
entropy

Article

Temporal Predictability of Online Behavior
in Foursquare

Wang Chen, Qiang Gao * and Huagang Xiong

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
chenwang@buaa.edu.cn (W.C.); hgxiong@buaa.edu.cn (H.X.)
* Correspondence: gaoqiang@buaa.edu.cn; Tel.: +86-10-8233-8705

Academic Editor: Raúl Alcaraz Martínez
Received: 16 June 2016; Accepted: 8 August 2016; Published: 12 August 2016

Abstract: With the widespread use of Internet technologies, online behaviors play a more and more
important role in humans’ daily lives. Knowing the times when humans perform their next online
activities can be quite valuable for developing better online services, which prompts us to wonder
whether the times of users’ next online activities are predictable. In this paper, we investigate the
temporal predictability in human online activities through exploiting the dataset from the social
network Foursquare. Through discretizing the inter-event times of users’ Foursquare activities into
symbols, we map each user’s inter-event time sequence to a sequence of inter-event time symbols.
By applying the information-theoretic method to the sequences of inter-event time symbols, we show
that for a user’s Foursquare activities, knowing the time interval between the current activity and
the previous activity decreases the entropy of the time interval between the next activity and current
activity, i.e., the time of the user’s next Foursquare activity is predictable. Much of the predictability
is explained by the equal-interval repeat; that is, users perform consecutive Foursquare activities
with approximately equal time intervals. On the other hand, the unequal-interval preference, i.e.,
the preference of performing Foursquare activities with a fixed time interval after another given
time interval, is also an origin for predictability. Furthermore, our results reveal that the Foursquare
activities on weekdays have a higher temporal predictability than those on weekends and that
users’ Foursquare activity is more temporally predictable if his/her previous activity is performed in
a location that he/she visits more frequently.
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1. Introduction

Understanding human activities has been considered a long-term fundamental and vital task
for decades. It can provide deep insights for analyzing many social, technological and economic
phenomena [1–5]. Despite much effort dedicated to the research of human activities, the quantitative
understanding has been impeded for a long time because of the lack of data recording human activities.
Thanks to the recent developments in sensing technologies, varieties of massive fine-grained datasets
about human behaviors have become available which offer an unprecedented opportunity in the study
of human activities. From the analyses of the datasets, one of the remarkable discoveries is that many
human activities in real life are predictable. For instance, the studies show that humans’ next location
to visit [6–8], next face-to-face conversation partner [9], next cellphone call partner [10], next store for
shopping [11], next time to return to a certain place [12] and next speed state while driving a car [13]
can all be predicted by exploiting the history of the behavior process, i.e., there is a predictability
existing in the behavioral patterns. Several methods have been proposed to forecast human behaviors.
For example, in [14,15] the Markov chain–based model is used to predict the next location in humans’
mobility trajectories. In [16], the researchers employ a negative binomial regression model to predict
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the number of times an individual moves between different rooms in their home. The prediction
methods above all investigate the spatial patterns of human behaviors while in this paper we focus on
human behavior’s temporal pattern. The predictability present in humans’ real lives is induced by
spatial and temporal constraints, such as the disposition of roads in urban settings or the timing of
daily routines [17].

With the rapid development of Internet technologies, especially the mobile Internet technologies,
many activities that humans perform in real life can be done on the web nowadays. For example,
a person can purchase products, study courses and chat with friends on the Internet. Furthermore,
Internet technologies increasingly provide novel services and applications for humans’ daily lives,
such as online games, posting a personal status and checking in at certain places. The widespread uses
of Internet technologies make online activities become a more and more important part of humans’
daily lives. Differing from activities in real life, humans can perform nearly any online activity in any
place at any time due to the high coverage of Internet access and the mass popularization of smart
devices (e.g., smart phone, smart pad), i.e., humans face much fewer constraints when performing
activities on the web than in real life. This difference raises the question of whether humans’ online
activities are predictable as well.

Quite recently, a few studies have pointed out that online activities also have predictability. It is
revealed that the uncertainty about the next email partner of a user is decreased by knowing the
current one [10]. In online games, knowing the current action can decrease the uncertainty about the
next action of the player [18]. For the commenting partner as well as choosing the location of online
check-ins, it is also shown that knowing the current action can decrease the uncertainty about the next
one [17,19]. Furthermore, it is shown in [20,21] that users’ rating and browsing trajectories on websites
also have a high degree of predictability. The above studies indicate that for humans’ next online
activities, what action the user performs and where the action is performed both are predictable.

