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Abstract: Many statistical models over a discrete sample space often face the computational
difficulty of the normalization constant. Because of that, the maximum likelihood estimator
does not work. In order to circumvent the computation difficulty, alternative estimators such as
pseudo-likelihood and composite likelihood that require only a local computation over the sample
space have been proposed. In this paper, we present a theoretical analysis of such localized estimators.
The asymptotic variance of localized estimators depends on the neighborhood system on the
sample space. We investigate the relation between the neighborhood system and estimation accuracy
of localized estimators. Moreover, we derive the efficiency bound. The theoretical results are applied
to investigate the statistical properties of existing estimators and some extended ones.
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1. Introduction

For many statistical models on a discrete sample space, the computation of the normalization
constant is often intractable. Because of that, the maximum likelihood estimator (MLE) is not of
practical use to estimate probability distributions, although the MLE has some nice theoretical
properties such as the statistical consistency and efficiency under some regularity conditions [1].

In order to circumvent the computation of the normalization constant, alternative estimators that
require only a local computation over the sample space have been proposed. In this paper, estimators on
the basis of such a concept are called localized estimators. Examples of localized estimators include
pseudo-likelihood [2], composite likelihood [3,4], ratio matching [5,6], proper local scoring rules [7,8],
and many others. These estimators are used for discrete statistical models such as conditional random
fields [9], Boltzmann machines [10], restricted Boltzmann machines [11], discrete exponential family
harmoniums [12], and Ising models [13].

In this paper, we present a theoretical analysis of localized estimators. We use the standard
tools in the statistical asymptotic theory. In our analysis, a class of localized estimators including
pseudo-likelihood and composite likelihood is treated as M-estimator or Z-estimator which is an
extension of the MLE [1]. The localized estimators require local computation around a neighborhood
of observed points. Hence, the asymptotic variance of the localized estimator depends on the
size of the neighborhood. We investigate the relation between the estimation accuracy and the
neighborhood system. A similar result is given by [14], in which asymptotic variances between
specific composite likelihoods are compared. In our approach, we consider a stochastic variant of
localized estimators, and derive a general result that the larger neighborhood leads to more efficient
estimator under a simple condition. The pseudo-likelihood and composite likelihood are obtained
as the expectation of a stochastic localized estimator. We derive the exact efficiency bound for the
expected localized estimator. As far as we know, the derivation of the efficiency bound is a new result

Entropy 2016, 18, 273; doi:10.3390/e18070273 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 273 2 of 15

for a class of localized estimators, though upper and lower bounds have been proposed [14] for some
localized estimators.

The rest of the paper is organized as follows. In Section 2, we introduce basic concepts such as
pseudo-likelihood, composite likelihood, and Z-estimators. Section 3 is devoted to define stochastic
local Z-estimator associated with a neighborhood system over the discrete sample space. In Section 4,
we study the relation between the neighborhood system and asymptotic efficiency of the stochastic
local Z-estimator. In Section 5, we define local Z-estimator as the expectation of the stochastic
local Z-estimator, and present its efficiency bound. The theoretical results are applied to study
asymptotic properties of existing estimators and some extended ones. Finally, Section 6 concludes the
paper with discussions.

2. Preliminaries

M-estimators and Z-estimators were proposed as an extension of the MLE. In practice,
M-estimators and Z-estimators are often computationally demanding due to the normalization constant
in statistical models. To circumvent computational difficulty, localized estimators have been proposed.
We introduce some existing localized estimators especially on discrete sample spaces. In later sections,
we consider statistical properties of a localized variant of Z-estimators.

Let us summarize the notations to be used throughout the paper. Let R be the set of all
real numbers. The discrete sample space is denoted as X . The statistical model pθ(x) for x ∈ X
with the parameter θ ∈ Θ ⊂ Rd is also expressed as p(x; θ). The vector a usually denotes the
column vector, and ·T denotes the transposition of vector or matrix. For a linear space T and an
integer d, (T)d denotes the d-fold product space of T, and the element c ∈ (T)d is expressed as
c = (c1, . . . , cd). The product space of two subspaces T1 and T2 that are orthogonal to each other is
denoted as T1 ⊕ T2. For the function f (θ) of the parameter θ ∈ Rd, ∇ f denotes the gradient vector
( ∂ f

∂θ1
, . . . , ∂ f

∂θd
)T . The indicator function is denoted as 1[A] that takes 1 if A is true and 0 otherwise.

2.1. M- and Z-Estimators

Suppose that samples x1, . . . , xm are i.i.d. distributed from the probability p(x) over the discrete
sample space X . A statistical model pθ(x) = p(x; θ) with the parameter θ ∈ Θ ⊂ Rd is assumed to
estimate p(x). In this paper, our concern is the statistical efficiency of estimators. Hence, we suppose
that the statistical model includes p(x).

The MLE is commonly used to estimate p(x). It uses the negative log-likelihood of the model,
− log pθ(x), as the loss function and the estimator is given by the minimum solution of its
empirical mean, − 1

m ∑m
i=1 log pθ(xi).

Generally, the estimator obtained by the minimum solution of a loss function is referred to as
the M-estimator. The MLE is an example of M-estimators. When the loss function is differentiable,
the gradient of the loss function vanishes at the estimated parameter. Instead of minimizing
loss function, a solution of the system of equations also provides an estimator of the parameter.
Such an estimator is called the Z-estimator [1]. In the MLE, the system of equations is given as

1
m

m

∑
i=1
∇ log pθ(xi) = 0,

where 0 ∈ Rd is the null-vector. The gradient ∇ log pθ(x) is known as the score function of the
model pθ(x). In this paper, the score function is denoted as

uθ(x) = ∇ log pθ(x).
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In general, the Z-estimator is defined as the solution of the system of equations

1
m

m

∑
i=1

fθ(xi) = 0,

where the Rd-valued function fθ(x) = f (x; θ) is referred to as the identification function [15,16].
In the M-estimator, the identification function is given as the gradient of the loss function. In general,
however, the identification function itself is not necessarily expressed as the gradient of a loss function,
if it is not integrable. The identification function fθ(x) is also called Z-estimator with some abuse
of terminology.

