced or squeezed, respectively), which implies that not only heat, but also work has been
transferred from the bath to the cavity mode. Consequently, a machine fueled by such a bath is a
machine of the first kind that operates thermo-mechanically.

• If the atomic state only contains heat-exchange coherences, the mode is thermalized by the bath,
and only heat is exchanged. Such a setup is thus a viable implementation of a heat engine powered
by a nonthermal bath, which has been dubbed a machine of the second kind.

4.1. Conditions for Fueling Machines of the First Kind

Under what conditions does the master Equation (7) possess a non-passive (nonthermal) steady
state of the cavity mode that is required for a machine of the first kind (a thermo-mechanical machine)?
What is the nature of such a state?

To obtain an insight into these questions, we write the (Ehrenfest) equations of motions of the
field mean value, variance and mean intensity (photon number) in terms of the ρa matrix elements
that are grouped into the coefficients rg, re, λ and ξ as detailed in Table 1,

〈ȧ(t)〉 = −µ

2
(rg − re) 〈a(t)〉 − ipgτλ, (13a)〈

ȧ2(t)
〉
= −µ(rg − re)

〈
a2(t)

〉
− 2ipgτλ 〈a(t)〉 − 2µξ, (13b)

〈ṅ(t)〉 = −µ(rg − re) 〈n(t)〉+ µre − ipgτ(λ
〈

a†(t)
〉
− λ∗ 〈a(t)〉), (13c)
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whose steady-state solutions read:

〈a〉ss =
〈

a†
〉∗

ss
= − 2iλ

gτ(rg − re)
, (14a)

〈
a2
〉

ss
=

〈(
a†
)2
〉∗

ss
= −2

(
ξ

rg − re
+

2λ2

(gτ)2(re − rg)2

)
, (14b)

〈n〉ss =
re

rg − re
+

4|λ|2
(gτ)2(rg − re)2 . (14c)

We see that a nonzero λ increases the thermal mean photon number by coherently displacing the
cavity field to a nonzero expectation value (Equations (14a) and (14c)). Accordingly, the cavity field
attains thermal-coherent character. By contrast, a nonzero ξ introduces quadrature squeezing to the
cavity field, and hence, the cavity field acquires a squeezed-thermal character.

As an example, consider the two-atom state:

|ψ〉 = cos ϑ |gg〉+ sin ϑ |ee〉 . (15)

For sin2 ϑ < 1
2 (for simplicity, we restrict the angle to 0 ≤ ϑ < π/4), this state gives rise, according

to Equation (7), to the master equation (cf. Figure 5):

ρ̇ = µ
1
2

sin(2ϑ)Lsρ + µ
[
cos2 ϑLg + sin2 ϑLe

]
, (16)

which may be cast into the standard form that yields thermal-squeezed solutions [39,45]:

ρ̇ = κMLsρ + κ
[
(N + 1)Lg + NLe

]
, (17)

with the coefficients:

N = n̄(cosh2 r + sinh2 r) + sinh2 r, (18a)

M = cosh r sinh r(2n̄ + 1). (18b)

Here, r denotes the squeezing parameter and n̄ the ambient photon number. Upon comparing
Equations (16)–(18), we find:

κ = µ cos(2ϑ), (19a)

n̄ = 0, (19b)

r = atanh (tan ϑ) . (19c)

Figure 5. A doubly-excited state (top) gives rise to a squeezed state of the cavity field. By contrast, a
triply-excited state (bottom) thermalizes the cavity to an ultrahigh temperature.
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In conventional experimental squeezing schemes, squeezing parameters range from r ∼ 0.4 [46,47]
up to r ≈ 1.46 [48]. Remarkably, the squeezing parameter (19c) may greatly surpass existing values if
we choose ϑ→ π/4 (see Figure 6).

ϑ/π

sq
ue

ez
in

g
pa

ra
m

et
er

r

0.250.20.150.10.050

3.5
3

2.5
2

1.5
1

0.5
0

Figure 6. Squeezing parameter (19c) as a function of the coefficient ϑ < π/4 of the two-atom state (15).

Let us note that the existence of a steady-state solution (whether coherent or not) requires rg > re,
implying sin2 ϑ < 1

2 . We will discuss this point in more detail in what follows.

