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Abstract: The approximation of a discrete probability distribution t by an M-type distribution p is
considered. The approximation error is measured by the informational divergence D(t‖p), which is an
appropriate measure, e.g., in the context of data compression. Properties of the optimal approximation
are derived and bounds on the approximation error are presented, which are asymptotically tight.
A greedy algorithm is proposed that solves this M-type approximation problem optimally. Finally, it
is shown that different instantiations of this algorithm minimize the informational divergence D(p‖t)
or the variational distance ‖p− t‖1.
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1. Introduction

In this work, we consider finite precision representations of probabilistic models. Suppose the
original model, or target distribution, has n non-zero mass points and is given by t := (t1, . . . , tn).
We wish to approximate it by a distribution p := (p1, . . . , pn) of which each entry is a rational number
with a fixed denominator. In other words, for every i, pi = ci/M for some non-negative integer ci ≤ M.
The distribution p is called an M-type distribution, and the positive integer M ≥ n is the precision of the
approximation. The problem is non-trivial, since computing the numerator ci by rounding Mti to the
nearest integer in general fails to yield a distribution.

M-type approximations have many practical applications, e.g., in political apportionments,
M seats in a parliament need to be distributed to n parties according to the result of some vote t.
This problem led, e.g., to the development of multiplier methods [1]. In communications engineering,
example applications are finite precision implementations of probabilistic data compression [2],
distribution matching [3], and finite-precision implementations of Bayesian networks [4,5]. In all
of these applications, the M-type approximation p should be close to the target distribution t in
the sense of an appropriate error measure. Common choices for this approximation error are the
variational distance and the informational divergences:

‖p− t‖1 :=
n

∑
i=1
|pi − ti| (1a)

D(p‖t) := ∑
i : pi>0

pi log
pi
ti

(1b)

D(t‖p) := ∑
i : ti>0

ti log
ti
pi

(1c)

where log denotes the natural logarithm.
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Variational distance and informational divergence Equation (1b) have been considered by
Reznik [6] and Böcherer [7], respectively, who presented algorithms for optimal M-type approximation
and developed bounds on the approximation error. In a recent manuscript [8], we extended the existing
works on Equation (1a,b) to target distributions with infinite support (n = ∞) and refined the bounds
from [6,7].

In this work, we focus on the approximation error Equation (1c). It is an appropriate cost
function for data compression [9] (Theorem 5.4.3) and seems appropriate for the approximation of
parameters in Bayesian networks (see Section 4). Nevertheless, to the best of the authors’ knowledge,
the characterization of M-type approximations minimizing D(t‖p) has not received much attention in
literature so far.

Our contributions are as follows. In Section 2, we present an efficient greedy algorithm to
find M-type distributions minimizing Equation (1c). We then discuss in Section 3 the properties of
the optimal M-type approximation and bound the approximation error Equation (1c). Our bound
incorporates a reverse Pinsker inequality recently suggested in [10] (Theorem 7). The algorithm we
present is an instance of a greedy algorithm similar to steepest ascent hill climbing [11] (Chapter 2.6). As a
byproduct, we unify this work with [6–8] by showing that also the algorithms optimal w.r.t. variational
distance Equation (1a) and informational divergence Equation (1b) are instances of the same general
greedy algorithm, see Section 2.

2. Greedy Optimization

In this section, we define a class of problems that can be optimally solved by a greedy algorithm.
Consider the following example:

Example 1. Suppose there are n queues with jobs, and you have to select M jobs minimizing the total time
spent. A greedy algorithm suggests to select successively the job with the shortest duration, among the jobs that
are at the front of their queues. If the jobs in each queue are ordered by increasing duration, then this greedy
algorithm is optimal.