2.2. Localized Estimators

Below, let us introduce some localized estimators. The statistical model defined on the discrete set
X is denoted by

pθ(x) =
p̃θ(x)

Zθ
(1)

for x ∈ X , where Zθ is the normalization constant at the parameter θ, i.e.,

Zθ = ∑
x∈X

p̃θ(x).

Throughout the paper, we assume pθ(x) > 0 for all x ∈ X and all θ ∈ Θ ⊂ Rd.

Example 1 (Pseudo-likelihood). Suppose that X is expressed as the product space X = X1 × · · · × Xn,
where X1, . . . ,Xn are finite sets such as {0, 1}. For x = (x1, . . . , xn) ∈ X , let x−k be the
n − 1 dimensional vector defined by dropping the k-th element of x. The loss function of the
pseudo-likelihood, SPS, is defined as the negative log-likelihood of the conditional probability
pθ(xk|x−k) defined from pθ(x), i.e.,

SPS(x, pθ) = −
n

∑
k=1

log pθ(xk|x−k) = −
n

∑
k=1

{
log p̃θ(x)− log ( ∑

xk∈Xk

p̃θ(x))
}

. (2)

The pseudo-likelihood does not require the normalization constant, and it satisfies the statistical
consistency of the parameter estimation [2,17]. The identification function of the corresponding
Z-estimator is obtained by the gradient vector of the loss Function (2).

Example 2 (Composite likelihood). The composite likelihood was proposed as an extension of the
pseudo-likelihood [3]. Suppose that X is expressed as the product space as in Example 1. For the index
subset A ⊂ {1, . . . , n}, let xA = (xi)i∈A be the subvector of x ∈ X . For each ` = 1, . . . , M, Suppose that
A` and B` are a pair of disjoint subsets in {1, . . . , n}, and let C` be the complement of the union A` ∪ B`,
i.e., C` = (A` ∪ B`)

c. Given positive constants γ1, . . . , γM, the loss function of the composite likelihood,
SCL, is defined as

SCL(x, pθ) = −
M

∑
`=1

γ` log pθ(xA`
|xB`

) = −
M

∑
`=1

γk log
{

∑
xC`

p̃θ(x)−∑
xBc

`

p̃θ(x)
}

.

The composite likelihood using the subsets A` = {`}, B` = Ac
` and positive constant γ` = 1 for

` = 1, . . . , n yields the pseudo-likelihood. As well as the pseudo-likelihood, the composite likelihood
has the statistical consistency under some regularity condition [4].



Entropy 2016, 18, 273 4 of 15

Originally, the pseudo and composite likelihoods were proposed to deal with spatial data [2,3].
As a generalization of these estimators, a localized variant of scoring rules works efficiently to the
statistical analysis of discrete spatial data [18].

3. A Stochastic Variant of Z-Estimators

In this section, we define a stochastic variant of Z-estimators. For the discrete sample space X ,
suppose that the neighborhood system N is defined as a subset of the power set 2X , i.e., N is a family of
subsets in X . Let us define the neighborhood system at x ∈ X by Nx = {e ∈ N|x ∈ e}. We assume that
Nx is not empty for any x. In some class of localized estimators, the neighborhood system is expressed
using an undirected graph onX [7]. In our setup, the neighborhood system is not necessarily expressed
by an undirected graph, and we allow the neighborhood system to possess multiple neighbors at each
point x.

Let us define the stochastic Z-estimator. A conditional probability of the set e ∈ N given x ∈ X
is denoted as q(e|x). We assume that q(e|x) = 0 if e 6∈ Nx throughout the paper. Given a sample x,
we randomly generate a neighborhood e from the conditional probability q(e|x). Using i.i.d. copies
of (x, e), we estimate p(x). Here, the statistical model pθ(x) of the form (1) is used. We use the
Z-estimator fθ(x, e) = f (x, e; θ) ∈ Rd to estimate the parameter θ ∈ Θ ⊂ Rd. The element of fθ(x, e) is
denoted as fθ,k(x, e) or fk(x, e; θ) for k = 1, . . . , d. The expectation under the probability pθ(x)q(e|x) is
written as Eθ,q[·]. Suppose that the equality

Eθ,q[ fθ ] = 0 (3)

holds for all θ ∈ Θ. In addition, we assume that the vectors Eθ,q[∇ fθ,k], k = 1, . . . , d are linearly
independent, meaning that fθ depends substantially on the parameter θ [19]. The solution of the
system of equations

1
m

m

∑
i=1

fθ(xi, ei) = 0 (4)

produces a statistically consistent estimator under some regularity condition [1]. In the parameter
estimation of the model pθ(x), the stochastic Z-estimator is defined as the solution of (4) using the
identification function satisfying (3). As shown in Section 5, stochastic Z-estimators are useful
to investigate statistical properties of the standard pseudo-likelihood and composite likelihood in
Examples 1 and 2.

The computational tractability of the stochastic Z-estimator is not necessarily guaranteed.
The MLE using the score function fθ(x, e) = uθ(x) is regarded as a stochastic Z-estimator for any
q(e|x) and it may not be computationally tractable because of the normalizing constant. As a class
of computationally efficient estimators, let us define the stochastic local Z-estimator as the stochastic
Z-estimator using fθ(x, e) satisfying

Eθ,q[ fθ |e] = 0 (5)

for any neighborhood e ∈ N, where Eθ,q[·|e] is the conditional expectation given e. The conditional
probability p(x|e) of pθ(x)q(e|x) can take a positive value only when x ∈ e. Hence, fθ(x, e) depends
only on the neighborhood of x and its computation will be tractable.

