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Abstract: In this paper, we propose a rate-compatible (RC) parallel concatenated punctured polar
(PCPP) codes for incremental redundancy hybrid automatic repeat request (IR-HARQ) transmission
schemes, which can transmit multiple data blocks over a time-varying channel. The PCPP coding
scheme can provide RC polar coding blocks in order to adapt to channel variations. First,
we investigate an improved random puncturing (IRP) pattern for the PCPP coding scheme due to
the code-rate and block length limitations of conventional polar codes. The proposed IRP algorithm
only select puncturing bits from the frozen bits set and keep the information bits unchanged during
puncturing, which can improve 0.2–1 dB decoding performance more than the existing random
puncturing (RP) algorithm. Then, we develop a RC IR-HARQ transmission scheme based on PCPP
codes. By analyzing the overhead of the previous successful decoded PCPP coding block in our
IR-HARQ scheme, the optimal initial code-rate can be determined for each new PCPP coding block
over time-varying channels. Simulation results show that the average number of transmissions is
about 1.8 times for each PCPP coding block in our RC IR-HARQ scheme with a 2-level PCPP encoding
construction, which can reduce half of the average number of transmissions than the existing RC
polar coding schemes.
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1. Introduction

Polar codes, proposed by Arikan [1], are the first class of structured channel codes that can
provably achieve the capacity of the binary-input discrete memoryless symmetric channels via a
low-complexity successive cancellation (SC) decoder [2–6]. The encoding and decoding complexity
of polar codes are O(Nlog2N), where N is the block length [7,8]. Furthermore, in [9,10], Ido Tal and
Niu Kai have independently derived a successive cancellation list (SCL) decoding algorithm, which can
achieve maximum likelihood decoding performance with decoding complexity O(LNlog2N), where L
is the size of the list. In addition, by adding a few extra bits of cyclic redundancy check (CRC) to the
transmitted bits, polar codes with an SCL decoding algorithm are comparable with state-of-the-art
low-parity parity check (LDPC) codes and Turbo codes [11]. Because of their good performance
and low complexity, polar codes have been selected for use in the upcoming fifth-generation (5G)
communication systems [12–15].

In general wireless communication scenarios in future 5G systems, flexible and adaptive
transmission techniques are required due to the time-varying nature of wireless channels [16–18].
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One approach is to have several pairs of different code-rate encoders and decoders to adapt to the
channel variations [19]. However, this requires extra coding complexity.

As an alternative, a popular solution to compensate for channel state variations is incremental
redundancy hybrid automatic repeat request (IR-HARQ) [20–22], where the parity bits are sent
in an incremental fashion depending on the quality of the time-varying channel. In this way,
the rate-compatible (RC) codes are well-suited for the IR-HARQ scheme to address the scalable
code-rate requirement, which can be implemented with a single encoder/decoder pair. Therefore, if
decoding is not successful at a particular rate, then the receiver can request only the additional parity
bits from the transmitter, instead of the full set of parity bits of the code with a lower rate.

Although polar codes can achieve the capacity of any binary memoryless symmetric channel,
which is natural to be applied to IR-HARQ transmission schemes [23], their RC constructions are not
in general capacity-achieving due to the limitation of the block length of conventional polar codes
being restricted to a power of two.

In general, a family of RC polar codes typically obtained by puncturing, where the set of parity
bits of a code with a higher rate is a subset of the set of parity bits of a code with a lower rate. The study
of puncturing patterns for polar codes to obtain arbitrary block lengths and code-rates are considered
in [24–27]. However, puncturing of polar codes incurs a loss of performance, and the performance of
these punctured codes are worse than the conventional polar codes even if they have the same length
and code rate. Authors in [28] proposed an efficient polar coding scheme for optimizing jointly the
puncturing patterns and the set of information bits of the polar code, and showed that it outperformed
the LDPC codes defined in WiMAX standard. Moreover, the puncturing patterns in [25–28] are
optimized according to the set of information bits, these methods cannot be used to design a family
of RC punctured codes for IR-HARQ, which requires the same information set that should be used
for all punctured codes from a mother code in the family. Consider the heuristic search algorithm
presented in [24], which developed a good puncturing pattern for a fixed information set. Therefore,
in order to determine an optimal RC puncturing patterns, one needs to consider the trade-offs between
complexity and reliability [29–31], which is still an open problem.

Recently, Refs. [32,33] have proposed RC polar-like codes that are provably capacity-achieving
over any class of a degraded family of channels. Both solutions take advantage of the nested property
of polar codes for degraded channels, where the transmitter keeps sending additional code bits of a
mother code to the receiver until a decoding succuss is announced. Then, the receiver can decode the
whole block through a sequential decoding procedure. However, due to the block length and code-rate
limitation of polar codes, both constructions of RC polar codes can achieve the capacity only for a
sequence of rates that satisfy a certain relationship. Furthermore, these RC coding schemes can be used
only when the family of channels over which the transmission takes place is ordered by degradation;
otherwise, the nested property does not hold.