We now make this precise: Let M be a positive integer, e.g., the number of jobs that have to be
completed, and let δi : N→ R, i = 1, . . . , n, be a set of functions, e.g., δi(k) is the duration of the k-th
job in the i-th queue. Let furthermore c0 := (c1,0, . . . , cn,0) ∈ Nn

0 be a pre-allocation, representing a
constraint that has to be fulfilled (e.g., in the i-th queue at least ci,0 jobs have to be completed) or a
chosen initialization. Then, the goal is to minimize

U(c) :=
n

∑
i=1

ci

∑
ki=ci,0+1

δi(ki) (2)

i.e., to find a final allocation c := (c1, . . . , cn) satisfying ‖c‖1 = M and, for every i, ci ≥ ci,0. A greedy
method to obtain such a final allocation is presented in Algorithm 1. We show in Appendix A.1. that
this algorithm is optimal if the functions δi satisfy certain conditions:

Algorithm 1: Greedy Algorithm
Initialize ki = ci,0, i = 1, . . . , n.
repeat M− ‖c0‖1 times

Compute δi(ki + 1), i = 1, . . . , n.
Compute j = min argmini δi(ki + 1). // (choose one minimal element) Update k j ← k j + 1.

end repeat
Return c = (k1, . . . , kn).

Proposition 1. If the functions δi(k) are non-decreasing in k, Algorithm 1 achieves a global minimum U(c)
for a given pre-allocation c0 and a given M.
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Remark 1. The minimum of U(c) may not be unique.

Remark 2. If a function fi : R→ R is convex, the difference δi(k) = fi(k)− fi(k− 1) is non-decreasing in k.
Hence, Algorithm 1 also minimizes

U(c) =
n

∑
i=1

fi(ci). (3)

Remark 3. Note that the functions δi(k) need not be non-negative, i.e., in the view of Example 1, jobs may
have negative duration. The functions δi(k) are non-negative, though, if fi : R→ R in Remark 2 is convex and
non-decreasing.

Remark 2 connects Algorithm 1 to steepest ascent hill climbing [11] (Chapter 2.6) with fixed step
size and a constrained number of M steps.

We now show that instances of Algorithm 1 can find M-type approximations p minimizing each
of the cost functions in Equation (1). Noting that pi = ci/M for some non-negative integer ci, we can
rewrite the cost functions as follows:

‖p− t‖1 =
1
M

n

∑
i=1
|ci −Mti| (4a)

D(p‖t) = 1
M

(
∑

i : ci>0
ci log

ci
ti

)
− log M (4b)

D(t‖p) = log M− H(t)− ∑
i : ti>0

ti log ci (4c)

where H(·) denotes entropy in nats.
Ignoring constant terms, these cost functions are all instances of Remark 2 for convex functions

fi : R → R (see Table 1). Hence, the three different M-type approximation problems set up
by Equation (1) can all be solved by instances of Algorithm 1, for a trivial pre-allocation c0 = 0 and
after taking M steps. The final allocation c simply defines the M-type approximation by pi = ci/M.

For variational distance optimal approximation, we showed in [8] (Lemma 3), that every
optimal M-type approximation satisfies pi ≥ bMtic/M, hence one may speed up the algorithm
by pre-allocating ci,0 = bMtic. We furthermore show in Lemma 1 below that the support of the optimal
M-type approximation in terms of Equation (1c) equals the support of t (if M ≥ n). Assuming that
t is positive, one can pre-allocate the algorithm with ci,0 = 1. We summarize these instantiations of
Algorithm 1 in Table 1.

Table 1. Instances of Algorithm 1 Optimizing Equation (1).

Cost fi(x) δi(k) ci,0 References

‖p− t‖1 |x−Mti| |k−Mti| − |k− 1−Mti| bMtic [6,8]

D(p‖t) x log(x/ti) k log k
k−1 + log(k− 1)− log ti 0 [7,8]

D(t‖p) −ti log x ti log((k− 1)/k) dtie This work

This list of instances of Algorithm 1 minimizing information-theoretic or probabilistic cost
functions can be extended. For example, the χ2-divergences χ2(t||p) and χ2(p||t) can also be
minimized, since the functions inside the respective sums are convex. However, Rényi divergences of
orders α 6= 1 cannot be minimized by applying Algorithm 1.