4.2. Conditions for Fueling Machines of the Second Kind

It is thus clear that thermal equilibrium of the cavity field requires λ = ξ = 0 so that all coherent
processes vanish. This can be achieved by either setting the displacement and squeezing coherences to
zero in Figure 3 or making their respective contributions to the coefficients λ and ξ (see Table 1) cancel
each other. Under these conditions that are required for thermalization of the cavity field, the master
equation reads:

ρ̇ =
µrg

2
Lgρ +

µre

2
Leρ, (20)

where µrg/2 is the rate of emission of quanta into the bath and µre/2 is the absorption rate of quanta
from the bath. By virtue of the Kubo–Martin–Schwinger (KMS) detailed-balance condition [45], it is
then possible to attribute a temperature T to the effective bath through:

re = exp
(
− h̄ωc

kBT

)
rg. (21)

This temperature T is only positive and finite if rg > re.
The master Equation (20) follows from the general master Equation (7) that describes the

interaction of the cavity field mode with a beam of atomic clusters. The atomic beam thus realizes an
effective bath for the cavity. Let us pretend that this effective bath is composed of fictitious oscillators.
Then, Equation (21) yields:

re

rg
=

n̄
n̄ + 1

, (22)

where:
n̄ :=

1

exp
(

h̄ωc
kBT

)
− 1

(23)

is the effective thermal excitation of the bath (mean number of fictitious quanta) at the cavity frequency
ωc. The denominator in Equation (22) then corresponds to the sum of stimulated and spontaneous
emission into the effective heat bath.
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This effective description of the effective bath is vindicated by the steady-state solution of the
master Equation (20), which is the thermal (Gibbs) state [45]:

ρss =
1
Z

exp
(
− 1

kBT
Hc

)
(24)

of the cavity mode, where Z denotes the partition function. Due to the unbounded character of the
Hamiltonian Hc, this steady-state solution only exists if 0 ≤ T < ∞, i.e., if rg > re. The case rg = re,
formally resulting in an infinite bath temperature, can be identified as the maser threshold [49] (see
also Appendix D).

We have thus arrived at an important conclusion: a nonthermal beam of atoms interacting
with a single cavity mode may act as an effective heat bath for the latter, thereby thermalizing it
to a finite temperature T, although the quantum state of the atoms may be distinctly nonthermal,
i.e., the atomic-cluster state is not associated with the notion of temperature. Nevertheless, it will drive
the cavity field mode into a Gibbs state with a finite and positive temperature provided the cavity
mode is below the maser threshold. This conclusion is consistent with the well-known fact that
the regime below the micromaser threshold is thermal radiation with a thermodynamic equilibrium
temperature [49,50]. Here, however, this temperature T of the cavity field depends explicitly on the
coherences and correlations of the atoms.

In Table 2, we present the explicit dependence of the temperature T, the steady-state photon
number 〈n〉ss and the micromaser threshold on the multiatomic density-matrix parameters from
Table 1. There (in Table 2), the temperature T follows from the KMS condition (21). The steady-state
mean photon number equals the environmental mean photon number (Equation (23)), 〈n〉ss = n̄. Both
quantities are evaluated for different cluster sizes by means of the rates rg and re from Table 1.

In what follows, we focus on the relation between the correlations in distinctly entangled states of
the cluster on the temperature and threshold conditions.

Table 2. Steady-state properties following from the thermal master Equation (20) for different cluster
sizes. Here, we have defined C = CE + CW .

1 Atom 2 Atoms 3 Atoms

kBT
h̄ωc

= ln
[(

rg
re

)]−1 [
ln
(

b22
b11

)]−1 [
ln
(

2b44+b22+b33+b23+b32
2b11+b22+b33+b23+b32

)]−1 [
ln
(

3b88+2DW+DE+C
3b11+2DE+DW+C

)]−1

〈n〉ss =
rg

rg−re

b22
b22−b11

2b44+b22+b33+b23+b32
2(b44−b11)

3b11+2DE+DW+C
3(b88−b11)+DW−DE

valid for (rg > re) b22 > b11 b44 > b11 3b88 + DW > 3b11 + DE

4.2.1. Cavity Thermalization via Singly-Excited Entangled Three-Atom States

We may parameterize the singly-excited entangled states of three atoms via:

|W〉gen = cos θ cos
ψ

2
|egg〉+ sin θ cos

ψ

2
eiφ |geg〉+ sin

ψ

2
eiδ |gge〉 . (25)

The mean photon number in terms of the angles then reads (cf. Table 2 and note that CE and DE vanish):