Therefore, we develop an IR-HARQ transmission scheme based on a family of RC polar codes
named parallel concatenated punctured polar (PCPP) codes in this paper. The PCPP coding scheme are
optimized for a sequence of successively degraded channels and used for our IR-HARQ transmission
scheme, for which the main ideas are exploited from concatenated polar coding construction that can
be decoded by a sequence of parallel polar decoders [33]. The main contribution and novelty of this
paper can be summarized as follows:

• We investigate an improved random puncturing (IRP) pattern for the PCPP coding scheme to
obtain a sequence of nested encoding functions in a PCPP coding block transmission, for which
the set of parity bits of a higher code-rate polar code is a subset of the set of parity bits of a
lower code-rate polar code for a PCPP coding block IR-HARQ transmission. The proposed IRP
algorithm only selects puncturing bits from the frozen bits set and keeps the information bits
unchanged during puncturing, which can achieve 0.2–1 dB decoding performance improvement
more than the existing random puncturing (RP) algorithm.
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• To realize multiple blocks transmission over a time-varying channel, we develop an RC IR-HARQ
transmission scheme based on PCPP codes, where Refs. [32,33] were only optimized in a single
block transmission case. By analyzing the overhead of the previous successful decoded PCPP
coding block in our IR-HARQ scheme, the optimal initial code-rate can be determined for each
new PCPP coding block over time-varying channels. Simulation results show that the average
number of transmissions is about 1.8 times for each PCPP coding block in our RC IR-HARQ
scheme with a 2-level PCPP encoding construction, which reduces half of the average number of
transmissions than the existing RC polar coding schemes.

The remainder of this paper is organized as follows. In Section 2, we present some preliminaries
of polar codes and rate-compatibility. In Section 3, we introduce our IRP algorithm that limits the
selection of puncturing patterns on the set of frozen bits. Then, we propose our RC PCPP coding
scheme for IR-HARQ transmission in Section 4. In Section 5, the optimal initial code-rate is analyzed for
multiple RC PCPP coding blocks for IR-HARQ schemes over time-varying channels. The simulation
results and comparisons for the proposed scheme and existing schemes are presented in Section 6.
Finally, Section 7 concludes the paper with some remarks and suggestions of further research work.

2. Preliminaries

2.1. Polar Codes

Polar codes are proposed based on the phenomenon of channel polarization: N polarized
sub-channels {W(i)

N } (i = 1, 2, ..., N) can be obtained by channel combining and splitting operation on
N independent discrete memoryless channels (DMCs). In this work, the most reliable K sub-channels
will be selected by a Density Evolution (DE) algorithm [29] to transmit information sets and the rest of
the sub-channels will be used to transmit frozen sets, where K is the number of information bits.

Polar codes can be uniquely determined by three parameters C(N, R,A), where N = 2m, m > 0 is
the block length, R = K/N is the code-rate and K-element subset A ⊂ {1, 2, ..., N}, where K =| A |
and (N − K) =| Ac |. We refer to this set as the information set, and the complementary set Ac is
referred to as the frozen set. Let u = (u1, u2, ..., uN) denote an information vector of size 1× N. The K
information bits are placed in those elements of u corresponding to the set A, and N − K frozen bits
(deterministic values, typically zeros) are placed in u corresponding to the complementary set Ac.
The codeword x corresponding to an information vector uA ⊂ u to be transmitted is then generated by

x = uGN = (uA + uA
c
)
(

BNF⊗n
2
)

, (1)

where GN is the generator matrix, BN is an N × N permutation matrix that acts as a bit-reversal

operator, F2 =

[
1 0
1 1

]
is a kernel of the polarizing transformation and F⊗n

2 is the n-th Kronecker

power of F2.

2.2. Successive-Cancellation (SC) Decoding

Arikan proposed a Successive cancellation (SC) decoding algorithm for polar codes [1],
the SC decoder generates the estimate ûi of i-th bit based on the previous (i − 1) estimates
of ûi−1 = (û1, û2, ..., ûi−1) and the channel output yN = (y1, y2, ..., yN), and we denote that
yj

i = (yi, yi+1, ..., yj−1, yj) for 1 ≤ i ≤ j ≤ N. The transition probabilities W(i)
N (yN , ûi−1|ui) are used to

define the N binary-input coordinate channels W(i)
N , which is denoted as follows:

W(i)
N (yN , ûi−1|ui) = ∑

uN
i+1∈X N−i

1
2N−1 WN(yN |uN), (2)
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where (yN , ûi−1) and ui denote the output and input of W(i)
N , respectively. X and WN(yN |uN) denote

the input and transition probabilities of synthesized channel WN after the channel combining phase [1].
Then, the log likelihood ratio (LLR) for the i-th bit is calculated by

ûi =

{
0, L(i)

N (yN , ûi−1) ≥ 0,

1, otherwise,
(3)

where L(i)
N (yN , ûi−1) is defined as

L(i)
N (yN , ûi−1) = ln

W(i)
N (yN , ûi−1|0)

W(i)
N (yN , ûi−1|1)

. (4)

Accordingly, each LLR can be calculated as follows:

L(2i−1)
N (yN

1 , û2i−2) =2 tanh−1
(

tanh
( L(i)

N
2
(y

N
2

1 , û2i−2
o ⊕ û2i−2

e )

2
)

tanh
( L(i)

N
2
(yN

N
2 +1

, û2i−2
e )

2
))

,

L(2i)
N (yN

1 , û2i−1) =L(i)
N
2
(yN

N
2 +1

, û2i−2
e ) + (−1)û2i−1 L(i)

N
2
(y

N
2

1 , û2i−2
o ⊕ û2i−2

e ),

(5)

where ûi
o and ûi

e denote the sub-vectors consisting of elements of ûi with odd and even indices,
and ⊕ denotes modulo-2 addition. According to the initial values, L(1)

1 (yi) = ln[W(yi|0)
/

W(yi|1)],
i ∈ 1, 2, ..., N.