What, where and when are the three essential components in describing human activities.
However, current studies on online activities all focus on the predictability of what action the user
performs or where the action is performed. Whether the time when the user performs the online
activity is predictable is still unclear. Exploring the temporal predictability in online activities not only
can provide a deeper understanding on the temporal characteristics of online behaviors, but it can
also help model human online activities for applications where the activity time plays an important
role, such as controlling computer viruses [22–24], scheduling Internet resources [25–27], emergency
detection [28,29], publishing information [30,31] and identification of anomalous users [32,33].

In this paper, we explore the temporal predictability in human online activities using the
dataset collected from the social network Foursquare. Foursquare is the largest and most popular
location-based social network. Using Foursquare, people can explore and share points of interest as
well as interact with friends through online check-ins at physical places. The dataset employed in this
study includes 2,073,740 check-in records generated by 18,107 users during 10 months. As predicting
the time of the next activity of a user is equivalent to predicting the time interval between his/her next
activity and the current one, our work focuses on the predictability of the time interval between the next
activity and the current one. To this end, we map the inter-event time sequence of a user’s Foursquare
activities to a sequence of inter-event time symbols and analyze it using the information-theoretic
method. Our results show that for Foursquare activities, knowing the time interval between the current
activity and the previous activity decreases the entropy of the time interval between the next activity
and the current activity, which indicates that the time of the next Foursquare activity is predictable.
The predictability is mainly originated from the equal-interval repeat; that is, the user performs
consecutive Foursquare activities with an approximately equal time interval. The unequal-interval
preference, i.e., the preference of performing Foursquare activities with a fixed time interval after
another given one, is also an origin of predictability. Finally, it is revealed that Foursquare activities on
weekdays have a higher temporal predictability than those on weekends and that the user’s Foursquare
activity is more temporally predictable if the previous one was performed in locations with a higher
visit frequency.
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2. Data and Methods

We conduct our investigation by using a dataset from the social network Foursquare. Foursquare
is the largest and most popular location-based social network with over 55 million users as of March
2015 [34]. It allows users to explore and share points of interest as well as to interact with friends
through online check-ins at physical places. In our study, the data are collected from 8 March 2010
to 21 January 2011. The length of data sampling is 319 days. For each check-in record, the dataset
provides the user-id identifying which user performs the check-in, the time of the check-in and
the location-id identifying the location where the check-in is performed. To effectively uncover the
temporal predictability in a user’s Foursquare activities, we filter out the users with scarce activities or
those participating in the social network only for a short time. To be specific, hereafter we focus on the
users whose active period, i.e., the time span between the user’s first and last check-in, is over 180 days,
and whose total number of check-in records is more than 800 in the observational period. The selection
criterion results in 43 users that are used in the following study. For each user, after listing all his/her
check-in records chronologically, we are able to obtain his/her sequence of inter-event times which are
the time intervals between consecutive check-ins performed by the user. For the sake of simplicity,
we map each user’s sequence of inter-event times, which are continuous values, into a sequence of
symbols by discretization. Then, we measure the information entropy of the symbol sequences to
quantify the temporal predictability present in the data. In the remainder of this section, we present
the discretization method and information entropy measures employed.

For discretizing continuous values, equal-width discretization is a commonly used method [12,35].
It obtains the minimum and maximum value of the continuous values to be discretized and partitions
the range between the minimum value and the maximum value into several equal-width intervals.
The continuous values entering the same interval are discretized to the same symbol while the
continuous values entering different intervals are discretized to different symbols. For example, if
the minimum and maximum of the continuous values are 0 and 100 and the number of intervals is
set to 10, then the 10 equal-width intervals obtained are [0, 10], (10, 20], . . . , (80, 90], (90, 100]. The
continuous values of 5, 6 and 7 all enter the interval of [0, 10] and thus they are discretized to the
same symbol. The continuous value of 15 enters the interval of (10, 20] and thus it is discretized
to another symbol. However, the users’ inter-event times to be discretized here are distributed in a
highly non-uniform manner. In Figure 1a we present the distribution of the inter-event times for the
43 users. As can be seen, most of the inter-event times are relatively short, while a few inter-event
times are longer by orders of magnitude. When partitioning the range of these inter-event times with
equal-width intervals, the intervals for long inter-event times will have a very small number of cases,
i.e., the inter-event times entering the intervals for long inter-event times are scarce. These intervals
with scarce inter-event times lead to the scarcity of the corresponding symbols. The statistics of these
scarce symbols cannot reflect the symbols’ probabilities reliably, which renders a serious bias in the
following estimation of entropy for each user. So, equal-width discretization is not used in this study.

