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Abstract: The detectability for a noise-enhanced composite hypothesis testing problem according
to different criteria is studied. In this work, the noise-enhanced detection problem is formulated as
a noise-enhanced classical Neyman–Pearson (NP), Max–min, or restricted NP problem when the
prior information is completely known, completely unknown, or partially known, respectively.
Next, the detection performances are compared and the feasible range of the constraint on
the minimum detection probability is discussed. Under certain conditions, the noise-enhanced
restricted NP problem is equivalent to a noise-enhanced classical NP problem with modified prior
distribution. Furthermore, the corresponding theorems and algorithms are given to search the
optimal additive noise in the restricted NP framework. In addition, the relationship between the
optimal noise-enhanced average detection probability and the constraint on the minimum detection
probability is explored. Finally, numerical examples and simulations are provided to illustrate the
theoretical results.

Keywords: additive noise; composite hypothesis testing; restricted Neyman–Pearson (NP)

1. Introduction

Stochastic resonance (SR) is a phenomenon where the performance of a nonlinear system can
be enhanced by the presence of noise under certain circumstances. The concept of SR was first
brought up by Benzi et al. in the process of exploring the periodic recurrence of ice gases [1] and since
then the positive effects of noise have increasingly attracted researchers’ attention in various fields,
such as physics, chemistry, biology, and electronics [2–9]. The performance boost of a noise-enhanced
system has also been observed in numerous signal detection problems; for example, when adjusting
the background noise level or injecting additive noise to the input, the output of the system can
be improved in some cases [10–15]. The improvements obtained via noise can be measured by
various metrics, such as an increase in mutual information (MI) [16–19], output signal-to-noise
ratio (SNR) [20–22], or detection probability [23–29], or a decrease in Bayes risk [30–32] or error
probability [33].

For the hypothesis testing problem [34], the optimal additive noise to improve the performance
of a suboptimal detector is usually determined according to Bayesian [24,25], Minimax [30],
and Neyman–Pearson (NP) [23–26] criteria. For example, the minimization of Bayes risk obtained
by adding additive noise to the observation has been investigated based on Bayesian criteria under
the uniform cost assignment in [33], and it is proven that the optimal additive noise to minimize the
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error probability is a constant vector. According to the NP criteria, the maximization of detection
probability obtained by adding additive noise has been considered under the constraint on the
false-alarm probability. In [23], the detection of a direct current (DC) signal embedded in independent
and identically distributed (i.i.d.) Gaussian mixture noise is studied, which illustrates that the detection
probability of a suboptimal detector can be increased by adding an independent additive noise to
the received data. In [24], a mathematical framework for the noise-enhanced binary hypothesis
testing problem is formulated according to the NP criterion. The optimal noise is proven to be a
randomization of no more than two discrete vectors and sufficient conditions for the increase of the
detection probability via additive noise are also provided. Theorems and algorithms are also provided
in [26] to search for the optimal or near-optimal SR noise that benefits the NP and inequality-constrained
signal detection problems.

Composite hypothesis testing problems are often encountered in practical applications,
for example, radar systems, spectrum sensing in cognitive radio networks, and non-coherent
communication receivers [35,36]. In such problems, there are multiple parameters with different
probabilities under each alternative hypothesis [27]. Therefore, noise that benefits composite hypothesis
testing problems can also be investigated according to Bayesian, Minimax, and NP criteria. If the
prior information of each parameter is completely available, the noise-enhanced Bayesian and NP
approaches can be utilized. When no prior information exists, it is appropriate to select the Minimax
approach to find the optimal additive noise.

Nevertheless, due to the existence of estimation error, prior information usually has some
uncertainties [34]. For instance, in some cases, only part of the prior information can be utilized [37].
Accordingly, the classical Bayesian, Minimax, and NP criteria are not suitable in such cases, and a
more restricted criterion should be considered in order to utilize the available partial prior information
adequately. In [31], under certain constraints of the conditional risks, the optimal noise to minimize
the Bayes risk is explored according to the restricted Bayesian criterion. Generally, the constraint is
determined on the basis of the uncertainty in the prior information. Actually, the noise-enhanced
composite hypothesis testing problem in the restricted Bayesian framework can be generalized to the
Bayesian framework and Minimax framework simply by changing the value of the constraints.

In [27], the restricted NP criterion is used to find the optimal decision rule for the composite
hypothesis testing problem, which focuses on maximizing the average detection probability under the
constraints that the minimum detection probability cannot be less than a predefined value and the
maximum false-alarm probability cannot be larger than a given level. In this way, since the constraint
on the minimum detection probability is adjusted according to the uncertainty in the prior information,
it not only ensures the detection probability in the worst case, but also uses the prior information
effectively. Furthermore, the classical NP and Max–min criteria are special cases of the restricted
NP criterion. The former aims to maximize the average detection probability based on the prior
distribution with the constraint on false-alarm probability, and the latter focuses on the maximization
of the minimum detection probability under the same constraint on false-alarm probability. For the
case where the decision rule cannot be altered, the restricted NP criterion can also be employed to
investigate the optimal additive noise for the composite hypothesis testing problem (see the study
in [29]).

Inspired by the studies in [27,29], the main focus of this work is to find the relations of the optimal
additive noises obtained under restricted NP criterion and classical NP criterion with different prior
distributions in which the noise-enhanced detection problem for composite hypothesis testing can be
solved more thoroughly. In addition, the links of the average and minimum detection probabilities
based on the noise-enhanced restricted NP, classical NP, and Max–min approaches are also discussed.

Our main contributions are summarized as follows. First, the noise enhanced composite
hypothesis-testing problem is formulated according to the classical NP, Max–min, or restricted NP
criterion when the prior information is completely known, completely unknown, or partially known,
respectively. Then the detection performances obtained under different criteria are compared and the
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feasible range of the constraint on the minimum detection probability is provided. Further, under
certain conditions, a special conclusion is made that the noise-enhanced restricted NP problem is
equivalent to a noise-enhanced classical NP problem with a modified prior distribution and using the
same constraint on the false-alarm probability. Based on this conclusion, theorems and algorithms
are presented to find the optimal noise in the restricted NP framework. In addition, the relationship
between the optimal noise-enhanced average detection probability and the constraint on the minimum
detection probability is also explored.