In addition, the belief propagation (BP) decoding algorithm for polar codes is also proposed in [1],
which can outperform the SC algorithm with higher complexity O(tN log2 N), where t is the number
of BP decoding iterations.

The most effective polar decoding algorithm is the successive-cancellation list (SCL) decoding
algorithm, which is proposed in [9,10] as an upgrade version of the SC algorithm. SCL can be regarded
as a joint optimization method of the SC algorithm and the maximum likelihood (ML) algorithm [34].
In the SCL decoding process, source bit is not decoded immediately at each step, instead of finding
a maximum of l candidate paths. For each source bit ui, the SCL algorithm doubles the number of
decoding paths by pursuing both ui = 0 and ui = 1 options, and then preserves the most likely l paths
in a list and discards others. When all the source bits are traversed, the most reliable path is chosen as
the output of the decoder. The complexity of SCL decoding is O(lNlog2N).

The simple successive cancellation (SSC) [35] is proposed to decrease the decoding complexity of
the SC algorithm. The successive cancellation stack (SCS) [36] is proposed to reduce the complexity
of SCL in some conditions. The SCL decoding can combine with cyclic redundancy check (CRC)
in a concatenated coding fashion to further improve the performance of polar codes [11], which
substantially outperformed the state-of-art turbo and LDCP codes.

2.3. Rate-Compatible Polar Codes

Let {W1, W2, ..., WJ} denote a family of J channels. If their respective capacity is
I(W1) > I(W2) > ... > I(WJ), we call that a sequence of successively degraded channels [37] and
it is referred as I(W1) � I(W2) � ... � I(WJ). A family of rate-compatible (RC) polar codes
{C(N, Ri,Ai)}|i∈{1,2,...,J} can be designed for such degraded channels where their respective
information sets are such that A1 ⊇ A2 ⊇ ... ⊇ AJ , which is called nested property. Each polar
code for Wi has the same block length N and with code-rates R1 > R2 > ... > RJ and each Ri = I(Wi).

Li, B. et al. [32] and Hong, S.-N. et al. [33] proposed two RC polar-like coding schemes. In both
schemes, the sender first transmits the code block C(N, R1,A1) with a predetermined maximum rate
R1. If the decoding is successful at the receiver, this block is successfully transmitted and the procedure
ends; otherwise, an error message (NACK) is fed back to the sender, and the received data is stored in
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the buffer and waits for decoding with further transmission data blocks. In the second transmission,
the code block C(N, R2,A2) with rate R2 = R1/2 will be transmitted. The second code block is
constructed by the information bits that were put on the indices A1 \ A2 in the first transmission, and
these information bits are now put on the indices A2, and rest are frozen bits. Here, A1 \ A2 represents
the relative complement of A2 in A1.

The transmission will be stopped until the k-th code block C(N, Rk,Ak) is decoded successfully,
where Rk = R1/k and the information bits are those with the indices A(k−1) \ Ak in all of the previous
transmissions, and the length of the frozen bits is N − |Ac

k|.
After the k-th code block C(N, Rk,Ak) is decoded successfully, then the receiver can decode

the previous buffered code block in a backward decoding strategy according to the nested property.
The decoded bits Ak will be used as frozen bits to help decode the (k − 1)-th polar code block
C(N, Rk−1,Ak−1). Then, the code-rate of the (k − 1)-th code block is reduced to Rk. Therefore,
the k− 1-th code block can be decoded. Likewise, all the previous buffed (k− 1) code blocks can be
decoded backwards after (k− 1) times decoding and all the A1 information bits are recovered.

Though these schemes can provide a simple way to construct a family of RC codes with the
degraded rates R, R/2, R/3, ..., we find it is unable to achieve arbitrary rates in [32], and the puncturing
scheme in [25] caused serious performance loss, and the information bits may be punctured and the
nested property does not hold. Moreover, both of the schemes lack introduction of how to measure
the reliabilities of the subchannels without any channel information in the first transmission. Thus,
we need to address these problems in our new scheme in this paper.

3. Improved Random Puncturing Algorithm Polar Codes

To break the limitation of the block length of the polar codes, which is restricted to a power of two
in practical communication systems, an effective way is puncturing. Let p = (p1, p2, ..., pN) ∈ {0, 1}N

denote the puncturing pattern, and pi = 0 indicate that the i-th coded bit will be punctured. Ref. [31]
has investigated the impact of puncturing on a given information set, and proved that the overall
system performance depends on the performance of both the punctured and the unpunctured (mother)
code, which are further constrained by a joint optimization of both p and {C(N, Ri,Ai)}|i∈{1,2,...,J}.

Let NM and RM denote the block length and code-rate of the mother polar code, [NM]p and
[RM]p denote the block length and code-rate of the punctured polar code, respectively. A punctured
polar code with block length [NM]p can be obtained by puncturing NM − [NM]p bits from a mother
code with block length NM, which is equivalent to moving NM − [NM]p columns and NM − [NM]p
rows from generation matrix GN . In order to ensure that the puncturing matrix is reversible [26],
the indices of the moved columns vectors i are the same as the puncturing positions, and the indices of
the puncturing rows vector are j = ∏(i), where ∏(·) is the bit-reversal function. Figure 1 shows how
to construct a polarizing matrix when NM = 8, [NM]p = 6. If the puncturing codewords are x1 and x2,
then the 1st, the 2nd column and the 1st and the 5th row should be moved from generation matrix G8.