3. M-Type Approximation Minimizing D(t‖p)

As shown in the previous section, Algorithm 1 presents a minimizer of the problem minp D(t‖p)
if instantiated according to Table 1. Let us call this minimizer ta. Recall that t is positive and that
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M ≥ n. The support of ta must contain the support of t, since otherwise D(t‖ta) = ∞. Note further
that the costs δi(k) are negative if ti > 0 and zero if ti = 0; hence, if ti = 0, the index i cannot be chosen
by Algorithm 1, thus also ta

i = 0. This proves:

Lemma 1. If M ≥ n, the supports of t and ta coincide, i.e., ti = 0⇔ ta
i = 0.

The assumption that t is positive and that M ≥ n hence comes without loss of generality. In
contrast, neither variational distance nor informational divergence Equation (1b) require M ≥ n: As
we show in [8], the M-type approximation problem remains interesting even if M < n.

Based on Lemma 1, the following example explains why the optimal M-type approximation does
not necessarily result in a “small” approximation error:

Example 2. Let t = (1− ε, ε
n−1 , . . . , ε

n−1 ) and M = n, hence by Lemma 1, ta = 1
n (1, 1, . . . , 1). It follows

that D(t‖ta) = log n− H(t), which can be made arbitrarily close to log n by choosing a small positive ε.

In Table 1 we made use of [8] (Lemma 3), which says that every p minimizing the variational
distance ‖p− t‖1 satisfies pi ≥ bMtic/M, to speed up the corresponding instance of Algorithm 1 by
proper pre-allocation. Initialization by rounding is not possible when minimizing D(t‖p), as shown in
the following two examples:

Example 3. Let t = (17/20, 3/40, 3/40) and M = 20. The optimal M-type approximation is
p = (8/10, 1/10, 1/10), hence p1 < bMt1c/M. Initialization via rounding off fails.

Example 4. Let t = (0.719, 0.145, 0.088, 0.048) and M = 50. The optimal M-type approximation is
p = (0.74, 0.14, 0.08, 0.04), hence p1 > dMt1e/M. Initialization via rounding up fails.

To show that informational divergence vanishes for M→ ∞, assume that M > 1/ti for all i. Since
the variational distance optimal approximation tvd satisfies tvd

i ≥ bMtic/M for every i, tvd has the same
support as t, which ensures that D(t‖tvd) < ∞. By similar arguments as in the proof of [8] (Proposition 4),
we obtain

D(t‖ta) ≤ D(t‖tvd) ≤ log
(

1+
n

2M

)
M→∞−→ 0. (5)

Note that this bound is universal, i.e., it prescribes the same convergence rate for every target
distribution with n mass points.

We now develop an upper bound on D(t‖ta) that holds for every M. To this end, we first
approximate t by a distribution t∗ in PM := {p : ∀i: pi ≥ 1/M, ‖p‖1 = 1} that minimizes D(t‖t∗). If
t∗ is unique, then it is called the reverse I-projection [12] (Section I.A) of t onto PM. Since t∗ ∈ PM, its
variational distance optimal approximation tvd has the same support as t, which allows us to bound
D(t‖ta) by D(t‖tvd).

Lemma 2. Let t∗ ∈ PM minimize D(t‖t∗). Then,

t∗i :=
ti

ν(M)
+

(
1
M
− ti

ν(M)

)+

(6)

where ν(M) is such that ‖t∗‖1 = 1, and where (x)+ := max{0, x}.

Proof. See Appendix A.2.

Let K := {i : ti < ν(M)/M}, k := |K|, and TK := ∑i∈K ti. The parameter ν(M) must scale the
mass (1− TK) such that it equals (M− k)/M, i.e., we have

ν(M) =
1− TK
1− k

M
. (7)
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If, for all i, ti > 1/M, then t ∈ PM, hence t∗ = t is feasible and ν(M) = 1. One can show that ν(M)

decreases with M.

Proposition 2 (Approximation Bounds).

D(t‖ta) ≤ log ν(M) +
log(2)

2

(
1− ν(M)

(
1− n

M

))
(8)

Proof. See Appendix A.3.