Example 3 (Stochastic pseudo-likelihood). Let us define the stochastic variant of the pseudo-likelihood
estimator. On the sample spaceX = X1× · · ·×Xn, the neighborhood system Nx at x = (x1, . . . , xn) ∈ X
is defined as Nx = {ex,k | k = 1, . . . , n}, where ex,k ⊂ X is given as

ex,k = {(x1, . . . , xk−1, zk, xk+1, . . . , xn) | zk ∈ Xk}.
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In order to estimate the parameters in complex models such as conditional random fields and
Boltzmann machines, the union, ∪e∈Nx e, is often used as the neighborhood at x [2,9,17]. Let the
conditional probability q(e|x) on Nx as q(ex,k|x) = qk, k = 1, . . . , n, where q1, . . . , qn are positive
numbers satisfying ∑n

k=1 qk = 1. The identification function of the stochastic pseudo-likelihood is
defined by

fθ(x, e) = ∇ log
pθ(x)

∑z∈e pθ(z)

for e ∈ Nx. Then, fθ(x, ex,k) is equal to ∇ log pθ(xk|x−k). The conditional probability p(x|e) derived
from pθ(x)q(e|x) is given as

p(x|ex,k) =
pθ(x)q(ex,k|x)

∑z∈ex,k
pθ(z)q(ex,k|z)

=
pθ(x)qk

∑z∈ex,k
pθ(z)qk

= pθ(xk|x−k),

where we used the equality ex,k = ez,k for z ∈ ex,k. Hence, the equality (5) holds for any (qk)k=1,...,n.
When qk depends on x, p(x|ex,k) is different from pθ(xk|x−k) in general.

Example 4 (Stochastic variant of composite likelihood). Let us introduce a stochastic variant of
composite likelihood on the sample space X = X1 × · · · × Xn. Below, notations in Example 2 are used.
Let us define e′x,`, ` = 1, . . . , M by the subset e′x,` = {y ∈ X | yB`

= xB`
}, and the neighborhood system

N′x by N′x = {e′x,` | ` = 1, . . . , M}. We assume that the map from ` to B` is one to one. In other words,
the disjoint subsets A`, B`, C` can be specified from the neighborhood e′x,`. Suppose that the conditional
probability q′(e′|x) on N′x is defined as q′(e′x,`|x) = q′` for ` = 1, . . . , M, where q′1, . . . , q′M are positive
numbers satisfying ∑M

`=1 q′` = 1. As well as Example 3, we see that the conditional probability q′(x|e′x,`)

defined from pθ(x)q′(e′|x) is given as pθ(xA`
, xC`
|xB`

). Let us consider the identification function,

fθ(x, e′x,`) = ∇ log
∑xC`

pθ(x)

∑xBc
`

pθ(z)
, (6)

which is nothing but∇ log pθ(xA`
|xB`

). Then, (5) holds under the joint probability pθ(x)q′(e′|x). Indeed,
we have

Eθ,q′ [ fθ|e′x,`] = ∑
xA`

,xC`

pθ(xA`
, xC`
|xB`

)∇ log pθ(xA`
|xB`

) = 0

for any (q′`)`=1,...,M. In this paper, the Z-estimator using (6) is called the reduced stochastic composite
likelihood (reduced-SCL). The stochastic composite likelihood proposed in [20] is a randomized
extension of the above fθ(x, e′). Let z = (z1, . . . , zM) be a binary random vector taking an element
of {0, 1}M, and α1, . . . , αM be positive constants. The SCL is defined as the Z-estimator obtained by

f (x, z; θ) =
M

∑
`=1

α`z`∇ log p(xA`
|xB`

; θ).

The statistical consistency and the normality of the SCL is shown in [20].

4. Neighborhood Systems and Asymptotic Variances

We consider the relation between neighborhood systems and statistical properties of stochastic
local Z-estimators.
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4.1. Tangent Spaces of Statistical Models

At the beginning, let us introduce some geometric concepts to investigate statistical properties
of localized estimators. These concepts are borrowed from information geometry [21]. For the
neighborhood system N with the conditional probability q(e|x), let us define the linear space Tθ,q as

Tθ,q = {a : X × N → R |Eθ,q[a] = 0, a(x, e) = 0 if q(e|x) = 0}.

The inner product for a1, a2 ∈ Tθ,q is defined as Eθ,q[a1a2]. A geometric meaning of Tθ,q is
the tangent space of the statistical model {pθ(x)q(e|x)|θ ∈ Θ}. For any a ∈ Tθ,q and sufficiently
small ε > 0, the perturbation of pθ(x)q(e|x) to the direction a(x, e) leads to the probability function
pθ(x)q(e|x)(1 + εa(x, e)). Each element of the score function uθ,j(x), j = 1, . . . , d is a member of Tθ,q by
regarding as uθ,j(x) · 1[q(e|x) 6= 0].

Let us consider the stochastic Z-estimator derived from fθ = ( fθ,1, . . . , fθ,k) satisfying fθ ∈ (Tθ,q)
d

for any θ. It leads to a Fisher consistent estimator. Stochastic local Z-estimators use an identification
function in the linear subspace

TL
θ,q = { f ∈ Tθ,q |Eθ,q[ f |e] = 0, ∀e ∈ N}. (7)

The orthogonal complement of TL
θ,q in Tθ,q is denoted as TE

θ,q, which is given as

TE
θ,q = { f ∈ Tθ,q | f (x, e) does not depend on x}.

Indeed, the orthogonality of TL
θ,q and TE

θ,q is confirmed by

Eθ,q[a(x, e)b(e)] = Eθ,q[b(e)E[a(x, e)|e]] = 0

for any a ∈ TL
θ,q and any b ∈ TE

θ,q. In addition, any f ∈ Tθ,q can be decomposed into

f = ( f −Eθ,q[ f |e]) +E[ f |e]

such that f −Eθ,q[ f |e] ∈ TL
θ,q and Eθ,q[ f |e] ∈ TE

θ,q.