Remarkably, the results in this paper can be directly applied in some specific physical
environments. For instance, in order to detect a sinusoidal signal embedded in noise through exploiting
the escape time of a Josephson junction [8], the escape time is regarded as the observation and
the corresponding probability distribution functions (PDFs) under two hypotheses are retrieved by
utilizing various nonparametric statistical techniques, such as the kernel density estimation (KDE).
Generally, the distributions of the signal parameters are known with some uncertainties due to the
estimation errors. In such a case, the restricted NP approach developed in this paper can be utilized.
In addition, if we assume the signal parameters are completely known or unknown, the classical NP or
Max–min approach can be employed, respectively, to find the corresponding noise that will enhance
system performance.

The remainder of this paper is organized as follows. In Section 2, the noise-enhanced binary
composite hypothesis testing problems are formulated according to the classical NP, Max–min, and
restricted NP criteria, and the corresponding detection performances are compared. In Section 3,
the theorems and algorithms necessary to find the modified prior distribution and the optimal additive
noise are developed. In addition, some characteristics of maximum noise-enhanced average detection
probability obtained in restricted NP approach are also discussed. Finally, numerical examples and
simulations are presented in Section 4 to illustrate the theoretical results, and conclusions are drawn in
Section 5.

2. Noise-Enhanced Detection

2.1. Problem Formulation

Consider a classical binary composite hypothesis testing problem, given by{
H0 : px

θ(x), θ ∈ Λ0

H1 : px
θ(x), θ ∈ Λ1

, (1)

where px
θ(x) represents the PDF of the observation x for a given parameter θ, x is a N-dimensional

vector and x ∈ RN . In addition, Λ0 and Λ1 are the sets of all possible values of parameter θ under H0

and H1, respectively, and Λ0 ∩Λ1 = ∅. The union of the two sets forms the parameter space Λ, i.e.,
Λ = Λ0 ∪Λ1. The PDF for the parameter θ under Hi, i = 0, 1, is denoted by vi(θ).

Studies have shown that the detection performance of a system can be improved by adding an
independent additive noise n to the observation x for the case where the detector cannot be varied.
The corresponding noise modified observation y is denoted by

y = x + n. (2)

The PDF of y for a given parameter θ can be expressed as

py
θ (x) = px

θ(x) ∗ pn(n) =
∫
RN

pn(n)px
θ(y− n)dn, (3)

where pn(n) denotes the PDF of the additive noise n. Using Equation (3), the noise-modified detection
and false-alarm probabilities for given parameter values are respectively defined as
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PD(pn(n), θ) =
∫
RN

φ(y)py
θ (y)dy =

∫
RN

pn(n)
∫
RN

φ(y)px
θ(y− n)dydn, θ ∈ Λ1, (4)

PFA(pn(n), θ) =
∫
RN

φ(y)py
θ (y)dy =

∫
RN

pn(n)
∫
RN

φ(y)px
θ(y− n)dydn, θ ∈ Λ0, (5)

where φ(·) is the decision rule of the detector and also indicates the probability of choosing H1. Due to
the fact that the detector is fixed, the decision rule for the noise-modified observation y is the same as
that for x. For the case where the detector is fixed, one reasonable way to improve the detectability of
the system is to optimize the additive noise.

2.2. Noise-Enhanced Detection Problems under Different Criteria

For noise-enhanced composite hypothesis testing problems, the general means is to search for
the optimal additive noise to improve the system performance according to the classical NP criterion,
which requires that the noise modified false-alarm probability for any possible values of parameter θ

in the set Λ0 should be below a certain constraint and the noise-modified average detection probability
should reach the achievable maximum. In such a case, there is no link between the PDF of θ under
H0, i.e., v0(θ), and the optimal additive noise. On the other hand, the solution of the optimal additive
noise is closely related to the PDF of θ under H1, i.e., v1(θ).

When v1(θ) is completely known, the optimal additive noise is usually explored according to the
classical NP criterion, which is formulated by

pc
n(n) = arg max

pn(n)
Pavg

D (pn(n)) = arg max
pn(n)

∫
Λ1

PD(pn(n), θ)v1(θ)dθ (6)

subject to max
θ∈Λ0

PFA(pn(n), θ) ≤ α, (7)

where pc
n(n) represents the PDF of the optimal additive noise obtained by the noise-enhanced

classical NP approach, Pavg
D (pn(n)) =

∫
Λ1

PD(pn(n), θ)v1(θ)dθ represents the noise-enhanced average
detection probability based on the estimated prior probability v1(θ), and α is the upper limit for the
false-alarm probability.

When v1(θ) is completely unknown, the optimal additive noise can be determined based on the
Max–min criterion, where the minimum noise enhanced detection probability is maximized under
the constraint on the false-alarm probability. The corresponding noise enhanced problem can be
expressed by

pm
n (n) = arg max

pn(n)
min
θ∈Λ1

PD(pn(n), θ) (8)

subject to max
θ∈Λ0

PFA(pn(n), θ) ≤ α, (9)

where pm
n (n) denotes the optimal additive noise PDF in the noise enhanced Max–min approach.

In practice, v1(θ) is usually estimated according to previous experience and estimation errors
are unavoidable, leading to some uncertainties in v1(θ). The existence of the estimation error is often
ignored when the noise enhanced detection problem based on the NP criterion is investigated. Once the
Max–min criterion is applied, the previous experience cannot be utilized effectively. Therefore, it is not
a suitable method for finding the optimal additive noise according to the NP criterion or the Max–min
criterion directly when there are uncertainties in v1(θ). In order to utilize previous experience and
consider the uncertainty in estimation simultaneously, the restricted NP criterion proposed in [27] is
utilized in this paper. Based on the estimated distribution v1(θ), the noise-enhanced restricted NP
approach seeks to maximize average detection probability by adding appropriate noise, under the
constraints that the minimum detection probability stays above a certain value and the maximum
false-alarm probability stays below a certain level. It should be noted that the constraint on the
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minimum detection probability can be adjusted depending on the degree of the uncertainty. As a
result, the noise-enhanced problem according to the restricted NP criterion is formulated as follows:

pβ
n(n) = arg max

pn(n)
Pavg

D (pn(n)) (10)

subject to


min
θ∈Λ1

PD(pn(n), θ) ≥ β,

max
θ∈Λ0

PFA(pn(n), θ) ≤ α,
(11)

where pβ
n(n) denotes the optimal additive noise PDF in the noise-enhanced restricted NP approach, β is

the lower limit for detection probability, and an appropriate β is chosen according to the uncertainty
in v1(θ). Generally, β is chosen as β = ες, where 0 ≤ ε ≤ 1 and ς represents the Max–min
detection probability obtained in the noise-enhanced Max–min approach, i.e., ς = min

θ∈Λ1
PD(pm

n (n), θ) =

max
pn(n)

min
θ∈Λ1

PD(pn(n), θ).