The first term on the right-hand side of Equation (8) accounts for the error caused by
first approximating t by t∗ (in the sense of Lemma 2). The second term accounts for the
additional error caused by the M-type approximation of t∗ and incorporates the reverse Pinsker
inequality [10] (Theorem 7). If M > ti for every i, hence t ∈ PM, then ν(M) = 1 and the bound
simplifies to

D(t‖ta) ≤ log(2)
n

2M
. (9)

For M sufficiently large, Equation (8) thus yields better results than Equation (5), which
approximates to n/(2M). Moreover, for M sufficiently large, our bound Equation (8) is uniform,
i.e., it prescribes the same convergence rate for every target distribution with n mass points. We
illustrate the bounds for an example in Figure 1.

5 10 15 20 25 30 35 40 45 50 55 60

0.2

0.4

0.6

M

D(t‖ta)

Eq. (8)
Eq. (5) for M ≥ 50
Eq. (5) for M < 50

Figure 1. Evaluating the bounds Equations (5) and (8) for t = (0.48, 0.48, 0.02, 0.02). Note
that Equation (5) is a valid bound only for M ≥ 50, i.e., where the curve is dashed.

4. Applications and Outlook

Arithmetic coding uses a probabilistic model to compress a source sequence. Applying
Algorithm 1 with cost Equation (1c) to the empirical distribution of the source sequence provides an
M-type distribution as a probabilistic model. The parameter M can be choosen small for reduced
complexity. Another application of Algorithm 1 can be found in [3], which considers the problem of
generating length-M sequences according to a desired distribution. Since a length-M sequence has
an M-type empirical distribution, the Reference [3] applies Algorithm 1 with cost Equation (1b) to
pre-calculate the M-type approximation of the desired distribution.

Algorithm 1 can also be used to calculate the M-type approximation of Markov models,
i.e., approximating the transition matrix T of an n-state, irreducible Markov chain with
invariant distribution vectors µ by a transition matrix P containing only M-type probabilities.
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Generalizing Equation (1c), the approximation error can be measured by the informational
divergence rate [13]

D(T‖P) :=
n

∑
i,j=1

µiTij log
Tij

Pij
=

n

∑
i=1

µi D(ti‖pi). (10)

The optimal M-type approximation is found by applying the instance of Algorithm 1 to each row
separately, and Lemma 1 ensures that the transition graph of P equals that of T, i.e., the approximating
Markov chain is irreducible. Future work shall extend this analysis to hidden Markov models and
should investigate the performance of these algorithms in practical scenarios, e.g., speech processing
with finite-precision arithmetic.

Another possible application is the approximation of Bayesian network parameters. The
authors of [4] approximated the true parameters using a stationary multiplier method from [14].
Since rounding probabilities to zero led to bad classification performance, they replaced zeros in
the approximating distribution afterwards by small values. This in turn led to the problem that
probabilities that are in fact zero, were approximated by a non-zero probability. We believe that these
problems can be removed by instantiating Algorithm 1 for cost Equation (1c). This automatically
prevents approximating non-zero probabilities with zeros and vice-versa, see Lemma 1.

Finally, for approximating Bayesian network parameters, recent work suggests rounding
log-probabilities, i.e., to approximate log ti by log pi = −ci/M for a non-negative integer ci [5]. Finding
an optimal approximation that corresponds to a true distribution is equivalent to solving

min d(t, p)

s.t. ‖e−c‖1/M = 1

where d(·, ·) denotes any of the considered cost functions Equation (1). If M = 1 and d(t, p) = D(t‖p)
using the binary logarithm, the constraint translates to the requirement that t is approximated by a
complete binary tree. Then, the optimal approximation is the Huffman code for t.
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Appendix. Proofs

Appendix A.1. Proof of Proposition 1

Since a pre-allocation only fixes a lower bound for U(c), w.l.o.g. we assume that c0 = 0 and thus
c ∈ Nn

0 with ‖c‖1 = M. Consider the set D := {δi(ki): ki ∈ N, i = 1, . . . , n} and assume that the (not
necessarily unique) set DM consists of M smallest values in D, i.e., |DM| = M and

∀d ∈ DM, d′ ∈ D \ DM : d ≤ d′. (A1)

Clearly, U(c) cannot be smaller than the sum over all elements in DM. Since the δi are
non-decreasing, there exists at least one final allocation c that takes successively the first ci values from
each queue i, i.e., DM = {δ1(1), . . . , δ1(c1), . . . , δn(1), . . . , δn(cn)} satisfies Equation (A1). This shows
that the lower bound induced by Equation (A1) can actually be achieved.