Recall the encoding process in Equation (1), it can be rewritten as

xN
1 = uAGN(A) + uA

c
GN(Ac)

= ∑
i∈A

ui ×Ri + ∑
i∈Ac

0×Ri, (6)

where uA
c

denotes the frozen part of source block u, GN(A) is the sub-matrix of GN formed by the
row with indices in A, and GN(Ac) is defined in the same fashion.

We can identify from Equation (6) that the random puncturing algorithms allow the chance to
puncture some important information bits, which will lead to a block error [38], and the simulation
result will be shown in Section 6. On the other hand, the same information set should be used for all
punctured codes in a family of RC codes.
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Figure 1. An example of puncturing from a generation matrix, where NM = 8, and [NM]p = 6.

Consider the equivalent puncturing positions j = ∏(i), if i is the position of puncturing
information bits, then the rows to be moved are j ∈ Ac, which is equivalent to the columns to
be moved are j ∈ ∏(Ac). Therefore, we can limit the puncturing positions in the set ∏(Ac) [38], and
propose an improved random puncturing (IRP) algorithm.

Let a mother polar code with block length NM and the code-rate be RM, and the punctured code
is with block length [NM]p. The IRP algorithm is briefly described as follows:

Stage 1: Initialize the values in a puncturing pattern p and set as all ones;
Stage 2: The encoder randomly selects NM− [NM]p bits in the frozen bits set ∏(Ac) for puncturing,

and the corresponding indices in p are flipped to zeros.

4. System Model

Base on a family of the above RC punctured polar codes, we can construct our parallel concatenated
punctured polar (PCPP) codes {C(Ni, Ri,A

(i)
i )}|i∈{1,2,...,J} over any sequence of successively degraded

channels W1 �W2 � ... �WJ to transmit K information bits. Their information sets {A(i)
i } are nested

and the block length Ni and the corresponding code-rate Ri for each PCPP coding block are satisfied

Ri =
K

∑i
j=1 Nj

, (7)

where K = N1R1 is equal to the number of the information bits in the PCPP codes. In addition, for
each block length Ni, we can use our IRP algorithm to construct a sequence of nested punctured polar
codes {C([Ni]p, Rj,A

(i)
j )}J

j=i with rates {Ri, Ri+1, ..., RJ}, and the length of the information bits in each
punctured code block is the same to satisfy

A(i)
j = [Ni]pRj. (8)

The RC PCPP coding scheme for IR-HARQ transmission is described as follows. In the first
transmission, the sender transmits the code block C(N1, R1,A(1)

1 ) while carrying all the K information
bits. If the first transmission fails, the received data will be stored and the second code block
C(N2, R2,A(2)

2 ) will be transmitted. The information bits located at the indices A(1)
1 \ A

(1)
2 of the

first block should be put at the current information setA(2)
2 and encoded, whereA(i)

j is the information
set that consists of the NiRj most reliable indices when the block length is Ni. If the second transmission

also fails, the third block C(N3, R3,A(3)
3 ) will be constructed by the information bits located at the

indicesA(1)
2 \A

(1)
3 of the first block and the information bits located at indicesA(2)

2 \A
(2)
3 of the second

block. Continuously, the transmission will be stopped if the decoding succeeds after the k-th block
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C(N, Rk,A(k)
k ) is transmitted or k = J. Then, we could decode the previous blocks backward to recover

all of the K information bits as well as the decoding of the RC polar codes in Section 2.3.
In the following, we will give a more detailed explanation of the main idea through a 3-level RC

PCPP coding scheme as shown in Figure 2. In this case, a information set of 12 bits will be transmitted
through three transmissions and a 3-level PCPP code block is needed to encode where with the
parameters N1 = 16, R1 = 3/4, R2 = 1/2, R3 = 1/4. We start by constructing the PCPP coding
block C(N1, R1,A(1)

1 ) for the 1st transmission, as shown in Figure 2a, where u12 = {u1, u2, ..., u12}
are the information bits. When the 1st transmission fails, the 2nd PCPP coding block C(N2, R2,A(2)

2 )

will be sent, where N2 = 8 can be calculated according to Equation (7), and the information bits are
u4 = {u1, u2, u3, u4} by calculating A(1)

1 \ A
(1)
2 .

u2

frozen bits 1u2u1 u12

u3

u11

u1 u4 frozen bits 2

u2 u5u1 u66 u77 u8 frozen bits 3

encoder

1
(1)

1

3
(16, )

4
C , A

encoder

2
(2)

2

1
(8, )

2
C , A

encoder

3
(3)

3

3
(32, )

16
C , A

(1)

1

3
(16, ))(1)

1

3

4
C 11

(3)

3

1
(24, )

4
C , A

1st

2nd

3rd Puncturing

Most reliable Reliable of sub-channels Leastt reliable
Polar  code

u3 u4 u5 u6 u7 u8 u10u9

(3)

3

1
(24, )(3)

3

1

4
C 33

(a)

u10 u11 u12
u7 u9

frozen bits3u55 u5 u6 77 u8

decoder 1

(3)

3

1
(24, )

4
C , A

decoder 2

frozen bits 1

(2)

3

1
(8, , )

4
C A (1)

3

1
(16, , )

4
C A

Polar code

u11 uu2

frozen bits

u1 u2 u3 u4 u5 u6 u7 u8

bit

decoder 1

frozen bits 2u3 u4 u1 u2

frozen bits
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Step 1 Step 2 Step 3

(1)

1

3
(16, , )

4
C A

(2)

2

1
(8, , )

2
C A

u1010 u1111 u12u99 frozen bits 1u1 u2 u3 u4 u5 u6 u7 u8
frozen bits 2u33 u4 u1 u2

frozen bits

(2)

3

1
(8, , )(2)

3

1

4
C (1)

3

11
(16, , )(1)

3

1

4
C

(1)

1

3
(16, , )(1)

1

3

4
C(16, ,, , 11

3(2)

2

1
(8, , )(2)

2

1

2
C(8, ,, , 22

1

Buffer

decoder 2 decoder 3

Turn to Turn to

(b)

Figure 2. The encoder and decoder structure of a 3-level PCPP code, where N1 = 16, N2 = 8, and
N3 = 24: (a) encoder structure; (b) decoder structure.