To address the problem above, we introduce equal-frequency discretization. Differing from
equal-width discretization, it partitions the range of the continuous values into k intervals in such a
way that each interval contains the same number of continuous values. k is a predefined parameter and
in most cases it is set to 10 [36]. When applying equal-frequency discretization to the users’ inter-event
times, the symbols obtained have equal frequency. As each user’s inter-event time distribution is
similar to the distribution from all users (see, e.g., Figure 1b), for each user, the frequencies of each
symbol are not very far from each other, i.e., it is avoided that some symbols are very scarce for a
user. Therefore, the statistics of the symbols obtained from equal-frequency discretization can reflect
probabilities more reliably and then can provide a more accurate entropy estimation for each user.
Using the equal-frequency discretization, we obtain 10 intervals [t0, t1), [t1, t2), . . . , [t8, t9), [t9, t10),
where t0 and t10 are the minimum and maximum of the 43 users’ inter-event times, respectively.
By discretizing the inter-event times entering interval [ti−1, ti) (or [ti−1, ti]) to symbol i, we map each
user’s inter-event time sequence to a sequence of inter-event time symbols.
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Figure 1. Distribution of inter-event times of Foursquare check-ins for all the 43 users (a) and one 
typical user (b). 

To reveal the temporal predictability, we define three entropies for each user’s inter-event time 
symbol sequence. First, we define the random entropy for user A as Equation (1): 
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where pA(i/j) represents the conditional probability that user A chooses symbol i immediately after 
choosing symbol j in his/her inter-event time symbol sequence. Compared to H1A, H2A additionally 
considers the correlations between two consecutive inter-event time symbols. For each user, the 
inequalities 0 ≤ H1A ≤ H2A are satisfied. We quantify the temporal predictability using the mutual 
information as Equation (4): 
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IA is equal to the amount of information one can gain about the next inter-event time symbol by 
knowing the current one. If there is no correlation between two consecutive inter-event time 
symbols, H1A is equal to H2A and IA takes the minimum value of 0. In this case, knowing the current 
inter-event time symbol does not help to predict the next one at all. If the next inter-event time 
symbol is completely determined by the current one, H2A = 0 and IA takes the maximum value of H1A. 

3. Results 

3.1. Temporal Predictability of Foursquare Online Activity 

To explore whether the time of a user’s Foursquare activity is predictable, we calculate the three 
entropies for each user’s inter-event time symbol sequence. The histograms of H0, H1 and H2 for the 
43 users are shown in Figure 2. The gap between the values of H0 and H1 indicates that a user 
exhibits a preference when choosing inter-event time symbols, while the difference between H1 and 
H2 suggests a correlation between two consecutive inter-event time symbols, i.e., there are 
dependences existing in consecutive inter-event times in users’ Foursquare activities. We compare 
the values of H1 and H2 for each individual in Figure 3. The straight line corresponds to H1 being 

Figure 1. Distribution of inter-event times of Foursquare check-ins for all the 43 users (a) and one typical
user (b).