We prove the optimality of Algorithm 1 by contradiction: Assume that Algorithm 1 finishes
with a final allocation c̃ such that U(c̃) is strictly larger than the (unique) sum over all elements in
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(non-unique) DM. Hence, c̃ must exchange at least one of the elements in DM for an element that is
strictly larger. Thus, by the properties of the functions δi and Algorithm 1, there must be indices `

and m such that c̃` > c`, c̃m < cm, and δ`(c̃`) ≥ δ`(c` + 1) > δm(cm) ≥ δm(c̃m). At each iteration of
the algorithm, the current allocation at index m satisfies km ≤ c̃m < cm. Since δm(cm) < δ`(c` + 1),
δ`(c` + 1) can never be a minimal element, and hence is not chosen by Algorithm 1. This contradicts
the assumption that Algorithm 1 finishes with a c̃ such that U(c̃) is strictly larger than the sum of D’s
M smallest values.

Appendix A.2. Proof of Lemma 2

The problem finding a t∗ ∈ PM minimizing D(t‖t∗) is equivalent to finding an optimal point of
the problem:

minimize
p∈Rn

>0

−
n

∑
i=1

ti log pi (A2a)

subject to
1
M
− pi ≤ 0, i = 1, 2, . . . , n (A2b)

− 1 +
n

∑
i=1

pi = 0. (A2c)

The Lagrangian of the problem is

L(p, λ, ν) = −
n

∑
i=1

ti log pi +
n

∑
i=1

λi

(
1
M
− pi

)
+ ν

(
−1 +

n

∑
i=1

pi

)
. (A3)

By the Karush–Kuhn–Tucker (KKT) conditions [15] (Chapter 5.5.3), a feasible point t∗ is optimal if,
for every i = 1, . . . , n,

λi ≥ 0 (A4a)

λi

(
1
M
− t∗i

)
= 0 (A4b)

∂

∂pi
L(p, λ, ν)|p=t∗ = −

ti
t∗i
− λi + ν = 0. (A4c)

By Equation (A2b), we have t∗i ≥ 1/M. If t∗i > 1/M, then λi = 0 by Equation (A4b) and t∗i = ti/ν

by Equation (A4c). Thus

t∗i =
ti
ν
+

(
1
M
− ti

ν

)+

(A5)

where ν is such that ∑n
i=1 t∗i = 1.

Appendix A.3. Proof of Proposition 2

Reverse I-projections admit a Pythagorean inequality [12] (Theorem 1). In other words, if p is a
distribution, p∗ its reverse I-projection onto a set S , and q any distribution in S , then

D(p‖q) ≥ D(p‖p∗) +D(p∗‖q). (A6)

For the present scenario, we can show an even stronger result:
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Lemma 3. Let t be the target distribution, let t∗ be as in Lemma 2, and let tvd be the variational distance
optimal M-type approximation of t∗. Then,

D(t‖tvd) = D(t‖t∗) + νD(t∗‖tvd). (A7)

Proof.

D(t‖tvd) =
n

∑
i=1

ti log
ti

tvd
i

(A8)

=
n

∑
i=1

ti log
tit∗i

tvd
i t∗i

(A9)

=
n

∑
i=1

ti log
ti
t∗i

+
n

∑
i=1

ti log
t∗i
tvd
i

(A10)

(a)
= D(t‖t∗) + ν ∑

i/∈K

ti
ν

log
t∗i
tvd
i

(A11)

(b)
= D(t‖t∗) + νD(t∗‖tvd) (A12)

Here, (a) follows because for i ∈ K, t∗i = 1/M and thus, the M-type approximation minimizing
the variational distance satisfies tvd

i = 1/M; furthermore, (b) is because for i /∈ K, t∗i = ti/ν.

We now bound the summands in Lemma 3.