Assuming the 2nd transmission also fails in this example, the sender performs the 3rd transmission
with N3 = 24, for which the block length is not satisfy power of two and can not be obtained by polar
encoder directly. Then, we use the IRP algorithm to construct the 3rd PCPP coding block. In addition,
to avoid the block error caused by puncturing too many bits, we should do our best to minimize the
number of puncturing bits. Hence, we choose a mother polar code with block length NM = 32, and the
number of information bits in the 3rd transmission can be calculated as N3R3 = 6; then, the code-rate
of the mother code is RM = 3/16. The 3rd polar code C(N3, R3,A(3)

3 ) has been punctured eight bits

from the mother code, and the information bits in A(3)
3 are {u1, u2, u5, u6, u7, u8}. Then, the sender

finishes all three transmissions of the 3-level RC PCPP coding blocks.
As shown in Figure 2b, the backward decoding process begins when the 3rd PCPP coding block

can be decoded successfully.
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Step 1: the receiver starts by decoding the 3rd PCPP coding block C(N3, R3,A(3)
3 ) and recovers

the information bits {u1, u2, u5, u6, u7, u8}, which can be used to decode the other two previously
received PCPP coding blocks that were stored in the buffer.

Step 2: according to the nested property, the decoded bits {u1, u2} are regarded as frozen bits
in C(N2, R2,A(2)

2 ), and the 2nd PCPP coding block turn to a C(N2, R3,A(2)
3 ) coding block, where the

rate 2nd PCPP coding block is reduced to R3. Then, the remaining information bits {u3, u4} can be
decoded successfully.

Step 3: the information bits {u1, u2, u3, u4, u5, u6, u7, u8} in the two previously decoded PCPP
coding block are regarded as frozen bits in C(N1, R1,A(1)

1 ), to decode the remaining information bits
{u9, u10, u11, u12} with the code-rate also being reduced to R3. Therefore, all of the 12 information bits
have been decoded through the 2 times backward decoding.

According to the above analysis, it is worth noting that, although the RC PCPP coding scheme
can achieve arbitrary rates and block lengths, the coding complexity needs to be optimized. First,
assume that K information bits are transmitted successfully after k time transmissions and the sender
has been transmitting k-level PCPP coding blocks; then, there are k pairs of encoders and decoders that
are needed to construct the k-level PCPP codes, which lead to a complex system structure. The key
to addressing this problem is by considering the continuous block transmission over time-varying
channels, where the last successive transmission of the PCPP coding blocks can help the sender to
determine the optimization coding parameters for the next data block encoding in the first transmission.
We will discuss this optimization RC IR-HARQ transmission scheme in detail in the following.

5. Rate-Compatible IR-HARQ Transmission Scheme Based on PCPP Codes

In this section, we design a RC IR-HARQ transmission scheme based on PCPP codes, to transmit
multiple data blocks continuously over a time-varying channel. In our RC IR-HARQ transmission
scheme, a channel capacity estimation is fed back to the sender after each PCPP coding block is
successfully transmitted. Then, an optimal initial code-rate is determined by the sender for the next
transmission. The optimization method for determining the coding parameters of each 1st PCPP
coding block is as follows.

5.1. Initial Code-Rate and Number of Transmissions of the RC IR-HARQ Scheme

A general method of constructing RC IR-HARQ transmission scheme for transmitting multiple
data blocks over a time-varying channel is described as follows. Assuming the first data block is
encoded by the PCPP coding scheme with the initial code-rate R1 (the rate of C1(N1, R1,A(1)

1 )), after k
transmissions the receiver can be decoded successfully and the final rate is Rk. Then, a simple analysis
of the number of transmissions corresponding to the different initial code-rates for the second data
block C2(N1, R1,A(1)

1 ) is shown in Table 1.

Table 1. The relationship between the initial code-rate and the number of transmissions over a
time-varying channel.

Initial Code-Rate Channel Capacity Result

R1
increase (k− 1) transmissions at most
decrease (k + 1) transmissions at least

Rk
increase 1 transmission
decrease 2 transmissions at least

Obviously, in a continuous data block transmission over a time-varying channels scenario, Rk is
closer to the real channel capacity than R1, which leads to a simpler structure of PCPP codes as well as
less transmissions. Therefore, the key to simplifying the RC IR-HARQ scheme is to choose an optimal
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initial code-rate that is close to the time-varying channel capacity I(W). However, the exact I(W) is
unavailable for the sender in a practical wireless system.