When the prior information about v1(θ) is completely unknown, we set ε = 1 and the
noise-enhanced detection problem in the restricted NP framework is reduced to that in the Max–min
framework. When v1(θ) is completely known, we set ε = 0 and the noise-enhanced detection problem
in the restricted NP framework becomes the noise-enhanced problem in the classical NP framework.
As a result, the noise-enhanced Max–min problem and classical NP problem can be regarded as two
special cases of the noise-enhanced restricted NP problem.

2.3. Analysis on the Noise-Enhanced Detectability

In this subsection, the relationships among the different noise-enhanced approaches are clarified
in detail. We first compare the detection performances obtained via additive noise under different
criteria and then determine the feasible range of β, which is the lower limit of the detection probability
for any θ ∈ Λ1.

In the noise-enhanced restricted NP framework, the maximization of the average detection
probability needs to consider the constraints on the minimum detection probability for θ ∈ Λ1 and
the maximum false-alarm probability for θ ∈ Λ0 simultaneously. On the other hand, the aim of the
noise-enhanced classical NP problem is to find the additive noise that maximizes the average detection
probability with only the constraint on false-alarm probability, while ignoring any constraints on the
minimum detection probability. Generally speaking, the maximum average detection probability
obtained by the noise-enhanced restricted NP approach is less than or equal to that obtained by
the noise-enhanced classical NP approach, and the minimum detection probability obtained by the
noise-enhanced restricted NP approach is greater than or equal to that obtained by the noise-enhanced
classical NP approach. For the noise enhanced Max–min approach, however, the aim is to search
the additive noise that achieves the maximum of the minimum detection probability under the
constraint on false-alarm probability. Therefore, the minimum detection probability obtained by the
noise-enhanced Max–min approach is greater than or equal to that obtained by the noise enhanced
restricted NP approach.

Based on the discussions above, in what follows, the detectability in the noise-enhanced restricted
NP framework is analyzed when β takes different values. From the definitions given in Section 2.2,
pβ

n(n), pc
n(n), and pm

n (n) are the optimal additive noise PDFs corresponding to the noise-enhanced
restricted NP, classical NP, and Max–min approaches, respectively. In order to facilitate the analysis
that follows, we define

C = min
θ∈Λ1

PD(pc
n(n), θ) (12)

M = min
θ∈Λ1

PD(pm
n (n), θ) (13)
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i.e., C and M are the minimum detection probabilities corresponding to the noise-enhanced classical
NP approach and Max–min approach for θ ∈ Λ1, respectively.

If β < C, the noise-enhanced restricted NP problem is simplified to the noise enhanced classical
NP problem. It is obvious that the constraint enforced by β is ineffective in this case. Accordingly,
the optimal additive noise and the maximum noise-modified average detection probability obtained
by the restricted NP approach are the same as those obtained by the classical NP approach, i.e.,
pβ

n(n) = pc
n(n) and Pavg

D (pβ
n(n)) = Pavg

D (pc
n(n)). Furthermore, based on the formulation of the noise

enhanced Max–min approach, M is the achievable maximum of the minimum detection probability
for any θ ∈ Λ1 obtained by adding additive noise under the constraint on false-alarm probability.
Therefore, there are no additive noises that satisfy the condition of min

θ∈Λ1
PD(pn(n), θ) > M. In other

words, it is not suitable to set β > M. As a result, the value of β should be selected in the interval
[C, M], otherwise the constraint on the minimum detection probability will be meaningless.

3. Optimal Additive Noises in Restricted NP and Classical NP Frameworks

In this section, we shall further explore the connections implied in the optimal additive noises
obtained by the restricted NP and classical NP approaches under certain conditions. The related
characteristics are discussed in order to develop an algorithm that determines the optimal additive
noise under the restricted NP framework. For the convenience of discussions, we define

fθ(n) =
∫
RN

φ(y)px
θ(y− n)dy (14)

f1(n) =
∫

Λ1

fθ(n)v1(θ)dθ. (15)

With these notations, the optimization problem in (10) and (11) can be reformulated as

max
pn(n)

∫
Λ1

PD(n, θ)v1(θ)dθ = max
pn(n)

∫
RN

pn(n) f1(n)dn (16)

subject to


min
θ∈Λ1

∫
RN pn(n) fθ(n)dn ≥ β

max
θ∈Λ0

∫
RN pn(n) fθ(n)dn ≤ α

. (17)

Actually, the problem in Equations (16) and (17) can be expressed in alternative form as follows:

max
pn(n)

{
η
∫
RN

pn(n) f1(n)dn + (1− η)min
θ∈Λ1

∫
RN

pn(n) fθ(n)dn
}

(18)

max
θ∈Λ0

∫
RN

pn(n) fθ(n)dn ≤ α, (19)

where η is a parameter selected depending on β and 0 ≤ η ≤ 1.

3.1. Characteristics of the Optimal Additive Noise

According to Equations (18) and (19), Theorem 1 shows some characteristics of the optimal
additive noise obtained by the restricted NP approach.

Theorem 1. Define a PDF of θ under H1 as r1(θ) = ηv1(θ) + (1− η)g(θ), where g(θ) is any valid PDF.
If there exists a PDF p∗n(n) such that∫

RN
p∗n(n)

∫
Λ1

fθ(n)g(θ)dθdn = min
θ∈Λ1

∫
RN

p∗n(n) fθ(n)dn, (20)
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where p∗n(n) is the optimal additive noise PDF that maximizes the average detection probability based on r1(θ)

under the constraint that max
θ∈Λ1

∫
RN pn(n) fθ(n)dn ≤ α, then p∗n(n) is the optimal solution of Equations (18)

and (19). The proof is presented in Appendix A.

Theorem 1 implies that the solution of the noise-enhanced restricted NP problem is the same
as that of a noise-enhanced classical NP problem under certain conditions. Specifically, if there
exists a PDF g(θ) that satisfies the condition in Equation (20), the noise-enhanced restricted NP
problem shown in (18) and (19) is equivalent to the noise-enhanced classical NP problem based on the
probability distribution of θ under H1, denoted by r1(θ) = ηv1(θ) + (1− η)g(θ). As discussed above,
the definition of p∗n(n) can be formulated as

p∗n(n) = arg max
pn(n)

∫
Λ1

PD(pn(n), θ)r1(θ)dθ (21)

subject to max
θ∈Λ1

∫
RN

pn(n) fθ(n)dn ≤ α. (22)

The form of the optimal additive noise PDF p∗n(n) is proven as a randomization of no more than
M + 1 discrete vectors and the corresponding algorithm has been provided in [28], where M is the
number of θ in the set Λ0.