The efficient score uI
θ = (uI

θ,k)k=1,...,d is defined as the projection of each element of the score uθ

onto TL
θ,q, i.e.,

uI
θ(x, e) = uθ(x)−Eθ,q[uθ |e] = ∇ log p̃(x; θ)−Eθ,q[∇ log p̃(x; θ)|e].

The efficient score is computationally tractable when the size of the neighborhood e is not
exponential order but linear or low-degree polynomial order of n, where n is the dimension of x.
The trade-off between the computational and statistical efficiency is presented in Theorems 1 and 2
in Section 4.2.

Another expression of the efficient score is

uI
θ(x, e) = ∇ log p(x|e; θ, q), (8)
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where the conditional probability p(x|e; θ, q) is defined from pθ(x)q(e|x). The above equality is
obtained by

uI
θ(x, e) = ∇ log pθ(x)−∑

x∈e

pθ(x)q(e|x)
∑x′ pθ(x′)q(e|x′)∇ log pθ(x)

= ∇ log(pθ(x)q(e|x))− ∑x∈e∇pθ(x)q(e|x)
∑x′∈e pθ(x′)q(e|x′)

= ∇ log
pθ(x)q(e|x)

∑x′ pθ(x′)q(e|x′) = ∇ log p(x|e; θ, q).

We define T I
θ,q as the subspace of TL

θ,q spanned by {uI
θ,k | k = 1, . . . , d}, and TA

θ,q be the orthogonal

complement of T I
θ,q in TL

θ,q. As a result, we obtain

Tθ,q = TL
θ,q ⊕ TE

θ,q, TL
θ,q = T I

θ,q ⊕ TA
θ,q.

We describe statistical properties of stochastic local Z-estimators using the above tangent spaces.

4.2. Asymptotic Variance of Stochastic Local Z-Estimators

Under a fixed conditional probability q(e|x), we derive the asymptotically efficient stochastic
local Z-estimator in the same way to semi-parametric estimation [19,22]. In addition, we consider
the monotonicity of the efficiency w.r.t. the size of the neighborhood. Given i.i.d. samples (xi, ei),
i = 1, . . . , m, generated from p(x)q(e|x), the estimator θ̂ of the parameter in the model (1) is obtained by
solving the system of Equation (4), where fθ ∈ (Tθ,q)

d for any θ ∈ Θ. Suppose that the true probability
function p(x) is realized by pθ(x) of the model (1). As shown in [1], the standard asymptotic theory
yields that the asymptotic variance of the above Z-estimator is given as

lim
n→∞

m ·V[θ̂] = Eθ,q[ fθuT
θ ]
−1Eθ,q[ fθ f T

θ ]Eθ,q[uθ f T
θ ]
−1. (9)

The derivation of the asymptotic variance is presented in Appendix for completeness of
the presentation.

We consider the asymptotic variance of the stochastic local Z-estimators. A simple expression
of the asymptotic variance is obtained using the efficient score uI

θ . Without loss of generality,
the identification function of the stochastic local Z-estimator, fθ ∈ (TL

θ,q)
d, is expressed as

fθ(x, e) = uI
θ(x, e) + aθ(x, e),

where aθ ∈ (TA
θ,q)

d. The reason is briefly shown below. Suppose that fθ(x, e) is decomposed

into fθ(x, e) = BθuI
θ(x, e) + aθ(x, e), where Bθ is a d by d matrix that does not depend on x and e.

The condition that the matrix Eθ,q[∇ fθ ] is invertible assures that Bθ is invertible, since

Eθ,q

[
∂

∂θi
fθ,k

]
= ∑

j

∂Bθ,kj

∂θi
Eθ,q

[
uI

θ,j

]
+ ∑

j
Bθ,kjEθ,q

[
∂

∂θi
uI

θ,j

]
+Eθ,q

[
∂

∂θi
aθ,j

]
= −∑

j
Bθ,kjEθ,q

[
uθ,iuI

θ,j

]
−Eθ,q

[
uθ,iaθ,j

]
= −∑

j
Bθ,kjEθ,q

[
uI

θ,iu
I
θ,j

]
holds. In the above equalities, we use the formula

Eθ,q

[
∂

∂θi
fθ

]
= −Eθ,q [uθ,i fθ ]
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for fθ ∈ Tθ,q that is obtained by differentiating the identity Eθ,q[ fθ ] = 0. Clearly, fθ(x, e) provides the
same estimator as B−1

θ fθ(x, e). See [19] for details of the standard form of Z-estimators.

Theorem 1. Let us define the d by d matrix GI
θ by

GI
θ = E[uI

θ(u
I
θ)

T ].

Then, for a fixed conditional probability q(e|x), the asymptotic variance of any stochastic local Z-estimator θ̂

satisfies the inequality

lim
m→∞

m ·V[θ̂] � (GI
θ)
−1

in the sense of the non-negative definiteness. The equality is attained by the Z-estimator using uI
θ .

Proof. Let us compute each matrix in (9). According to the above argument, without loss of generality,
we assume fθ = uI

θ + aθ for aθ ∈ (TA
θ,q)

d. The matrix Eθ,q[uθ f T
θ ] is then expressed as

Eθ,q[uθ f T
θ ] = Eθ,q[(uI

θ +Eθ,q[uθ |e])(uI
θ + aθ)

T ] = Eθ,q[uI
θ(u

I
θ)

T ] = GI
θ

due to uI
θ ∈ (T I

θ,q)
d, E[uθ |e] ∈ (TE

θ,q)
d and aθ ∈ (TA

θ,q)
d. Let us define A = E[aθaT

θ ]. Then, we have

Eθ,q[ fθ f T
θ ] = GI

θ + A.

As a result, we obtain

lim
m→∞

m ·V[θ̂] = (GI
θ)
−1(GI

θ + A)(GI
θ)
−1 = (GI

θ)
−1 + (GI

θ)
−1 A(GI

θ)
−1 � (GI

θ)
−1.