Let [Rk, Rk−1) denote a capacity interval after the n-th data block is transmitted successfully
and I(W) ∈ [Rk, Rk−1), where Rk is the final code-rate of the PCPP coding block Cn(Nk, Rk,A(k)

k )

and Rk−1 is the code-rate of the last PCPP coding block that cannot be decoded. Then, the initial
code-rate of Cn+1(N1, R1,A(1)

1 ) for the (n + 1)-th data block can be chosen according to [Rk, Rk−1)

for the time-varying channel. Similarly, we can get such interval after the transmission of each data
block and choose an optimal rate according to the interval for the next data block. The detail of
the optimization method for determining the initial code-rate for the 1st PCPP coding block of RC
IR-HARQ transmission scheme is given in the next subsection.

5.2. Optimization Method for the 1st PCPP Coding Block of the RC IR-HARQ Transmission Scheme

As analyzed above, an estimation interval of the channel capacity can be obtained after each data
block is transmitted successfully in our RC IR-HARQ transmission scheme. Here, let [R1

k , R1
k−1) denote

the capacity interval after the 1st block is transmitted successfully and I(1)(W) ∈ [R1
k , R1

k−1). Then,

the initial code-rate of C2(N1, R1,A(1)
1 ) for the 2nd data block can be chosen according to [R1

k , R1
k−1).

Furthermore, let [R(n)
L , R(n)

U ) denote the capacity interval after the n-th data block is transmitted

successfully, and I(n)(W) denote the corresponding channel capacity and I(n)(W) ∈ [R(n)
L , R(n)

U ).
In a practical time-varying wireless system, the estimation error of the real channel state information is
hard to eliminate. However, our optimization method for the 1st PCPP coding block of RC IR-HARQ
transmission scheme can work well, and we will discuss the affection of the estimation error in
the following.

First, let [Imin, Imax] denote the variation range of the time-varying channel capacity that can
be obtained from the statistical information of the time-varying channel; ∆R denotes the difference
of the code-rates between any two adjacent PCPP coding blocks; Cn(Nk, Rk,A(k)

k ) is the k-th PCPP
coding block in the n-th block transmission, where the receiver begins the backward decoding with the
k-th received PCPP coding block; Cn([Nk]p, Rj,A

(k)
j , pNk

j )J
j=k is a sequence of nested punctured polar

codes, where pNk
j = (p1, p2, ..., pNk ) ∈ {0, 1}Nk is the j-th puncturing pattern and the mother code is

Cn(Nk, Rk,A(k)
k ).

Recall the variation range of the time-varying channel capacity [Imin, Imax]. Then, our optimization
method for choosing the initial code-rate of the (n + 1)-th data block Cn+1(N1, R1,A(1)

1 ) from the

capacity interval [R(n)
L , R(n)

U ) can be distinguished into three possible cases, which are illustrated
in Figure 3.

Case 1: the minimum channel capacity satisfies R(n)
L ≤ Imin and the maximum channel capacity

satisfies Imax ≤ R(n)
U as shown in Figure 3a. Then, the optimal initial code-rate for the (n + 1)-th

block is R(n)
U .

If the time-varying channel capacity increases, and the channel capacity satisfies
I(n)(W) ≤ I(n+1)(W) < Imax, since the maximum channel capacity is Imax ≤ R(n)

U , and the initial

code-rate is R(n+1)
1 = R(n)

U , which is beyond the channel capacity as Imax < R(n)
U , then the rate of

the 2nd PCPP coding block is R(n+1)
2 = R(n)

L . Hence, a 2-level PCPP code for the (n + 1)-th block

can be constructed with rates R(n+1)
1 = R(n)

U and R(n+1)
2 = R(n)

L , and two time transmissions can

ensure the data block delivery, and we have I(n+1)(W) ∈ [R(n)
L , R(n)

U ) at the end of this data block

transmission. In particular, if I(n+1)(W) = Imax = R(n)
U , the (n + 1)-the data block with the initial

code-rate R(n+1)
1 = R(n)

U PCPP coding block can be transmitted successfully in one time transmission.
Else, if the time-varying channel capacity decreases, the channel capacity satisfies

Imin ≤ I(n+1)(W) < I(n)(W), and the initial code-rate is R(n+1)
1 = R(n)

U > Imax. Similarly, we
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then need to construct the 2nd PCPP coding block with rate R(n+1)
2 = R(n)

L , and this can be decoded
by receiver. Therefore, a 2-level PCPP codes for the (n + 1)-th data block is needed to construct with
rates R(n+1)

1 = R(n)
U and R(n+1)

2 = R(n)
L , and the final state is I(n+1)(W) ∈ [R(n)

L , R(n)
U ).

Case 2: if the minimum channel capacity satisfies R(n)
L − ∆R ≤ Imin < R(n)

L and the maximum

channel capacity satisfies Imax ≤ R(n)
U as shown in Figure 3b, then, the optimal initial code-rate for the

(n + 1)-th block is R(n)
U .

If the time-varying channel capacity increases, and the channel capacity satisfies
I(n)(W) ≤ I(n+1)(W) < Imax with the maximum channel capacity satisfying Imax ≤ R(n)

U , similar
to the previous case, a 2-level PCPP code for the (n + 1)-th data block needs to be constructed
with rates R(n+1)

1 = R(n)
U and R(n+1)

2 = R(n)
L to successfully deliver the data block in two time

transmissions with I(n+1)(W) ∈ [R(n)
L , R(n)

U ) for the next data block transmission. In addition,

if I(n+1)(W) = Imax = R(n)
U and the initial code-rate for the (n + 1)-th data block is R(n+1)

1 , the data
block can be delivered in one time transmission.