The following corollary shows the link between the optimization noise-enhanced problem in
Equations (18) and (19) and that in (10) and (11).

Corollary 1. Under the conditions in Theorem 1, if min
θ∈Λ1

∫
RN p∗n(n) fθ(n)dn = β, p∗n(n) is the optimal

additive noise PDF corresponding to the optimization problem described in Equations (10) and (11). The proof is
omitted here and provided in Appendix A.

First, Corollary 1 illustrates that p∗n(n) is the solution of the optimization problem described in
Equations (16) and (17), or the one in (10) and (11), when the additive noise PDF p∗n(n) in Theorem 1
satisfies min

θ∈Λ1

∫
RN p∗n(n) fθ(n)dn = β. In such a case, when the noise-modified average detection

probability based on v1(θ) reaches the achievable maximum, the corresponding minimum detection
probability for all θ ∈ Λ1 is equal to β. Second, for any η, the corresponding β can be calculated based
on the equality in Corollary 1.

In addition, in order to find r1(θ), we first define a family of r1(θ)’s PDF of the following form:

r̂1(θ) = η̂v1(θ) + (1− η̂)ĝ(θ), (23)

where η̂ and 1− η̂ represent the weights of v1(θ) and ĝ(θ) in r̂1(θ), respectively, 0 ≤ η̂ ≤ 1, and ĝ(θ) is
any valid PDF. Theorem 2 below states a conclusion that r1(θ) in Theorem 1 is the PDF corresponding
to the minimum noise-enhanced average detection probability, which is among the family of PDFs
with the form of r̂1(θ).

Theorem 2. Under the conditions in Theorem 1, r1(θ) = ηv1(θ) + (1− η)g(θ) is the PDF that minimizes the
noise-modified average detection probability among all probability distributions of the form r̂1(θ) = η̂v1(θ) +

(1− η̂)ĝ(θ), where η̂ ≥ η, θ ∈ Λ1, and ĝ(θ) is any PDF. In other words, the following inequality holds:∫
RN

p∗n(n)
∫

Λ1

fθ(n)r1(θ)dθdn ≤
∫
RN

p̂∗n(n)
∫

Λ1

fθ(n)r̂1(θ)dθdn, (24)

where p∗n(n) and p̂∗n(n) are the optimal additive noise PDFs obtained by the classical NP approach corresponding
to r1(θ) and r̂1(θ), respectively. The proof is omitted here and provided in Appendix A.



Entropy 2016, 18, 400 8 of 18

Obviously, r1(θ) is a special case of r̂1(θ), and therefore we can search the explicit expression of
r1(θ) and the optimal additive noise under the restricted NP criterion by exploiting the conclusion
in Theorem 2. In addition, since η is a special value of η̂, for practical applications we only need to
consider the case of η̂ = η. The detailed algorithm is presented in the next subsection.

3.2. Algorithm for the Optimal Additive Noise

The analysis in Subsection 3.1 indicates that, in order to solve the noise-enhanced restricted NP
problem in Equations (10) and (11), we need to obtain a distribution g(θ) and the optimal additive
noise PDF p∗n(n) corresponding to r1(θ) in the classical NP framework to satisfy the conditions in
Theorem 1. To achieve this aim, the condition of (20) in Theorem 1 is rewritten as∫

Λ1

g(θ)PD(p∗n(n), θ)dθ = min
θ∈Λ1

PD(p∗n(n), θ). (25)

Equation (25) reveals that g(θ) only assigns nonzero values where θ corresponds to the global
minimum of PD(p∗n(n), θ). It is assumed that the value of θ that achieves the global minimum of
PD(p∗n(n), θ) is unique and thus g(θ) can be expressed as

g(θ) = δ(θ − θ1), (26)

where θ1 represents the unique θ that minimizes PD(p∗n(n), θ). Based on this assumption, the following
algorithm is provided to find p∗n(n) and θ1.

Algorithm 1 Optimal Additive Noise in the Restricted NP Approach

(1) Obtain PD(p∗n,θ1
(n), θ) for all θ1 ∈ Λ1, where p∗n,θ1

(n) represents the optimal additive noise
corresponding to r1(θ) = ηv1(θ) + (1− η)δ(θ − θ1) in the classical NP framework under the
constraint of max

θ∈Λ0

∫
RN pn(n) fθ(n)dn ≤ α.

(2) Calculate f (θ1) = η
∫

Λ1
v1(θ)PD(p∗n,θ1

(n), θ)dθ + (1− η)PD(p∗n,θ1
(n), θ1), and solve the

following minimization problem:
θ∗1 = arg min

θ1∈Λ1
f (θ1). (27)

(3) If PD(p∗n,θ∗1
(n), θ∗1 ) = min

θ∈Λ1
PD(p∗n,θ∗1

(n), θ), p∗n,θ∗1
(n) is the solution of the noise-enhanced

restricted NP problem in Equations (10) and (11). Otherwise, there is no optimal solution.

In Algorithm 1, f (θ1) can be regarded as the average detection probability corresponding to
r1(θ) = ηv1(θ) + (1− η)δ(θ − θ1) and Step (2) is satisfied based on Theorem 2. It should be noted
that the θ∗1 obtained in Equation (27) may be not unique. When that happens, for any θ∗1 and if the
corresponding optimal additive noise p∗n,θ∗1

(n) satisfies the equality in Step (3), p∗n,θ∗1
(n) is the solution

of the noise-enhanced restricted NP problem, according to Theorem 1.
If there is more than one value of θ corresponding to the global minimum PD(p∗n(n), θ), the

expression of g(θ) can be written as

g(θ) =
L

∑
i=1

µiδ(θ − θi), (28)

where µi ≥ 0,
L
∑

i=1
µi = 1, θi and L are the value and the number of θ corresponding to the global

minimum PD(p∗n(n), θ), respectively. In such a case, let ν represent the vector consisting of all the
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unknown parameters in g(θ), i.e., ν = [(µ1, θ1), · · · , (µL, θL)]. Accordingly, Step (2) in the algorithm
can be updated by

ν∗ = arg min
ν

f (ν) = arg min
ν

{
η
∫

Λ1

v1(θ)PD(p∗n,ν(n), θ)dθ + (1− η)
L

∑
i=1

µiPD(p∗n,ν(n), θi)

}
, (29)

where p∗n,ν(n) denotes the optimal additive noise PDF corresponding to r1(θ) = ηv1(θ) +

(1 − η)
L
∑

i=1
µiδ(θ − θi) obtained by the noise-enhanced classical NP approach. Moreover, if the

condition of PD(p∗n,ν∗(n),ν
∗) = min

θ∈Λ1
PD(p∗n,ν∗(n),ν) in Step (3) holds, the corresponding p∗n,ν∗(n)

is indeed the solution of Equations (10) and (11). From the analysis above, compared to the case
where the global minimum of PD(p∗n(n), θ) is achieved by a unique θ, the computational complexity is
increased significantly. In order to overcome this problem, some global optimization algorithms, for
example the ant colony algorithm (ACO), genetic algorithm (GA), and particle swarm optimization
algorithm (PSO), can be utilized to find ν∗.