When fθ = uI
θ , the matrix A becomes the null matrix and the minimum asymptotic variance

is attained.

The minimum variance of stochastic local Z-estimators is attained by the efficient score.
This conclusion agrees to the result of the asymptotically efficient estimator in semi-parametric models
including nuisance parameters [19,22].

Remark 1. Let us consider the relation between the stochastic pseudo-likelihood∇ log pθ(xk|x−k) and
efficient score uI

θ(x, ex,k). Suppose that the neighborhood system Nx and the conditional distribution
q(e|x) on Nx are defined as shown in Example 3. Then, we have uI

θ(x, ex,k) = ∇ log pθ(xk|x−k).
Likewise, we find that the reduced-SCL, ∇ log pθ(xA`

|xB`
), is equivalent with the efficient score under

the setup in Example 4 when the index subset A` is defined as Bc
`.

4.3. Monotonicity of Asymptotic Efficiency

As described in [23], for the composite likelihood estimator with the index pairs (A`, B`),
` = 1, . . . , M, it is widely believed that by increasing the size of A` (and correspondingly decreasing the
size of B` = Ac

`), one can capture more dependency relations in the model and increase the accuracy.
For the stochastic local Z-estimators, we can obtain the exact relation between the neighborhood
system and asymptotic efficiency.

Let us consider two stochastic local Z-estimators; one is defined by q(e|x) on the neighborhood
system e ∈ Nx and the other is given by q′(e′|x) on the neighborhood system e′ ∈ N′x. The efficient
score are respectively written as uI

θ(x, e) for q(e|x) and u′Iθ (x, e′) for q′(e|x). In addition, let us define
GI

θ = Eθ,q[uI
θ(u

I
θ)

T ] and G′Iθ = Eθ,q′ [u′Iθ (u
′I
θ )

T ].
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Theorem 2. Let p(x, e, e′) be the joint probability of (x, e, e′) ∈ X × N × N′ and suppose that
probability functions, q(e|x), q′(e′|x) and pθ(x), are obtained from p(x, e, e′). We assume that

E[E[uθ |e]|e′] = E[uθ |e′] (10)

holds under the probability distribution p(x, e, e′). Then, we have

(GI
θ)
−1 � (G′Iθ )

−1, (11)

i.e., the efficiency bound of N′x and q′(x|e) is smaller than or equal to that of Nx and q(x|e).

Proof. We use the basic formula of the conditional variance

V[X] = V[E[X|Z]] +E[V[X|Z]] � V[E[X|Z]] (12)

for random variables X and Z. The above formula is applied to the score uθ(x) and the efficient
score uI

θ(x, e). Note that E[V[uθ |e]] = E[uI
θ(u

I
θ)

T ] = GI
θ holds. Then, we have

V[uθ ] = V[E[uθ |e]] +E[V[uθ |e]] = V[E[uθ |e]] +E[uI
θ(u

I
θ)

T ]

= V[E[uθ |e]] + GI
θ = V[E[uθ |e′]] + G′Iθ .

The last equality comes from the fact that the score uθ(x) is common in both setups. Since the
equality (10) holds, again the Formula (12) with X = E[uθ |e] and Z = e′ yields

V[E[uθ |e]] = V[E[uθ |e′]] +E[V[E[uθ |e]|e′]] � V[E[uθ |e′]].

Thus, we obtain

GI
θ = V[uθ ]−V[E[uθ |e]] � V[uθ ]−V[E[uθ |e′]] = G′Iθ .

As a result, we have (11).

A similar inequality is derived in [24] for the mutual Fisher information. The mutual
Fisher information is rather similar to V[E[uθ |e]] than GI

θ . Theorem 13 of [24] corresponds to the
one-dimensional version of the inequality V[E[uθ |e]] � V[E[uθ |e′]].

Let us show an example that agrees to (10). We define two neighborhood systems N = {Nx|x ∈ X}
and N′ = {N′x|x ∈ X} such that, for any e ∈ Nx, there exists e′ ∈ N′x satisfying e ⊂ e′. For the
joint probability p(x, e, e′), suppose that x and e′ are conditionally independent given e and that
the conditional probability r′(e′|e) derived from p(x, e, e′) is equal to zero unless e ⊂ e′. Under these
conditions, q′(e′|x) derived from p(x, e, e′) takes 0 if e′ 6∈ N′x. The conditional independence assures that
p(x, e, e′) is expressed as p(x, e, e′) = pθ(x)q(e|x)r′(e′|e) = p(x|e)r(e|e′)q(e′). Hence, the conditional
probability p(x|e′) is expressed as ∑e∈N p(x|e)r(e|e′). Thus, we obtain

E[E[uθ|e]|e′] = ∑
e∈N

∑
x∈X

uθ(x)p(x|e)r(e|e′) = ∑
x∈X

uθ(x) ∑
e∈N

p(x|e)r(e|e′) = ∑
x∈X

uθ(x)p(x|e′).

As a result, the better efficiency bound is obtained by the larger neighborhood. A similar result is
presented in [25] for the composite likelihood estimators. The relation of the result in [25] and ours is
explained in Section 5.3 of this paper.

Example 5. Let Nx be a neighborhood system at x endowed with the conditional distribution q(e|x).
Another neighborhood system is defined as N′x = {X} for all x, and q′(e′|x) = 1 for e′ = X . Let us
define p(x, e, e′) = pθ(x)q(e|x) for e′ = X and otherwise p(x, e, e′) = 0. Since e′ always takes X , x and e′
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are conditionally independent given e. Thus, we have GI
θ � G′Iθ . Indeed, G′Iθ is the Fisher information

matrix of the model pθ(x).