〈n〉ss = 1 + sin 2θ cos2 ψ

2
cos φ + cos θ sin ψ cos δ + sin θ sin ψ cos(φ− δ). (26)

The maximum photon number corresponds to δ = 0 and φ = 0. The variation of the mean
number of photons with respect to the remaining parameters θ and ψ is shown in Figure 7. It is seen
that the maximum number corresponds to the symmetric W-state:

|W〉 = (|gge〉+ |geg〉+ |egg〉) /
√

3, (27)
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which is known for its robust entanglement [51]. This state yields 〈n〉ss = 3, which means that
coherences (correlations) in the W-state increase the photon number in thermal equilibrium from the
value 〈n〉(0)ss = 1, which would be the case for a phase-averaged W-state.

Figure 7. Steady-state mean number of photons in a cavity pumped randomly with three atom clusters
in W class states, parameterized with angular variables θ and ψ, when δ = 0 and φ = 0. The symmetric
W-state yields the largest mean photon number in equilibrium and, hence, can be imagined as the
“hottest” effective three-atom reservoir among the W class states.

This amplification of photon population in the cavity is here due to Dicke superradiance [52]:
the quantum interference in the W-state enhances the processes described in the master equation,
which equilibrate the cavity field to a canonical thermal state. Although each cluster is in a pure state,
the entropy of the cavity increases via the partial-trace operation after each interaction, which removes
the information about the atomic state. The crucial contribution of the heat-exchange coherences
present in the W-state (27) can be traced to the effective temperature T ≈ 3.47h̄ω/kB that these
coherences induce compared to the temperature obtained for its phase-averaged (classically-correlated)
counterpart (i.e., without any heat-exchange coherences), T0 ≈ 1.44h̄ω/kB < T. This temperature T0

is solely determined by the populations of the computational-basis states and may hence be thought
of a “classical” effect. By contrast, the augmented temperature T > T0 stems from the heat-exchange
coherences (that here lead to constructive quantum interference). The deviation from T0 is thus of
quantum-mechanical origin.

Therefore, we conclude that the symmetric W-state provides the highest equilibrium temperature
to the cavity field among the entangled singly-excited states. This comes about since in the symmetric
W-state, all contributions Hint |W〉gen in Equation (2c) add up coherently, allowing for cooperatively
enhanced interaction in this three-particle Dicke state [53].

4.2.2. GHZ States: Towards Infinite Effective Temperature

Equation (13c) only possesses a steady-state solution (Equation (14c)) if b88 > b11 (cf. Table 2).
This condition can be fulfilled for a generalized GHZ (Greenberger–Horne–Zeilinger [16]) state
parameterized by ϑ,

|GHZ〉gen = cos
ϑ

2
|eee〉+ sin

ϑ

2
|ggg〉 , (28)

for which the mean photon number in thermal equilibrium becomes:

〈n〉ss =
b11

b88 − b11
=

cos2 ϑ
2

sin2 ϑ
2 − cos2 ϑ

2

. (29)
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We have plotted the steady-state photon number as a function of ϑ in Figure 8. The figure shows that as
ϑ→ π/2, one reaches the micromaser threshold, where the mean photon number diverges, signifying
an infinite effective temperature of the bath.

ϑ

ph
ot

on
nu

m
be

r
〈n

〉 ss

3π
2

5π
4π3π

4
π
2

3

2

1

0

Figure 8. Mean photon number (29) in a cavity pumped by atom clusters in the generalized GHZ
state (28).

Let us now consider the case ϑ = π/2 that yields the GHZ state:

|GHZ〉 = (|ggg〉+ |eee〉) /
√

2. (30)

The only nonzero coherences are then b18 and b81, which according to Figure 3 are ineffective.
Indeed, the only nonvanishing parameters of the master Equation (7) are re = rg = 3/2.
Such parameters in the thermal Lindblad equation:

ρ̇(t) =
3µ

4
(Le +Ld) , (31)

correspond, according to the KMS detailed-balance condition, to an infinite temperature of the bath.
A beam of GHZ states thus cannot thermalize a cavity mode. Indeed, the mean photon number in the
cavity grows in an unbounded fashion,

〈ṅ〉 = 3µ

2
, (32)

according to Equation (13c).
Similarly to the symmetric W-state, a nearly symmetric GHZ-type state (cf. Figure 5) is the optimal

choice for reaching high cavity temperatures. However, the mechanism is entirely different in the two
cases. The symmetry in the W-state allows for constructive quantum interference (superradiance), so
that the enhancement is purely quantum-mechanical. By contrast, the nearly-symmetric entangled
GHZ state allows us to approach the maser threshold. The photon number (29) only depends on the
populations since, according to Figure 3, all coherences in the state (28) are ineffective. Hence, the
phase-averaged counterpart of Equation (28) results in the same effective temperature as that of the
state (28), i.e., T0 = T.