If there are infinite values of θ that achieve the global minimum PD(p∗n(n), θ), the Parzen window
density estimation can be used to approximate the form of g(θ) that solves the noise-enhanced
restricted NP problem. Specifically, g(θ) can be approximately denoted by a convex combination of
multiple window functions, given by

g(θ) ≈
W

∑
i=1

ξi ϕ(θ − θi). (30)

The noise-enhanced restricted NP problem can now be solved by updating the algorithm through
replacing ν = [(µ1, θ1), · · · , (µL, θL)] with ν = [(ξ1, θ1), · · · , (ξW , θW)] and redefining p∗n,ν(n) as the

optimal additive noise corresponding to r1(θ) = ηv1(θ) + (1 − η)
W
∑

i=1
ξi ϕ(θ − θi) obtained by the

noise-enhanced classical NP approach.
In practical applications, the value and number of θ to maximize PD(p∗n(n), θ) are generally

unknown in advance. Therefore, we usually first assume that there exists only one θ corresponding to
the global minimum PD(p∗n(n), θ), and then θ∗1 can be solved according to the Algorithm 1. If the result
matches the condition in Step (3), the noise-enhanced restricted NP problem in Equations (10) and (11)
has been solved. Otherwise, according to the algorithm and in order to solve the global minimum,
the number of values of θ will be incrementally increased until the optimal noise that satisfies the
noise-enhanced restricted NP criterion is obtained.

3.3. Noise-Enhanced Average Detection Probability on β

As concluded in Section 2.2, β is ineffective for β < C and meaningless for β > M. Therefore, in the
rest of this section we shall only consider the noise-enhanced average detection probability Pavg

D (pβ
n(n))

obtained under the restricted NP framework for β ∈ [C, M]. Prior to discussing the relation between
Pavg

D (pβ
n(n)) and β for β ∈ [C, M], an important concept should be explained explicitly first, namely,

that for any C < β < M we have
min
θ∈Λ1

PD(pβ
n(n), θ) = β. (31)

We now employ the contradiction method to illustrate the conclusion in Equation (31). It is
assumed that min

θ∈Λ1
PD(pβ

n(n), θ) > β. In this case, there exists an additive noise PDF pn(n) = λpc
n(n)+

(1 − λ)pβ
n(n), 0 < λ < 1, that satisfies min

θ∈Λ1
PD(pn(n), θ) = β, where pc

n(n) is the optimal

additive noise PDF in the noise-enhanced classical NP approach. According to the definition of
pc

n(n), min
θ∈Λ1

PD(pc
n(n), θ) = C < β and Pavg

D (pc
n(n)) > Pavg

D (pβ
n(n)). Consequently, Pavg

D (pn(n)) >
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Pavg
D (pβ

n(n)), which contradicts the definition of pβ
n(n). Therefore, the minimum of PD(pβ

n(n), θ) for

θ ∈ Λ1 cannot be greater than β, i.e., min
θ∈Λ1

PD(pβ
n(n), θ) = β. Theorem 3 now shows the link between

Pavg
D (pβ

n(n)) and β, β ∈ [C, M].

Theorem 3. When β ∈ [C, M], the maximum noise-modified detection probability Pavg
D (pβ

n(n)) obtained by the
restricted NP approach is a strictly decreasing and concave function of β. The proof is presented in Appendix A.

Theorem 3 illustrates that the maximum noise-enhanced average detection probability increases
monotonically as β decreases towards C. In other words, the average detection probability can be
improved by reducing the constraint on the minimum detection probability in practical applications.
On the other hand, β is chosen according to the estimation uncertainty. When the uncertainty decreases,
we can select a smaller β. Therefore, Theorem 3 also indicates that the higher the validity of estimation,
the greater the average detection probability that could be obtained by adding additive noise.

4. Numerical Examples and Simulation Analysis

In this section, the conclusions investigated in the previous sections will be verified through a
practical example and the corresponding simulations. The two hypotheses are considered here and
given by {

H0 : x = v
H1 : x = Θ + v

, (32)

where x ∈ R, Θ is a parameter with some uncertainties, and v is a symmetric Gaussian mixture noise
with the PDF of form

pv(v) =
K

∑
i=1

ωiγ(v; µi, σi
2), (33)

where ωi > 0, ∑K
i=1 ωi = 1, and γ(v; µi, σi

2) = (1/
√

2πσi
2 )exp[− (v− µi)

2/2σi
2 ]. In this example,

the parameter Θ is modeled as a random variable with the PDF

v1(θ) = τδ(θ − A) + (1− τ)δ(θ + A), (34)

where A is a known positive constant, and τ is known, but with some uncertainties. The sets of Θ
under H0 and H1 are Λ0 = {0} and Λ1 = {A,−A}, respectively. The conditional PDF of x for any
given value of Θ = θ can be calculated by

pθ(x) =
K

∑
i=1

ωi (1/
√

2πσi
2 )exp[− (x− θ − µi)

2/2σi
2 ]. (35)

The decision rule of the detector is given as

φ(y) =

{
0, −A/2 < y < A/2
1, y ≤ −A/2, y > A/2

, (36)

where y = x + n and n denotes the independent additive noise. Correspondingly,

fθ(n) =
∫
RN

φ(y)pθ(y− n)dy =
K

∑
i=1

ωi[Q(
A/2 + n + θ + µi

σi
) + Q(

A/2− n− θ − µi
σi

)] (37)

f1(n) = τ fA(n) + (1− τ) f−A(n), (38)

where Q(x) =
∫ +∞

x (1/
√

2π)exp(−t2/2)dt.
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In this example, let K = 4 and suppose that the means of the symmetric Gaussian components
in the mixture noise are [0.1 0.6 −0.6 −0.1], with corresponding weights of [0.35 0.15 0.15 0.35].
In addition, it is assumed that the variances of the symmetric Gaussian components in the mixture
noise are the same, namely σi = σ for i = 1, . . . , 4. From the analysis in Section 3.2, we assume
g(θ) = δ(θ − θ1) first, and then the algorithm presented in Equation (28) can be utilized to find
θ∗1 and the corresponding optimal additive noise. If the solution satisfies the condition in Step (3),
the optimal additive noise is obtained by the restricted NP approach. Otherwise, it should be assumed
that g(θ) = λδ(θ − A) + (1− λ)δ(θ + A), where 0 < λ < 1. In this case, we only need to utilize the
algorithm to determine the unknown parameter λ, which minimizes the average detection probability
based on the prior distribution r1(θ) = ηv1(θ) + (1− η)g(θ), and the optimal additive noise can be
obtained accordingly.