To reveal the temporal predictability, we define three entropies for each user’s inter-event time
symbol sequence. First, we define the random entropy for user A as Equation (1):

H0
A = log2MA (1)

where MA represents the number of different inter-event time symbols for the user; H0
A quantifies the

degree of randomness for the user if each inter-event time symbol is chosen with equal probability.
Second, we define the uncorrelated entropy as Equation (2):

H1
A = −∑MA

i=1 pA
(i)log2 pA

(i) (2)

where pA
(i) represents the probability that user A chooses symbol i in the sequence of inter-event time

symbols. Compared to H0
A, H1

A takes the heterogeneity among pA
(i) into account. Third, we define the

conditional entropy as Equation (3):

H2
A = −∑MA

j=1 pA
(j)∑MA

i=1 pA
(i|j )log2 pA

(i|j ) (3)

where pA
(i/j) represents the conditional probability that user A chooses symbol i immediately after

choosing symbol j in his/her inter-event time symbol sequence. Compared to H1
A, H2

A additionally
considers the correlations between two consecutive inter-event time symbols. For each user, the
inequalities 0 ≤ H1

A ≤ H2
A are satisfied. We quantify the temporal predictability using the mutual

information as Equation (4):
IA = H1

A − H2
A (4)

IA is equal to the amount of information one can gain about the next inter-event time symbol by
knowing the current one. If there is no correlation between two consecutive inter-event time symbols,
H1

A is equal to H2
A and IA takes the minimum value of 0. In this case, knowing the current inter-event

time symbol does not help to predict the next one at all. If the next inter-event time symbol is completely
determined by the current one, H2

A = 0 and IA takes the maximum value of H1
A.

3. Results

3.1. Temporal Predictability of Foursquare Online Activity

To explore whether the time of a user’s Foursquare activity is predictable, we calculate the three
entropies for each user’s inter-event time symbol sequence. The histograms of H0, H1 and H2 for the
43 users are shown in Figure 2. The gap between the values of H0 and H1 indicates that a user exhibits a
preference when choosing inter-event time symbols, while the difference between H1 and H2 suggests
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a correlation between two consecutive inter-event time symbols, i.e., there are dependences existing in
consecutive inter-event times in users’ Foursquare activities. We compare the values of H1 and H2 for
each individual in Figure 3. The straight line corresponds to H1 being equal to H2. As can be seen, all
the dots are below the straight line which indicates that the mutual information I = H1 − H2 is positive
for all users. This result indicates that for user’s Foursquare activities, knowing the time interval
between his/her current activity and his/her previous activity decreases the uncertainty about the
time interval between the next activity and the current activity, i.e., the time of a user’s next Foursquare
activity is predictable.
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We now examine the validity of the positive mutual information observed. Generally, the finite
size effect decreases H1

A and H2
A by different amounts such that the estimated IA is inherited with

a positive bias [37]. To confirm that the observed positive mutual information is not due to the finite
size effect, the bootstrap method is performed as follows. For each user we make a shuffled sequence
by drawing the inter-event time symbols randomly one by one from the original sequence without
replacement. If there are correlations between two consecutive symbols in the original sequence, the
shuffled sequence breaking the order will thus have a lower IA since the correlations are destroyed. For
each user, we repeat the shuffling procedure 1000 times and compare the mutual information in the
shuffled sequences with that in the original sequence in Figure 4. The red line represents the mutual
information in original sequences in increasing order while the lower and upper ends of the error
bar, respectively, represent the smallest value and the 95th percentile of the mutual information in the
shuffled sequences for each user. As can be seen, the value of the mutual information in the original
sequence generally lies well above the upper end of the error bar, which suggests that the mutual
information in the original sequence is significantly larger than that in shuffled sequences with equal
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length. We can then conclude that the positive mutual information observed in a user’s inter-event
time symbol sequence is not due to the finite size effect.Entropy 2016, 18, 296 6 of 11 
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the shuffled sequences for the 43 users. The red line represents the mutual information IA in original
sequences in increasing order. The lower and upper ends of the blue columns are the smallest value and
95th percentile of the mutual information of the shuffled sequences for each user. The index represents
the user numbered by the order of the mutual information in its original sequence.