We compare the stochastic pseudo-likelihood and reduced-SCL. Let Nx = {ex,k | k = 1, . . . , n}
be the neighborhood system defined in Example 3, and N be ∪x∈XNx. The conditional distribution
on Nx is given by q(ex,k|x) = qk, k = 1, . . . , n. As shown in Remark 1, the corresponding efficient
score is nothing but the stochastic pseudo-likelihood, i.e., uI

θ(x, ex,k) = ∇ log pθ(xk|x−k). Let us define
another neighborhood system N′x in the same way as Example 4. For the subsets B` ⊂ X and A` = Bc

`,
` = 1, . . . , M, we define e′x,` as {y ∈ X | yB`

= xB`
} and N′x = {e′x,` | ` = 1, . . . , M}. Let N′ be ∪x∈XN′x.

The conditional distribution on N′x is given as q′(e′x,`|x) = q′` for ` = 1, . . . , M. Then, the efficient score
associated with N′ and q′ is equal to the reduced-SCL, i.e., u′Iθ (x, e′x,`) = ∇ log pθ(xA`

|xB`
). As the direct

conclusion of Theorem 2 and the above argument about the property of the conditional independence
between x and e′ ∈ N′ given e ∈ N, we obtain the following corollary.

Corollary 1. We define N′e for e ∈ N by N′e = {e′ ∈ N′|e ⊂ e′}. Let r′(e′|e) be a conditional probability on
N′e given e ∈ N, where r′(e′|e) = 0 is assumed for e′ 6∈ N′e. If the equality q′` = ∑n

k=1 qkr′(e′x,`|ex,k) holds,
the reduced-SCL with N′ and q′ is more efficient than stochastic pseudo-likelihood with N and q.

Example 6. Suppose that the size of N′e is the same for all e ∈ N and that the size of the set
{e ∈ N|x ∈ e ⊂ e′} is the same for any x ∈ X and e′ ∈ N′ such that x ∈ e′. Let q(e|x) (resp. q′(e′|x)) be
the uniform distribution on Nx (resp. N′x). Then, the reduced-SCL is more efficient than stochastic
pseudo-likelihood. Indeed, the assumption ensures that the sum ∑e∈N q(e|x)r′(e′|e) does not depend on
x and e′. Thus, the uniform distribution q′(e′|x) meets the condition of the above corollary. For example,
let B1, . . . , BM be all subsets of size n− 2 in {1, . . . , n}. Then, we have M = n(n− 1)/2. The size of N′e
is n− 1, and the size of {e ∈ N|x ∈ e ⊂ e′} is equal to 2.

5. Local Z-Estimators and Efficiency Bounds

In this section, we define the local Z-estimator as the expectation of a stochastic local Z-estimator,
and derive its efficiency bound.

5.1. Local Z-Estimators

Computationally tractable estimators such as pseudo-likelihood and composite likelihood are
obtained by the expectation of an identification function in TL

θ,q. Let us define the local Z-estimator as
the Z-estimator using

f̄θ(x) = Eθ,q[ fθ|x],

where fθ ∈ (TL
θ,q)

d. The conditional expectation given x is regarded as the projection onto the subspace

TX
θ,q which is defined as

TX
θ,q = { f ∈ Tθ,q | f (x, e) does not depend on e}.

Let ΠX be the projection operator onto TX
θ,q and Π⊥X be the one onto the orthogonal complement

of TX
θ,q. Then, one can prove ΠX [ f ] = E[ f |x] and Π⊥X [ f ] = f −E[ f |x] for f ∈ Tθ,q. When the number

of elements in the neighborhood Nx is reasonable, the computation of the local Z-estimator is tractable.
Below, we show that some estimators are expressed as the local Z-estimator.

Example 7 (Pseudo-likelihood and composite likelihood). In the setup of Example 3, the conditional
expectation of the efficient score, Eθ,q[uI

θ |x], yields the pseudo-likelihood when q(e|x) is the uniform
distribution on Nx. In the setup of Example 4, let us assume A` = Bc

` and q′(e′x,`|x) = q′`. Then,
the conditional expectation of the efficient score uI

θ(x, e′x,`) = ∇ log pθ(xA`
|xB`

) yields
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Eθ,q′ [u
I
θ |x] =

M

∑
`=1

q′`∇ log pθ(xA`
|xB`

),

which is the general form of the composite likelihood in Example 2 with γ` = q′`.

5.2. Efficiency Bounds

We derive the efficiency bound of the local Z-estimator. Without loss of generality, the local
Z-estimator f̄θ(x) ∈ (TX

θ,q)
d is represented as

f̄θ(x) = E[ fθ |x], fθ = uI
θ + aθ ∈ (TL

θ,q)
d, aθ ∈ (TA

θ,q)
d.

Under the model pθ(x), we calculate the asymptotic variance (9) of the local Z-estimator θ̂

using f̄θ(x). The matrix Eθ,q[uθ f̄ T
θ ] in (9) is given as

Eθ,q[uθ f̄ T
θ ] = Eθ,q[uθ(uI

θ + aθ)
T ] = E[uI

θ(u
I
θ)

T ] = GI
θ .

Hence, we have

lim
m→∞

m ·V[θ̂] = (GI
θ)
−1Eθ,q[ f̄θ f̄ T

θ ](G
I
θ)
−1.

Here, the expectation Eθ,q[ f̄θ f̄ T
θ ] can be written as the expectation under pθ(x), i.e., Eθ [ f̄θ f̄ T

θ ],
since uθ and f̄θ depend only on x. The orthogonal decomposition fθ = f̄θ + Π⊥X [ fθ ] leads to

(GI
θ)
−1Eθ,q[ fθ f T

θ ](G
I
θ)
−1 = (GI

θ)
−1Eθ,q[ f̄θ f̄ T

θ ](G
I
θ)
−1 + (GI

θ)
−1Eθ,q[Π⊥X [ fθ ]Π⊥X [ f ]Tθ ](G

I
θ)
−1

� (GI
θ)
−1Eθ,q[ f̄θ f̄ T

θ ](G
I
θ)
−1,

(13)

meaning that the asymptotic variance of the stochastic local Z-estimator using fθ(x, e) is larger then or
equal to that of the local Z-estimator using f̄θ(x).