Figure 1 compares the maximum noise-modified average detection probabilities obtained by the
restricted NP approach versus β for τ = 0.9, 0.8, and 0.7 when A = 1, σ = 0.2, and α = 0.3. Due to the
symmetry of the background noise, the original average detection probability is independent of τ and
equals 0.8878. Compared with the data in Figure 1, the average detection probability can be improved
by adding additive noise under the constraints that the false-alarm probability should not be greater
than α and the minimum detection probability should not be less than β. As defined in Equation (12),
the three values of β, i.e., C1, C2, and C3, in Figure 1 are the minimum detection probabilities obtained
by the noise-enhanced classical NP approach for τ = 0.9, 0.8 and 0.7, respectively. In this example,
the value of C increases with the decrease of τ, i.e., C1 < C2 < C3. From Figure 1, M is the minimum
detection probability obtained by the noise enhanced Max–min approach. At the same time, M is
the achievable maximum of the minimum detection probability in the three different noise-enhanced
approaches, which is consistent with the definition given in Equation (13). Additionally, the value of
M is independent of τ and M = 0.8988.
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Figure 1. Noise-enhanced average detection probabilities versus β obtained by the restricted NP
approach for τ = 0.9, 0.8 and 0.7 when A = 1, σ = 0.2, and α = 0.3.

With the decrease of τ, the maximum noise-modified average detection probability obtained by
the restricted NP approach decreases, and the corresponding value of C increases and approaches
M. When C = M, both the noise-enhanced restricted NP problem and the noise-enhanced classical
NP problem are equivalent to the noise-enhanced Max–min problem. If β ∈ [C, M] for a given τ,
the maximum noise-modified average detection probability obtained by the restricted NP approach
decreases with the increase of β. If β < C, the optimal solution for the noise-enhanced restricted NP
problem is the same as that for the noise-enhanced classical NP problem. Therefore, the maximum
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noise-modified average detection probability obtained by the restricted NP approach remains constant
for β < C and is equal to that obtained by the noise-enhanced classical NP approach.

Figure 2 depicts the maximum noise-enhanced average detection probabilities and the
corresponding minimum detection probabilities versus η obtained by the restricted NP approach
for τ = 0.9, 0.8, and 0.7 when A = 1, σ = 0.2, and α = 0.3. As shown in Figure 2, for a given
value of τ, when the value of η exceeds a certain threshold ηo, the maximum noise-enhanced average
detection probability increases and the corresponding minimum detection probability decreases with
an increase of η. According to the analysis in the previous sections, the value of ηo is specified by
β = M. When η < ηo, the noise-enhanced restricted NP problem is equivalent to the noise-enhanced
Max–min problem, and the corresponding maximum noise-enhanced average detection probability
is the same as the minimum detection probability, and equal to M. In this case, the value of M is
independent of τ, which also agrees with the conclusion in Figure 1. In addition, the value of ηo

decreases as τ increases, shown in Figure 2, namely η1 < η2 < η3, where η1, η2, and η3 are the values
of ηo corresponding to τ = 0.9, 0.8, and 0.7, respectively. In other words, a larger τ provides a bigger
feasible range of η. In general, the maximum noise-enhanced average detection probability obtained
by the restricted NP approach increases, while the corresponding minimum detection probability
decreases with an increase of τ for any η > ηo.
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Figure 2. Noise-enhanced average and minimum detection probabilities versus η obtained by the
restricted NP approach for τ = 0.9, 0.8, and 0.7 when A = 1, σ = 0.2, and α = 0.3.

Figure 3 illustrates the average detection probabilities for α = 0.25 and 0.35 obtained by the
noise-enhanced restricted NP approach and the original detector versus σ when A = 1, τ = 0.7 and
β = 0.8. It is seen that with the increase of σ the original average detection probability initially remains
constant, then decreases gradually after reaching the maximum. On the other hand, the average
detection probability obtained by the noise-enhanced restricted NP approach initially remains constant
then gradually decreases. In addition, the smaller the value of σ, the greater the gain obtained by
adding noise. Compared with the average detection probabilities obtained by the noise-enhanced
restricted NP approach under the constraints that α = 0.35 and 0.25, respectively, the noise-enhanced
average detection probability increases as α increases, which again agrees with the theoretical analysis.

Figure 4 compares the maximum noise-enhanced average detection probabilities and the
corresponding minimum noise modified detection probabilities, which are obtained by the restricted
NP approach for η = 0.8 and 0.7, classical NP, Max–min approaches, and the original detector, versus
σ when A = 1, τ = 0.8, and α = 0.25. It should be noted that the average detection probability
is equal to the minimum detection probability for the noise-enhanced Max–min approach and the
original detector. As shown in Figure 4, the noise-enhanced classical NP approach produces the highest
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average detection probability and the lowest minimum detection probability, while the noise-enhanced
Max–min approach obtains the maximum of the minimum detection probability. The results are
consistent with the analysis in Section 3.3.
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When σ is close to 0, the average detection probability and the corresponding minimum detection
probability obtained by the noise-enhanced restricted NP approach are the same as those obtained
by the noise-enhanced classical NP approach, and the minimum detection probability is still greater
than the original detection probability. In addition, the change of η has little or no effect on the
optimal additive noise in this case. With the increase of σ, the average detection probabilities
obtained in the three noise-enhanced approaches decrease gradually; the corresponding minimum
probabilities first decrease and then increase slightly. The minimum detection probability obtained by
the noise-enhanced Max–min approach decreases and gradually approaches the original detection
probability. Furthermore, for a certain range of σ, a greater average detection probability and a smaller
minimum detection probability are obtained by the noise-enhanced restricted NP approach for a
greater value of η. In addition, no improvement of the detectability can be achieved by adding any
noise when σ exceeds a certain level.
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5. Conclusions