3.2. Origins of the Temporal Predictability

The temporal predictability present in the data comes from two strong regularities observed in
users’ inter-event time symbol sequences. One is that an inter-event time symbol can appear in a
user’s inter-event time symbol sequence several times consecutively. This regularity corresponds to the
behavioral pattern that humans tend to perform consecutive Foursquare activities with approximately
equal time intervals. For example, some users prefer to perform their online check-ins during free
time after work. If the user has free time after work with online check-ins for consecutive days, the
consecutive inter-event times resulting from these online check-ins are all within 24 h approximately.
We call this behavioral pattern the equal-interval repeat. The other regularity observed in the sequences
is that a fixed inter-event time symbol often follows another given one. This regularity corresponds
to the behavioral pattern that humans have a preference for performing Foursquare activities with a
fixed time interval after another given time interval. For example, some users like to perform online
check-ins at their lunch and supper times. If the user has lunch and supper with online check-ins at
about 12 p.m. and 6 p.m. for several consecutive days, the time intervals of about six hours and 18 h
from these check-ins will appear following each other alternatively, which leads to the conclusion
that a time interval of about 18 h will follow the interval of about 6 h several times and vice versa.
We call this behavioral pattern the unequal-interval preference. In what follows we show that the
temporal predictability present in the data is mainly originated from the equal-interval repeat while
the unequal-interval preference is also an origin for the predictability.

We examine the origin of the equal-interval repeat for temporal predictability by measuring
the mutual information in the randomized inter-event time symbol sequences for each user.
The randomization of a user’s inter-event time symbol sequence is realized as follows. First we
denote each group of consecutive identical symbols in the sequence as a super-symbol. The symbols
that are different from both its adjacent symbols are also denoted as super-symbols. For instance, the
sequence {1, 1, 1, 2, 1, 1, 3, 3, 4} yields five super-symbols: “1, 1, 1”, “2”, “1, 1”, “3, 3” and “4”. Then we
generate the randomized sequence by sampling from the user’s super-symbols that are denoted.
Since adjacent super-symbols in the original sequence consist of different symbols, we sample from the
super-symbols with a replacement under the condition that the super-symbols consisting of the same
symbols are not chosen consecutively. We repeat the sampling until the generated sequence contains
at least the same number of symbols as the original sequence, and then we read out the randomized
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sequence having the same length as the original one. Since the randomized sequence preserves the
groups of consecutive identical symbols present in the original sequence but arranges their orders
in a random manner, it reflects the temporal predictability caused by the equal-interval repeat in
the original sequence. For each user, we calculate the mean and standard deviation of the mutual
information from 1000 randomized sequences and compare them with the mutual information in the
original sequence in Figure 5. The mean mutual information of the randomized sequences accounts for
83% of the original mutual information on average. This result suggests that the temporal predictability
is mainly originated from the equal-interval repeat, i.e., performing consecutive Foursquare activities
with approximately equal time intervals is the main reason for the temporal predictability.
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To check the origin of the unequal-interval preference for temporal predictability, we generate
a modified sequence of inter-event time symbols and calculate the mutual information in it for each
user. The modified sequence is generated by merging consecutive identical symbols in the original
sequence into one symbol. For instance, the original sequence {1, 1, 1, 2, 1, 1, 3, 3, 4} yields the modified
sequence {1, 2, 1, 3, 4}. The modified sequences without consecutive identical inter-event time symbols
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allow us to eliminate the origin of the equal-interval repeat for the temporal predictability and uncover
the temporal predictability originating from the unequal-interval preference. In Figure 6 we present
the value of the mutual information from the modified sequence for each user. The positive mutual
information indicates that there is a predictability existing in the modified sequence. Similarly, to
confirm that the observed positive mutual information is not due to the finite size effect, we perform
the bootstrap method by shuffling the modified sequence. As can be seen in Figure 6, the mutual
information of the modified sequence generally lies above or near the upper end of the error bar,
which implies that the mutual information in the modified sequence is, in general, larger than that
in the shuffled modified sequence and thus indicates that the observed positive mutual information
is not due to the finite size effect. The above results reveal that the unequal-interval preference, i.e.,
the preference of performing Foursquare activities with a fixed time interval after another given time
interval, is also an origin of the temporal predictability.

3.3. Effect of Weekday-Weekend Difference and Location’s Visit Frequency on the Temporal Predictability

To gain a deeper understanding of the temporal predictability in Foursquare activities, we
explore the effect of a weekday-weekend difference on the predictability. Intuitively, the work and
study schedules during weekdays may induce a different activity pattern and consequently different
temporal predictability compared to that on weekends. To uncover the weekday-weekend difference’s
effect on predictability, we divide each user’s check-in records into two groups: one is the check-in
records performed on weekdays and the other is the records on weekends. For each group of check-in
records, we calculate the mutual information present in the data as before, and thus for each user we
have his/her Iweekday and Iweekend reflecting the user’s weekday and weekend temporal predictability,
respectively. However, we do not directly compare Iweekday with Iweekend because the length of a user’s
inter-event time symbol sequence for weekday activities is different from that for weekend activities
and the amount of mutual information generally depends on the length of the sequence [37]. Instead,
we introduce the gap between the mutual information of the inter-event time symbol sequence and the
95th percentile mutual information of its shuffled sequences, defined by Gweekday = Iweekday − Iweekday