We consider the optimal choice of aθ ∈ (TA
θ,q)

d in f̄θ(x) = Eθ,q[uI
θ + aθ |x]. Let us define the

subspace TXA
θ,q as ΠXTA

θ,q = {ΠX [a] | a ∈ TA
θ,q}, and ΠXA be the projection operator onto TXA

θ,q . Then,

we define vI
θ,j(x) ∈ TX

θ,q as the projection of uI
θ,j(x, e) ∈ T I

θ,q onto the orthogonal complement of TXA
θ,q

in TX
θ,q, i.e.,

vI
θ,j = (ΠX −ΠXA)[uI

θ,j]

for j = 1, . . . , d. In this paper, we call vI
θ = (vI

θ,1, . . . , vI
θ,d)

T the local efficient score.

Theorem 3. Let us define d by d matrix H I
θ as Eθ,q[vI

θ(v
I
θ)

T ]. Then, the efficiency bound of the local Z-estimator
θ̂ is given as

lim
m→∞

m ·V[θ̂] � (GI
θ)
−1H I

θ(G
I
θ)
−1.

The equality is attained by the local Z-estimator using the local efficient score vI
θ = (ΠX −ΠXA)[uI

θ ].

Proof. f̄θ(x) = Eθ,q[uI
θ + aθ |x] has the orthogonal decomposition vI

θ + bθ , where bθ ∈ (TXA
θ,q )d. Hence,

we obtain Eθ,q[ f̄θ f̄ T
θ ] � Eθ [vI

θ(v
I
θ)

T ] = H I
θ and

(GI
θ)
−1Eθ,q[ f̄θ f̄ T

θ ](G
I
θ)
−1 � (GI

θ)
−1H I

θ(G
I
θ)
−1.

The left-hand side of the above inequality is the asymptotic variance of the local Z-estimator.
The equality is attained by the local Z-estimator using vI

θ .
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We consider the relation between the local efficient score vI
θ(x) and the score uθ(x). We define

TML
θ,q as the subspace spanned by the score uθ,j(x), j = 1, . . . , d. For any a ∈ TA

θ,q, we have

Eθ,q[uθ,jEθ,q[a|x]] = Eθ,q[uθ,ja] = 0, j = 1, . . . , d,

meaning that TML
θ,q and TXA

θ,q are orthogonal to each other. Hence, TX
θ,q is decomposed into

TX
θ,q = TXA

θ,q ⊕ TML
θ,q ⊕ TXC

θ,q ,

where TXC
θ,q is the orthogonal complement of TXA

θ,q ⊕ TML
θ,q in TX

θ,q. Eventually, subspaces in Tθ,q satisfy
the following relations,

Tθ,q = TE
θ,q ⊕ T I

θ,q ⊕ TA
θ,q, TX

θ,q = (ΠXTA
θ,q)⊕ TML

θ,q ⊕ TXC
θ,q .

Let us define TXI
θ,q as the subspace spanned by the local efficient score vI

θ,j(x), j = 1, . . . , d. Under a

mild assumption, TXI
θ,q and TML

θ,q has the same dimension. Since vI
θ(x) is orthogonal to ΠXTA

θ,q, TXI
θ,q is

included in TML
θ,q ⊕ TXC

θ,q . Hence, TXC
θ,q is interpreted as the subspace expressing the information loss

caused by the localization of the score uθ .

5.3. Relation to Existing Works

5.3.1. Comparison of Local Z-Estimators

We compare the asymptotic variances of two local Z-estimators that are connected to
composite likelihoods.

One estimator is defined from the neighborhood system N which consists of the singleton
Nx = {ex}, x ∈ X . Here, we assume that ex = ex′ holds for x′ ∈ ex and ∪x∈X ex = X . Such a
neighborhood system N is called the equivalence class [25]. An equivalence class corresponds to a
partition of the sample space. The conditional probability q(e|x) takes 1 for e = ex and 0 otherwise.
Let uI

θ(x, e) be the efficient score defined from N and q(e|x), and ūI
θ(x) be the local Z-estimator

ūI
θ(x) = Eθ,q[uI

θ |x].
Another localized estimator is defined from the neighborhood system N′ which consists of

N′x, x ∈ X , where N′x is not necessarily a singleton. Suppose that ex ⊂ e′ holds for any e′ ∈ N′x.
The conditional probability q′(e′|x) is defined as q′(e′|x) = r′(e′|ex), where r′(e′|ex) is a conditional
probability of e′ ∈ N′x given ex. The corresponding efficient score is denoted as u′Iθ (x, e) and let us
define ū′Iθ (x) = Eθ,q′ [u′Iθ |x] as the local Z-estimator associated with N′ and q′(e′|x).

From the definition, the joint probability pθ(x)q(e|x)r′(e′|e) agrees to q(e|x) an q′(e′|x). Hence we
see that x and e′ are conditionally independent given e. Hence, Theorem 2 guarantees the inequality
(GI

θ)
−1 � (G′Iθ )

−1.
The efficient score uI

θ(x, e) can take a non-zero value only when e = ex. Hence, uI
θ(x, e) is regarded

as the function of x, i.e, uI
θ(x, e) ∈ (TX

θ,q)
d, and the asymptotic variance of the local Z-estimator obtained

by ūI
θ(x) = uI

θ(x, ex) is (GI
θ)
−1. On the other hand, the asymptotic variance of the local Z-estimator

derived from ū′Iθ (x) is less than or equal to (G′Iθ )
−1 due to (13). Therefore, ū′Iθ with N′ and q′ provides

more efficient estimators than ūI
θ with N and q.