Else, if the channel capacity decreases, we can distinguish two subcases: if the channel capacity
satisfies R(n)

L ≤ I(n+1)(W) < I(n)(W) < Imax, the construction of the (n + 1)-th data block is the

same as in Case 1, which is a 2-level PCPP code with rates R(n+1)
1 = R(n)

U and R(n+1)
2 = R(n)

L ; if the

channel condition goes through a severe deterioration as R(n)
L − ∆R ≤ I(n+1)(W) < I(n)(W) <

R(n)
L , the initial code-rate R(n+1)

1 = R(n)
U and 2nd code-rate R(n+1)

2 = R(n)
L are higher than the channel

capacity, until the 3rd PCPP coding block with the code-rate R(n+1)
3 = R(n)

L − ∆R is transmitted, and
the receiver can begin the backward decoding. Therefore, a 3-level PCPP codes for the (n + 1)-th data
block needs to be constructed, and I(n+1)(W) ∈ [R(n)

L − ∆R, R(n)
L ) is fed back to the sender.

Case 3: if the minimum channel capacity satisfies R(n)
L ≤ Imin and the maximum channel capacity

satisfies R(n)
U ≤ Imax ≤ R(n)

U + ∆R as shown in Figure 3c, then the optimal initial code-rate for the

(n + 1)-th block is Imax, which is obtained by puncturing a mother code Cn+1(N1, RU ,A(1)
1 ).

In this case, when the channel capacity increases, the channel capacity can increase to
R(n)

U ≤ I(n+1)(W) ≤ Imax ≤ R(n)
U + ∆R. If we choose R(n)

U as the initial code-rate for the (n + 1)-th
block, the (n + 1)-th data block can be transmitted successfully in one time transmission. However,
if we do so, we will have R(n+1)

U = R(n)
U , which is decreasing the efficiency of the channel use.

Therefore, the sender in Case 3 needs to construct a punctured polar code Cn+1(N1, Imax,A(1)
1 ) with

initial code-rate R(n+1)
1 = Imax from the mother code Cn(Nk, Rk,A(k)

k ) with code-rate R(n)
k = RU .

If the channel capacity increases, we can distinguish three subcases: If I(n+1)(W) = Imax,
the (n + 1)-th data block with the initial code-rate R(n+1)

1 = Imax PCPP coding block can be
transmitted successfully in one time transmission, and the feedback channel capacity interval is
I(n+1)(W) ∈ [Imax− ∆R, Imax). Else, if R(n)

U ≤ I(n+1)(W) < Imax, a 2-level PCPP code with rates

R(n+1)
1 = Imax and R(n+1)

2 = R(n)
U can transmit the (n + 1)-th data block successfully in two time

transmissions with I(n+1)(W) ∈ [R(n)
L , R(n)

U ) for the next data block transmission. In addition,
puncturing does not need extra encoders and decoders, and the transmission in this subcase only
needs one pair of encoder and decoder. Last, if I(n)(W) ≤ I(n+1)(W) < R(n)

U , then a 3-level

PCPP codes for the (n + 1)-th data block needs to be constructed with code-rate R(n+1)
1 = Imax,

R(n+1)
2 = R(n)

U and R(n+1)
3 = R(n)

L , respectively. Furthermore, the data delivery is finished in three
time transmissions with two pairs of encoders and decoders.

Else, if the channel capacity decreases, similarly, two subcases can be distinguished: if the channel
capacity satisfies R(n)

U ≤ I(n+1)(W) < I(n)(W), the (n + 1)-th data block with a initial code-rate

R(n+1)
1 = Imax 2-level PCPP codes can be transmitted successfully in two time transmissions as well

as the above subcase in Case 3. Else, if I(n+1)(W) < I(n)(W) < R(n)
U , then the sender needs to
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construct 3-level PCPP codes for the (n+ 1)-th data block transmission, with code-rate R(n+1)
1 = Imax,

R(n+1)
2 = R(n)

U and R(n+1)
3 = R(n)

L , respectively. Furthermore, the final state feedback to the sender is

I(n+1)(W) ∈ [R(n)
L , R(n)

U ).

( )n

L
R

( )n

U
R

minI maxI

(a)

( )n

U
R

( )n

L
R

maxIminI

( )n

L
R R- D

(b)

( )n

L
R

( )n

U
R

( )n

U
R R+ D

minI maxI

(c)

Figure 3. Illustration of our optimization method in different cases: (a) R(n)
L ≤ Imin ≤ Imax ≤ R(n)

U ;

(b) Imin ≤ R(n)
L ≤ Imax ≤ R(n)

U ; (c) R(n)
L ≤ Imin ≤ R(n)

U ≤ Imax.

In summary, in our RC IR-HARQ transmission scheme, the main idea to determine an optimal
initial code-rate for the PCPP coding block is according to the capacity interval feedback from the last
successful data block transmission. If the initial code-rate lower than Imin, the PCPP coding block can
be transmitted successfully in one time transmission, but it will be suboptimal if the channel capacity
increases in the next several data blocks transmission. If we choose an initial code-rate larger than
Imax, then the number of transmission may be larger than 2. As analyzed above, in most situations,
a 1-/2-level PCPP coding construction can reliably transmit the data blocks by using our optimal initial
code-rate method over a time-varying channel.