4.2.3. States Leading to Ultrahigh Temperatures of the Cavity Field

Let us incoherently mix W-states with states that we denote as E-states that belong to the general
class of three-atom W-states with two excitations in the upper blue triangle in Figure 4 (which are also
Dicke states [54]),

|E〉 = 1√
3
(|eeg〉+ |ege〉+ |gee〉) . (33)
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According to Table 2, they contribute to CE and DE and correspond to re = 4 and rg = 3,
namely their rate of absorption surpasses the emission rate, leading (by the KMS detailed balance
condition (21)) to a negative temperature, which is outside the scope of this paper.

The chosen nearly equal mixture of W- and E-states has the form:

ρWE =

(
1
2
+ ε

)
|W〉〈W|+

(
1
2
− ε

)
|E〉〈E| , (34)

where 0 < ε � 1 is a small positive number. This state is a mixture of the two coherence
triangles indicated by solid blue lines in Figure 4. The corresponding nonvanishing parameters
of the master Equation (7) re = 7/2 − ε and rg = 7/2 + ε (cf. Table 1) imply that rg > re, so
that this mixed state corresponds to a positive and finite effective temperature, T ≈ 7εh̄ω/4kB. The
corresponding classical-like phase-averaged counterpart of Equation (34) would thermalize the cavity
to T0 = 3εh̄ω/4kB. Here, two enhancement factors are involved. The first factor is C (cf. Table 2),
enhancing T0 to higher temperatures by the quantum interferences due to the coherences in the W
and E states. The second factor is the classical enhancement of T0 due to the operation near the
maser threshold.

5. Discussion

We have studied the thermodynamic implications of a generalized micromaser model wherein
the cavity mode interacts with a beam of quantum-coherent or quantum-correlated multiatom clusters.
Our central goal has been to classify the states of such clusters prior to their injection into the cavity
according to their ability to fuel the cavity field as “working fluid” in a machine of either the first
kind (thermo-mechanical engine) or the second kind (heat engine). To this end, we have derived a
Lindblad master equation for the cavity field mode that describes absorption and emission of the field,
its coherent displacement and squeezing caused by the atoms that may act, respectively, as a thermal,
displaced-thermal or squeezed-thermal bath. These distinct Gaussian processes that the field may
undergo are determined by the prefactors of the respective terms in the master equation that are, in
turn, determined by disjoint blocks (coherences) of the multiatom density matrix.

The main results of our analysis are as follows:

• An important insight that we have obtained is that two- and three-atom clusters are capable of
acting as fuel for both kinds of machines in a highly effective fashion, so that there is no need
to involve larger clusters. Still, a larger number of coherences as the cluster grows in size may
further enhance the work output.

• For machines of the first kind, our analysis has revealed a particularly promising, simple, fuel
in the form of two-atom clusters whose state is a nearly equal superposition of doubly-excited
and doubly-ground states. Such a state is expected to give rise to very large squeezing of the
cavity field. It may thus present a far superior alternative to existing squeezing schemes of cavity
fields [46–48]. Such a strong squeezing may have fascinating applications [48] also outside of
quantum thermodynamics. Our interest here is that this strong squeezing source may fuel a cavity
field in a hybrid thermo-mechanical machine [29] with nearly 100% efficiency, at the expense of
mechanical work supplied by the two-atom clusters.

• For machines of the second kind, we have found W-states of three-atom clusters to act as
conventional heat-bath fuel at a positive finite temperature that is controllable by the W-state.
By contrast, three-atom GHZ- and E-states have been found to correspond to effective baths
at infinite or negative temperatures, respectively, that do not allow for a thermal steady-state
solution for the cavity field. On the other hand, nearly-equal mixtures of W- and E-states have
been identified as fuel capable of thermalizing the cavity field to an ultrahigh temperature.