In this paper, the noise-enhanced signal detection for the composite hypothesis problem is studied
according to various criteria. The noise-enhanced detection problem is formulated as a noise-enhanced
classical Neyman–Pearson (NP), Max–min, or restricted NP problem when the prior information is
completely known, completely unknown, or partially known, respectively. The relationships of the
noise-enhanced restricted NP problem, classical NP problem, and Max–min problem are discussed.
Further, the optimal additive noise obtained according to the restricted NP criterion was analyzed from
a special perspective where the noise-enhanced restricted NP problem is equivalent to a noise-enhanced
classical NP problem with different prior distributions under certain conditions, and the related
algorithm is provided to find the optimal solution. The minimum detection probability corresponding
to the maximum noise-modified average detection probability is proven to equal β, which is the lower
limit of detection probability in the restricted NP framework. In addition, it is demonstrated that the
maximum noise-modified average detection probability obtained by the restricted NP approach is a
strictly decreasing and concave function of β. Finally, numerical examples and simulation results are
provided to illustrate and verify the theoretical analysis.

In conclusion, the detection performance can be improved by adding additive noise obtained by
the restricted NP, classical NP, and Max–min approaches. Specifically, a better Receiver Operating
Characteristic (ROC) can be obtained. Under certain conditions, a better ROC means an increase
of SNR. Therefore, we could consider extending the theoretical results in this paper to increase the
SNR in the quantum regime, or to explore the optimal additive noise that enhances the quantum
resonance [3–7]. For example, a superconducting quantum interference device (SQUID) is usually used
to convert an applied magnetic flux into a voltage signal [5–7]. First, we may treat the applied magnetic
flux as the system input, and then obtain different output voltages via the addition of different direct
current (DC) signals to the input. Thus, the corresponding noise-modified SNRs could be calculated.
If there is no constraint on the input and/or output, the optimal additive noise would be the DC signal
corresponding to the maximum noise-modified SNR.
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Appendix A

Theorem A1. Define a PDF of θ under H1 as r1(θ) = ηv1(θ) + (1− η)g(θ), where g(θ) is any valid PDF.
If there exists a PDF p∗n(n) such that∫

RN
p∗n(n)

∫
Λ1

fθ(n)g(θ)dθdn = min
θ∈Λ1

∫
RN

p∗n(n) fθ(n)dn, (A1)

where p∗n(n) is the optimal additive noise PDF to maximize the average detection probability based on r1(θ)

under the constraint that max
θ∈Λ1

∫
RN pn(n) fθ(n)dn ≤ α, then p∗n(n) is the optimal solution of Equations (18)

and (19).
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Proof.
η
∫
RN pn(n) f1(n)dn + (1− η)min

θ∈Λ1

∫
RN pn(n) fθ(n)dn

≤ η
∫
RN pn(n)

∫
Λ1

fθ(n)v1(θ)dθdn + (1− η)
∫

Λ1

∫
RN pn(n) fθ(n)dng(θ)dθ

= η
∫
RN pn(n)

∫
Λ1

fθ(n)v1(θ)dθdn + (1− η)
∫
RN pn(n)

∫
Λ1

fθ(n)g(θ)dθdn
=
∫
RN pn(n)

∫
Λ1

fθ(n)(ηv1(θ) + (1− η)g(θ))dθdn
=
∫
RN pn(n)

∫
Λ1

fθ(n)r1(θ)dθdn

, (A2)

where the first inequality holds because min
θ∈Λ1

∫
RN pn(n) fθ(n)dn ≤

∫
Λ1

∫
RN pn(n) fθ(n)dng(θ)dθ,

and the equality holds if and only if min
θ∈Λ1

∫
RN pn(n) fθ(n)dn =

∫
Λ1

∫
RN pn(n) fθ(n)dng(θ)dθ.

Since p∗n(n) is the optimal additive noise PDF corresponding to the maximum average detection
probability based on r1(θ) and under the constraint that max

θ∈Λ1

∫
RN pn(n) fθ(n)dn ≤ α, we have

∫
RN

pn(n)
∫

Λ1

fθ(n)r1(θ)dθdn ≤
∫
RN

p∗n(n)
∫

Λ1

fθ(n)r1(θ)dθdn (A3)

If
∫
RN p∗n(n)

∫
Λ1

fθ(n)g(θ)dθdn = min
θ∈Λ1

∫
RN p∗n(n) fθ(n)dn, we have

η
∫
RN p∗n(n)

∫
Λ1

fθ(n)v1(θ)dθdn + (1− η)
∫

Λ1

∫
RN p∗n(n) fθ(n)dng(θ)dθ

= η
∫
RN p∗n(n) f1(n)dn + (1− η)min

θ∈Λ1

∫
RN p∗n(n) fθ(n)dn . (A4)

In conclusion, p∗n(n) is the solution of Equations (18) and (19). In addition, Equation (18) is always
less than or equal to (A4). �

Corollary A1. Under the conditions in Theorem 1, if min
θ∈Λ1

∫
RN p∗n(n) fθ(n)dn = β, p∗n(n) is the optimal

additive noise PDF corresponding to the optimization problem described in Equations (10) and (11).

Proof. From the definition of p∗n(n) in Theorem 1, p∗n(n) achieves the maximum of Equation (18), and
the following inequality always holds under the constraint that max

θ∈Λ1

∫
RN pn(n) fθ(n)dn ≤ α. That is

η
∫
RN pn(n) f1(n)dn + (1− η)min

θ∈Λ1

∫
RN pn(n) fθ(n)dn

≤ η
∫
RN p∗n(n) f1(n)dn + (1− η)min

θ∈Λ1

∫
RN p∗n(n) fθ(n)dn.