Lemma 4. In the setting of Lemma 3,

D(t∗‖tvd) ≤ log(2)‖t∗ − tvd‖1. (A13)

Proof. We first employ a reverse Pinsker inequality from [10] (Theorem 7), stating that

D(t∗‖tvd) ≤ 1
2

r log r
r− 1

‖t∗ − tvd‖1 (A14)

where r := supi : t∗i >0
t∗i
tvd
i

. Furthermore, since for variational distance optimal approximations we

always have |t∗i − tvd
i | < 1/M [8] (Lemma 3), we can bound

r <
tvd
i + 1

M

tvd
i

≤ 2 (A15)

since tvd
i ≥ bMt∗i c/M ≥ 1/M. Since the factor r log r

r−1 increases in r, the bound Equation (A13) follows
by substituting r in Equation (A14) by 2.

Lemma 5. In the setting of Lemma 3,
D(t‖t∗) ≤ log ν. (A16)

Proof.

D(t‖t∗) =
n

∑
i=1

ti log
ti
t∗i

(A17)

= ∑
i/∈K

ti log
νti
ti

+ ∑
i∈K

ti log Mti (A18)

(a)
≤ (1− TK) log ν + ∑

i∈K
ti log ν (A19)

= log ν (A20)
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where (a) is because for i ∈ K, Mti ≤ ν.

To bound ‖t∗ − tvd‖1, we present

Lemma 6. Let p∗ be a sub-probability distribution with m ≤ M masses and total weight 1− T, and let pvd∗

be its variational distance optimal M-type approximation using J ≤ M masses. Then,

‖p∗ − pvd∗‖1 ≤
m

2M
+

(M−MT − J)2

2mM
. (A21)

Note that for J = M we recover [8] (Lemma 4).

Proof. Assume first that either ∀i: p∗i ≥ pvd
i
∗

or ∀i: p∗i ≤ pvd
i
∗
. Note that this is

possible since p∗ and pvd∗ are sub-probability distributions, summing to 1 − T and J/M,
respectively. Then, ‖p∗ − pvd∗‖1 = |1− T − J/M| which satisfies this bound. This can be seen by
rearranging Equation (A21) such that J only appears on the left-hand side; the maximizing J (not
necessarily integer) then satisfies Equation (A21) with equality.

We thus remain to treat the case where after rounding off all indices, 1 ≤ L ≤ M − 1 masses
remain and we have

m

∑
i=1

p∗i −
bMp∗i c

M
=:

m

∑
i=1

ei = 1− T − J − L
M

=: g(L). (A22)

The variational distance is minimized by distributing the L masses to L indices i ∈ L with the
largest errors ei, hence

‖p∗ − pvd∗‖1 = ∑
i∈L

(
1
M
− ei

)
+ ∑

i/∈L
ei (A23)

(a)
≤ L

M
− L

n
g(L) +

n− L
n

g(L) (A24)

where (a) follows because for i ∈ L, j /∈ L, ei ≥ ej. This is maximized for L = n−(M−MT−J)
2

(not necessarily integer), which after inserting yields the upper bound.

Proof of Bound in Proposition 2. We start by bounding the informational divergence D(t‖ta) by the
informational divergence between t and the variational distance optimal approximation tvd of its
reverse I-projection t∗ onto PM:

D(t‖ta) ≤ D(t‖tvd) (A25)
(a)
= D(t‖t∗) + νD(t∗‖tvd) (A26)
(b)
≤ log ν + ν log(2)‖t∗ − tvd‖1 (A27)
(c)
≤ log ν + ν log(2)

n− k
2M

(A28)

(d)
≤ log ν + ν log(2)

n−M + M
ν

2M
(A29)

= log ν +
log(2)

2

(
1− ν

(
1− n

M

))
(A30)

where

(a) is due to Lemma 3,
(b) is due to Lemmas 4 and 5,
(c) is due to Lemma 6 with m = n− k, 1− T = 1− k/M, and J = M− k, and
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(d) follows by bounding k from below via Equation (7)

k =
M
ν
(ν− 1 + TK) ≥

M
ν
(ν− 1) = M− M

ν
. (A31)
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