To conclude, our results are potentially useful for the design of thermal and nonthermal machines
based on micromaser setups. The availability of all Gaussian processes via the preparation of two- and
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three-atom clusters allows one to implement heat engines (wherein the cavity field is thermalized), but
also thermo-mechanical engines (wherein the cavity mode is coherently displaced or squeezed).

We wish to stress the feasibility of the diverse forms of the state preparation of multiatom clusters
(prior to their injection into the cavity) that we have employed in our analysis:

• The arsenal of quantum gate operations [51] can in principle prepare two or three trapped atoms
in an entangled state on demand, but such a preparation may require single-atom addressability.

• Alternatively, W-states can be generated via quantum feedback control [55] or at fusion-based
light-matter interfaces [56]. Multipartite entangled states may also be generated via
photon-mediated interactions, as recently discussed in [57].

• Another alternative is an optimized probabilistic scheme for multiatom entangled-state
preparation in a cavity [58].

• For two-atom entangled-state preparation, we may resort to controlled diatomic dissociation [59],
collisions in a cavity [60] or long-range dipole-dipole interactions [61].

On the fundamental side, our results provide clues to the thermalization or non-thermalization of
a system (here, the cavity field) via its contact with quantum-correlated multipartite clusters that act as
nonthermal baths. Such processes reflect the subtle rapport between quantum correlations in the bath
and thermalization [20].
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Appendix A. Time-Evolution Operator for a One-Atom Micromaser

For one atom the time-evolution operator

U(τ) = exp(−iHintτ) (A1)

to second order in gτ readily evaluates to

U(τ) ≈ 1− igτ

(
0 a
a† 0

)
− (gτ)2

2

(
0 a
a† 0

)2

=

(
1− 1

2 (gτ)2(a†a + 1) −igτa
−igτa† 1− 1

2 (gτ)2a†a

)
. (A2)

Appendix B. Time-Evolution Operator for a Two-Atom Micromaser

The time-evolution operator

U(τ) = exp(−iHintτ) = exp(−igτP) (B1)

of the joint cavity–atoms system can be computed to second order in gτ using the collective
angular-momentum operators S± = ∑2

j=1 σ±j such that

P = aS+ + a†S−. (B2)
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The latter can be decomposed into irreducible subspaces by changing from the computational
basis (spanned by products of single-atom |e〉 and |g〉 states, cf. Figure 2) to the basis of Dicke states [53]
by means of the transformation matrix

T =


1 0 0 0
0 1√

2
0 1√

2
0 1√

2
0 − 1√

2
0 0 1 0

 . (B3)

The addition of two spin-1/2 gives rise to a triplet and a singlet, 1
2 ⊗

1
2 = 1⊕ 0. As a consequence,

T†PT =


0

√
2a 0 0√

2a† 0
√

2a 0
0

√
2a† 0 0

0 0 0 0

 =

(
P1

P0

)
(B4)

and the propagator is given by the direct sum

U(τ) = U1(τ)⊕U0(τ), (B5)

where to second order in gτ

Uk(τ) ≈ 1k − igτPk −
(gτ)2

2
P2

k . (B6)

Here 1k denotes the unit matrix of the same dimensionality as Pk. Explicitly, we find

U1(τ) =

 1− (gτ)2(a†a + 1) −i
√

2agτ −a2(gτ)2

−i
√

2a†gτ 1− (gτ)2(2a†a + 1) −i
√

2agτ

−a†2
(gτ)2 −i

√
2a†gτ 1− (gτ)2a†a

 (B7)

and
U0(τ) = 1. (B8)

Transforming back to the computational basis {|ee〉 , |eg〉 , |ge〉 , |gg〉} yields

U(τ) =


1− (gτ)2(a†a + 1) −iagτ −iagτ −a2(gτ)2

−ia†gτ 1− 1
2 (gτ)2(2a†a + 1) − 1

2 (gτ)2(2a†a + 1) −iagτ

−ia†gτ − 1
2 (gτ)2(2a†a + 1) 1− 1

2 (gτ)2(2a†a + 1) −iagτ

−a†2
(gτ)2 −ia†gτ −ia†gτ 1− (gτ)2a†a

 . (B9)

Appendix C. Time-Evolution Operator for a Three-Atom Micromaser

For three particles one proceeds exactly like in the preceding section. The transformation matrix
now reads [53]

T =



1 0 0 0 0 0 0 0

0 1√
3

0 0 0 0 −
√

2
3 0

0 1√
3

0 0 − 1√
2

0 1√
6

0

0 1√
3

0 0 1√
2

0 1√
6

0

0 0 1√
3

0 0 − 1√
2

0 − 1√
6

0 0 1√
3

0 0 1√
2

0 − 1√
6

0 0 1√
3

0 0 0 0
√

2
3

0 0 0 1 0 0 0 0


. (C1)
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The addition of three spin-1/2 gives rise to a quadruplet and two doublets, 1
2 ⊗

1
2 ⊗

1
2 = 3

2 ⊕
1
2 ⊕

1
2 .