(A5)

Since min
θ∈Λ1

∫
RN pn(n) fθ(n)dn ≥ β according to Equation (11) and min

θ∈Λ1

∫
RN p∗n(n) fθ(n)dn = β as

assumed in the corollary,
∫
RN pn(n) f1(n)dn should be less than or equal to

∫
RN p∗n(n) f1(n)dn in order

to make the inequality in (A5) true. Therefore, when min
θ∈Λ1

∫
RN p∗n(n) fθ(n)dn = β under the conditions

in Theorem 1, p∗n(n) is the solution of Equations (10) and (11). �

Theorem A2. Under the conditions in Theorem 1, r1(θ) = ηv1(θ) + (1− η)g(θ) is the PDF that minimizes
the noise-modified average detection probability among all probability distributions of the form r̂1(θ) = η̂v1(θ)+

(1− η̂)ĝ(θ), where η̂ ≥ η, θ ∈ Λ1 and ĝ(θ) is any PDF. In other words, the following inequality holds:∫
RN

p∗n(n)
∫

Λ1

fθ(n)r1(θ)dθdn ≤
∫
RN

p̂∗n(n)
∫

Λ1

fθ(n)r̂1(θ)dθdn, (A6)

where p∗n(n) and p̂∗n(n) are the optimal additive noise PDFs obtained by the classical NP approach corresponding
to r1(θ) and r̂1(θ), respectively.
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Proof. Under the conditions in Theorem 1, we have∫
RN p∗n(n)

∫
Λ1

fθ(n)r1(θ)dθdn
= η

∫
RN p∗n(n)

∫
Λ1

fθ(n)v1(θ)dθdn + (1− η)
∫

Λ1

∫
RN p∗n(n) fθ(n)dng(θ)dθ

= η
∫
RN p∗n(n)

∫
Λ1

fθ(n)v1(θ)dθdn + (1− η)min
θ∈Λ1

∫
RN p∗n(n) fθ(n)dn

. (A7)

Since
∫
RN p∗n(n)

∫
Λ1

fθ(n)v1(θ)dθdn ≥ min
θ∈Λ1

∫
RN p∗n(n) fθ(n)dn, for any η̂ ≥ η, one obtains

∫
RN p∗n(n)

∫
Λ1

fθ(n)r1(θ)dθdn
≤ η̂

∫
RN p∗n(n)

∫
Λ1

fθ(n)v1(θ)dθdn + (1− η̂)min
θ∈Λ1

∫
RN p∗n(n) fθ(n)dn

≤ η̂
∫
RN p∗n(n)

∫
Λ1

fθ(n)v1(θ)dθdn + (1− η̂)
∫

Λ1
ĝ(θ)

∫
RN p∗n(n) fθ(n)dndθ

=
∫
RN p∗n(n)

∫
Λ1

fθ(n)(η̂v1(θ) + (1− η̂)ĝ(θ))dθdn
=
∫
RN p∗n(n)

∫
Λ1

fθ(n)r̂1(θ)dθdn
≤
∫
RN p̂∗n(n)

∫
Λ1

fθ(n)r̂1(θ)dθdn

. (A8)

The last inequality holds due to the definition of p̂∗n(n). From Equation (A8), the maximum
noise-modified average detection probability corresponding to r1(θ) = ηv1(θ) + (1− η)g(θ) is less
than or equal to that corresponding to r̂1(θ) = η̂v1(θ) + (1− η̂)ĝ(θ) for η̂ ≥ η. �

Theorem A3. When β ∈ [C, M], the maximum noise-modified detection probability Pavg
D (pβ

n(n)) obtained by
the restricted NP approach is a strictly decreasing and concave function of β.

Proof. First, based on the definition of the noise-enhanced restricted NP approach, Pavg
D (pβ

n(n)) is a

non-increasing function of β. In order to prove the concavity of Pavg
D (pβ

n(n)) with respect to (w.r.t.) β,
we define an additive noise with PDF pn(n), which is a convex combination of two optimal additive
noises obtained by the restricted NP approach under the same constraint on false-alarm probability
corresponding to β = β1 and β = β2. That is,

pn(n) = λpβ1
n (n) + (1− λ)pβ2

n (n), (A9)

where C ≤ β1 < β2 ≤ M, 0 < λ < 1, pβ1
n (n), and pβ2

n (n) denote the optimal additive noise PDFs
obtained by the restricted NP approach for β = β1 and β = β2, respectively. From the definition of
pn(n), the noise-modified detection and false-alarm probabilities corresponding to pn(n) for a given
value of θ can be obtained as

PD(pn(n), θ) = λPD(pβ1
n (n), θ) + (1− λ)PD(pβ2

n (n), θ), θ ∈ Λ1, (A10)

PFA(pn(n), θ) = λPFA(pβ1
n (n), θ) + (1− λ)PFA(pβ2

n (n), θ), θ ∈ Λ0. (A11)

From the relation in Equation (A11), it is obvious that pn(n) also satisfies the constraint on
false-alarm probability. That is,

max
θ∈Λ0

PFA(pn(n), θ) ≤ λmax
θ∈Λ0

PFA(pβ1
n (n), θ) + (1− λ)max

θ∈Λ0
PFA(pβ2

n (n), θ) ≤ α. (A12)

Based on Equations (A9) and (A10), the noise-modified average detection probability
corresponding to pn(n) can be calculated by

Pavg
D (pn(n)) = λPavg

D (pβ1
n (n)) + (1− λ)Pavg

D (pβ2
n (n)). (A13)



Entropy 2016, 18, 400 17 of 18

Accordingly, the minimum detection probability obtained by adding the noise with PDF pn(n)
can be upper bounded by

min
θ∈Λ1

PD(pn(n), θ) ≥ λmin
θ∈Λ1

PD(pβ1
n (n), θ) + (1− λ)min

θ∈Λ1
PD(pβ2

n (n), θ)

≥ λβ1 + (1− λ)β2

. (A14)

Let min
θ∈Λ1

PD(pn(n), θ) = β and β̂ = λβ1 + (1− λ)β2, the following inequalities can be obtained

according to Equations (A13) and (A14),

Pavg
D (pβ̂

n(n)) ≥ Pavg
D (pβ

n(n)) ≥ Pavg
D (pn(n)) = λPavg

D (pβ1
n (n)) + (1− λ)Pavg

D (pβ2
n (n)) (A15)

where the first inequality holds due to the non-increasing character of Pavg
D (pβ

n(n)) w.r.t. β and the

second inequality follows because pβ
n(n) is the optimal additive noise to maximize the noise-modified

average detection probability for the case where the constraint on the minimum detection probability
is selected as β. Therefore, Pavg

D (pβ
n(n)) is proven to be a concave function w.r.t. β.

Next, the strictly decreasing character of Pavg
D (pβ

n(n)) will be shown. Let C < β1 < β2 ≤ M
and suppose Pavg

D (pβ1
n (n)) = Pavg

D (pβ2
n (n)), which means pβ2

n (n) is also an optimal additive noise

corresponding to β1. We then have min
θ∈Λ1

PD(pβ1
n (n), θ) ≥ β2 > β1, which obviously contradicts

Equation (31). Therefore, Pavg
D (pβ1

n (n)) < Pavg
D (pβ2

n (n)) must satisfy for any C < β1 < β2 ≤ M.

In summary, Pavg
D (pβ

n(n)) is a strictly decreasing concave function w.r.t. β. �
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