Liang and Jordan presented a similar result in [25]. In their setup, the larger neighborhood N′x is a
singleton {e′x} and the smaller one, Nx, can have multiple neighborhoods at each x. In such a case,
the similar relation holds, i.e., the estimator with N′ is more efficient. However, their approach is
different from ours. In [25], the randomness is introduced over the patterns of the partition of X .
Moreover, their identification function corresponding to our ūI

θ(x) is decomposed into two terms;
one is the term conditioned on the partition and the other is its orthogonal complement. On the
other hand, our approach uses the decomposition of uI

θ(x, e) into ūθ
I(x) and its orthogonal complement.
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In their analysis, the simplified expression of the asymptotic variance shown in (9) and the
standard expression of the identification function, f (x, e) = uI

θ(x, e) + a(x, e), are not used. Hence,
the evaluation of the asymptotic variance yields rather a complex dependency on the estimator.
As a result, their approach does not show the efficiency bound, though the asymptotic variance of the
composite likelihood for exponential families is presented under the misspecified setup.

5.3.2. Closed Exponential Families

The so-called closed exponential family has an interesting property from the viewpoint of localized
estimators, as presented in [26]. Let pθ(x) = exp{θTt(x)− c(θ)} be the exponential family defined
for x = (x1, . . . , xn) ∈ X = X1 × · · · × Xn with the parameter θ ∈ Θ ⊂ Rd. The function t(x) ∈ Rd

is referred to as the sufficient statistic. Given disjoint index subsets A, B ⊂ {1, . . . , n}, let tB(x) be all
elements of t(x) that depend just on xB, and tA,B(x) be the other elements. Hence, tB(x) is expressed
as tB(xB). The parameter θ is correspondingly decomposed into θ = (θA,B, θB). Thus, we have
θTt(x) = θT

A,BtA,B(x) + θT
B tB(xB). The exponential family pθ(x) is called the closed exponential

family, when the marginal distribution of xB is expressed as the exponential family with the sufficient
statistic tB(xB).

We consider the composite likelihood of the closed exponential family. For the pairs of two disjoint
index subsets, {A`, B`}, ` = 1, . . . , M, suppose that any element of t(x) is included in tA`,B`

(x) at least
one `. Then, the local Z-estimator using the composite likelihood ∑M

`=1 log pθ(xA`
|xB`

) is identical to
the MLE [26]. Hence, the composite likelihood of the closed exponential family attains the efficiency
bound of the MLE.

For the general statistical model pθ(x), let us restate the above result in terms of the tangent spaces
in Tθ,q. Let us decompose pθ(x) into

pθ(x) = p(xA|xB; θ)p(xB; θ).

We assume that for any index subset B, all elements of ∇ log p(xB; θ) are included in TML
θ,q that

is spanned by the elements of uθ(x) = ∇ log pθ(x). Then, ∇ log p(xA|xB; θ) also lies in (TML
θ,q )d. Thus,

∇ log p(xA`
|xB`

; θ) is expressed as C`∇ log pθ(x) using a d by d matrix C`. If ∑M
`=1 C` is invertible,

the local Z-estimator obtained by ∑M
`=1∇ log pθ(xA`

|xB`
) is identical to the MLE. In this case,

ΠXT I
θ,q = TML

θ,q , i.e., TXI
θ,q = TML

θ,q holds. Therefore, there is no information loss caused by the localization.
The matrix C` for the closed exponential family is given as the projection matrix onto the subspace
spanned by tA`,B`

(x) − Eθ [tA`,B`
|xB] that is included in TML

θ,q . The above result implies that the

tangent space TXC
θ,q expressing the information loss will be related to the score of the marginal

distribution, ∇ log pθ(xB).

6. Conclusions

In this paper, some statistical properties of stochastic local Z-estimators and local Z-estimators
are investigated. The class of local Z-estimators includes pseudo-likelihood and composite likelihood.
For stochastic local Z-estimators, we established the exact relation between neighborhood systems and
the efficiency bound under a simple and general condition. In addition, the efficiency bound of the
local Z-estimators was presented.

Future works include the study of more general class of localized estimators. Indeed,
local Z-estimators do not include the class of proper local scoring rules [7]. It is worthwhile to
derive the efficiency bound for more general localized estimators. Exploring nice applications of the
efficiency bound will be another interesting direction of our study. In our setup, the local efficient
score expressed by the projection of the score attains the efficiency bound among local Z-estimators.
An important problem is to develop a computationally tractable method to obtain the projection onto
tangent subspaces.
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Appendix. Asymptotic Variance of Stochastic Local Z-Estimators

Given i.i.d. samples (xi, ei), i = 1, . . . , m from pθ(x)q(e|x), we estimate the parameter θ using the
stochastic local Z-estimator obtained by

1
m

m

∑
i=1

f (xi, ei; θ̂) = 0,

where the identification function satisfies fθ ∈ (Tθ,q)
d for any θ ∈ Θ ⊂ Rd. The Taylor expansion

around the true parameter θ yields

1
m

m

∑
i=1

f (xi, ei; θ) +
1
m

m

∑
i=1
∇ f (xi, ei; θ)(θ̂ − θ) + O(‖θ̂ − θ‖2) = 0,

where the element (∇ f )ij is given as ∂ fi
∂θj

. As m tends to infinity, the asymptotic distribution of θ̂ is
given as the multivariate normal distribution,

Eθ,q[∇ fθ ]
√

m(θ̂ − θ) ∼ Nd(0,Eθ,q[ fθ f T
θ ]).

Since Eθ,q[ fθ ] = 0 holds for any θ, the derivative ∇Eθ,q[ fθ ] is the null matrix. This fact yields

Eθ,q[∇ fθ ] = −Eθ,q[ fθ∇ log(pθq)T ] = −Eθ,q[ fθuT
θ ].

Hence, the asymptotic distribution of
√

m(θ̂ − θ) is the d-dimensional normal distribution with
mean 0 and variance Eθ,q[ fθuT

θ ]
−1Eθ,q[ fθ f T

θ ]Eθ,q[uθ f T
θ ]
−1.
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