As a consequence,

T†PT =



0
√

3a 0 0 0 0 0 0√
3a† 0 2a 0 0 0 0 0
0 2a† 0

√
3a 0 0 0 0

0 0
√

3a† 0 0 0 0 0
0 0 0 0 0 a 0 0
0 0 0 0 a† 0 0 0
0 0 0 0 0 0 0 a
0 0 0 0 0 0 a† 0


=

 P3/2
P1/2

P1/2

 (C2)

and the propagator is given by the direct sum

U(τ) = U3/2(τ)⊕U1/2(τ)⊕U1/2(τ), (C3)

where

U3/2(τ) =


1− 3

2 (gτ)2(a†a + 1) −i
√

3agτ −
√

3a2(gτ)2 0
−i
√

3a†gτ 1− 1
2 (gτ)2(7a†a + 4) −2iagτ −

√
3a2(gτ)2

−
√

3a†2
(gτ)2 −2ia†gτ 1− 1

2 (gτ)2(7a†a + 3) −i
√

3agτ

0 −
√

3a†2
(gτ)2 −i

√
3a†gτ 1− 3

2 (gτ)2a†a

 (C4)

and

U1/2(τ) =

(
1− 1

2 (gτ)2(a†a + 1) −iagτ

−ia†gτ 1− (gτ)2a†a
2

)
. (C5)

Transforming back to the computational basis (cf. Figure 2) yields the matrix elements

U11 =
1
2

(
2− 3(gτ)2(a†a + 1)

)
,

U21 = U31 = U52 = U62 = U53 = U73 = U41

= U85 = U64 = U74 = U86 = U87 = −igτa†,

U12 = U13 = U25 = U26 = U35 = U37 = U14

= U58 = U46 = U47 = U68 = U78 = −iagτ

U51 = U61 = U71 = U82 = U83 = U84 = −(gτ)2
(

a†
)2

,

U15 = U16 = U17 = U28 = U38 = U48 = −(gτ)2a2,

U22 = U33 = U44 = 1− 1
2
(gτ)2(3a†a + 2),

U32 = U42 = U23 = U43 = U65 = U75 = U24 = U34

= U56 = U76 = U57 = U67 = −1
2
(gτ)2(2a†a + 1),

U55 = U66 = U77 = 1− 1
2
(gτ)2(3a†a + 1),

U88 = 1− 3
2
(gτ)2a†a

(C6)

of the time-evolution operator. The remaining elements evaluate to zero.
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Appendix D. Maser Threshold

It is illuminating to derive the threshold condition from the mean photon number, following
Reference [20]. We first take λ = ξ = 0 and thereby eliminate the coherent-displacement and squeezing
terms. According to Equation (3), the cavity density matrix will change to

ρ(tj + τ) ≈ (gτ)2
( re

2
Le +

rg

2
Ld

)
+ ρ(tj) (D1)

after the passage of the j-th atom during the short interaction time τ. The mean photon number can be
calculated to be 〈

n̂(tj + τ)
〉
= Tr

[
ρ(tj + τ)n̂

]
= k

〈
n̂(tj)

〉
+ (gτ)2 re

2
. (D2)

The change of the mean photon number between consecutive injections of two atom clusters is
determined by the increment ratio k, which is given by

k = 1− (gτ)2 rg − re

2
. (D3)

Assuming that the cavity is initially in the vacuum state, the last term in Equation (D2) yields
the mean number of photons after the first-cluster passage, 〈n̂(τ)〉 = (gτ)2re/2. After the j-th cluster
passage the mean photon number rises to

〈
n̂(tj)

〉
=

j

∑
i=1

ki−1 〈n̂(τ)〉 . (D4)

The summation in Equation (D4) is convergent if k < 1, which is equivalent to the threshold
condition rg > re. As j→ ∞, the summation converges to Equation (14c).
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