0.95

and Gweekend = Iweekend − Iweekend
0.95, which allow for a comparison of predictability for sequences with

different lengths [17]. A larger gap indicates higher predictability in the sequence. We obtain each
user’s Gweekday as well as Gweekend and illustrate the cumulative distributions of Gweekday and Gweekend
for the users in Figure 7. As can be seen, the users’ Gweekday are generally larger than the Gweekend.
This result indicates that for human Foursquare activities the temporal predictability on weekdays is,
in general, higher than that on weekends.
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In the Foursquare dataset, each check-in record provides a location-id identifying the location
where the check-in is performed. The location here corresponds to the physical place at which the user
performs the check-in, such as a coffeehouse, a bookstore or a restaurant. In the following, we examine
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the dependence of an activity’s temporal predictability on the visit frequency of the location where
the previous activity was performed. This problem is related to the temporal prediction taking the
information on locations into account [38,39]. Here, we only focus on the user’s top three most-visited
locations since the numbers of records associated with other locations are small, which may induce big
fluctuations in the results. For a user, to measure the temporal predictability of his/her activity when
the previous one was performed in the user’s first most-visited location, from the user’s inter-event
time symbol sequence we extract the pairs of consecutive symbols (each pair of consecutive symbols
corresponds to three consecutive check-in events) where the middle check-in event is performed at
his/her first most-visited location. Using the extracted pairs of inter-event time symbols, we calculate
the mutual information Ifirst measuring the entropy about the latter inter-event time symbol decreased
by knowing the former one, which characterizes the temporal predictability of his/her activity when
the previous one is performed in the user’s first most-visited location. Similarly, for each user, we
obtain his/her Isecond and Ithird, characterizing the temporal predictability of his/her activity when the
previous check-in was performed in the user’s second and third most-visited location, respectively.
As previously mentioned, instead of comparing the mutual information directly, we calculate the
gap values to compare the predictability. For instance, for a user we define his/her gap Gfirst as the
difference between his/her mutual information Ifirst and the 95th percentile of mutual information
calculated from the extracted symbol pairs corresponding to his/her first most-visited location after
shuffling, i.e., matching the former and latter symbols in a random manner. Similarly, we obtain each
user’s Gsecond and Gthird and illustrate the cumulative distribution of the gaps for the users in Figure 8.
It can be seen that the gaps corresponding to locations with higher visit frequency present larger values.
This result implies that in human Foursquare activities, a user’s activity is more temporally predictable
if his/her previous activity was performed in the locations with a higher visit frequency.
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4. Conclusions

In this paper, we investigate the temporal predictability of human online behavior in the social
network Foursquare. Our results show that for Foursquare activities, knowing the time interval
between a user’s current activity and previous activity can decrease the entropy of the time interval
between the next activity and the current activity, i.e., the time of a user’s next Foursquare activity
is predictable. The temporal predictability is mainly explained by the equal-interval repeat; that is,
humans perform consecutive Foursquare activities with approximately equal time intervals, while
the unequal-interval preference, i.e., the preference of performing Foursquare activities with a fixed
time interval after another given time interval, is also an origin of the predictability. We also find
that the time of Foursquare activities is more predictable on weekdays than on weekends and that
users’ Foursquare activity is more temporally predictable if his/her previous activity is performed at
the location that he/she visits more frequently. Our findings are valuable for developing predictive
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algorithms and models which can be incorporated into practical online services and applications.
Although in this study we only consider the correlation between the two consecutive inter-event times,
i.e., the second-order correlation, the temporal predictability uncovered implies that there are strong
potential predictive powers that exist in the temporal patterns of human online activities. Further
efforts could be made to investigate how predictable the time of online activities can be by taking
higher-order correlations into account and to explore the relationship between predictability and
prediction precision for devising actual temporal prediction algorithms of human online activity.
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