5.3. Parameter Optimization

a. Rate difference ∆R and the variation range of the time-varying channel [Imin, Imax]

In Section 5.2, we analyzed the optimal initial code-rate for the PCPP coding block in our RC
IR-HARQ transmission scheme over a time-varying channel in three different cases, where the key
parameters of our design method are dependent on the rate difference ∆R and the variation range of
the time-varying channel [Imin, Imax]. The complete characterization of the optimal initial code-rate
with these two parameters in Section 5.2 are given in Table 2.

b. Number of punctured bits P

Recall the Case 3 in Section 5.2, where we need to construct a punctured polar code
Cn+1(N1, Imax,A(1)

1 ) with initial code-rate R(n+1)
1 = Imax from the mother code Cn(Nk, Rk,A(k)

k )

with code-rate R(n)
k = RU to transmit the (n + 1)-th data block. Let Cn([Nk]p, Rj,A

(k)
j , pNk

j )J
j=k

be a sequence of nested punctured polar codes, where pNk
j = (p1, p2, ..., pNk) ∈ {0, 1}Nk is the j-th

puncturing pattern. Let P = |p̄| denote the number of punctured bits and meet the conditions that
[Nk]p = Nk− P < Nk and RU < Rj ≤ 1.

Our IRP algorithm has limited the puncturing pattern to avoid selecting from the information bits
set, such that we have Rj[NM ]p = RkNk and the number of punctured bits P is calculated as

P = Nk−
RkNk

Rj
, and 0 < P ≤ Nk− RkNk. (9)
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Table 2. The relationship between the optimal initial code-rate of the PCPP coding block and two
key parameters.

Initial Code-Rate Channel Capacity Value Range of I(n+1)(W) Transmission Rounds Coding Pairs

Case 1: R(n)
U

increase
I(n+1)(W) = R(n)

U 1 1

I(n+1)(W) < R(n)
U 2 2

decrease R(n)
L ≤ I(n+1)(W) 2 2

Case 2: R(n)
U

increase
I(n+1)(W) = R(n)

U 1 1

I(n+1)(W) < R(n)
U 2 2

decrease
R(n)

L ≤ I(n+1)(W) 2 2

I(n+1)(W) < R(n)
L 3 3

Case 3: R(n)
U

increase

I(n+1)(W) = Imax 1 1

R(n)
U ≤ I(n+1)(W) < Imax 2 1

I(n+1)(W) < R(n)
U 3 2

decrease
R(n)

U ≤ I(n+1)(W) 2 2

I(n+1)(W) < R(n)
U 3 2

6. Simulation and Comparison

6.1. Performance of the Improved Random Puncturing Algorithm

In this subsection, we present Monte Carlo simulation results to evaluate the performance of our
IRP algorithm over a binary-input additive white Gaussian noise (BI-AWGN) channel with antipodal
signaling±1, and other system parameters are provided in Table 3.

Table 3. Simulation parameters of the puncturing algorithms.

Parameters Value

Block length of mother polar codes Nk 1024
Mother polar code-rate Rk 0.5

Punctured polar code-rates Rj 0.6, 0.7, 0.8
Polar codes decoder SCL

Modulation BPSK

SCL: SCL decoding; BPSK: Binary Phase Shift Keying.

The bit error rate (BER) and frame error rate (FER) performance of our IRP algorithm, the random
puncturing (RP) algorithm [25], the stop-tree puncturing (STP) algorithm [25], and the reliability-Type I
algorithm [38] are shown in Figure 4. Obviously, we can observe that by avoiding information bit
punctured, the IRP algorithm significantly outperforms the other three algorithms, and the STP
algorithm provides the worst BER and FER performance due to the requirement of a BP decoding
algorithm instead of the SCL decoding algorithm [8].

When the punctured polar code-rate is Rj = 0.6, the performance of punctured codes under
IRP algorithm obtains a 0.2 dB gain at BER 10−4 and 0.2 dB at FER 10−2 more than the RP algorithm.
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With the increasing of the punctured polar code-rate, the advantages of our proposed IRP algorithm
increases. When the punctured polar code-rate is Rp = 0.7, the IRP algorithm outperforms the RP
algorithm and obtains a 1 dB gain at BER 10−4 and 0.3 dB at FER 10−2, respectively. Moreover, the RP
algorithm suffers from an error-floor when the punctured polar code-rate is Rp = 0.8, where our IRP
algorithm can completely avoid the problem.
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Figure 4. The comparison of polar codes with punctured rate 0.6, 0.7, 0.8 under different puncturing
algorithms in the BI-AWGN channel, where the block length of the mother code is NM = 1024 and the
code-rate is RM = 0.5: (a) BER; (b) FER.

6.2. Performance of the RC IR-HARQ Transmission Scheme

In this subsection, we simulate the performance of our RC IR-HARQ transmission scheme,
the Monte Carlo simulation result of the average number of transmissions of data blocks with the
PCPP coding scheme is present. The system parameters are the same as provided in Table 3, and the
rest of the simulation parameters are shown in Table 4. The simulation result of the average number of
transmissions is shown in Figures 5 and 6, where the horizontal axis is the index of data blocks, and
lines with the marker “◦” denotes the results of our proposed scheme, while the marker “∗” represent
the results of the RC polar-like (RCP) scheme in [33].

Table 4. Simulation parameters of the IR-HARQ transmission scheme.

Parameters Value

The initial code-rate of the first data block R(1)
1 0.8

Variation range of the channel capacity [Imin, Imax]
Imin = I(1)(W)− 0.1
Imax = I(1)(W) + 0.1

The number of data blocks 100
The simulation times for each data block 100

Initial channel capacity I(1)(W) in Figure 5 0.5

Rate difference of the 3 cases in Figure 5
Case 1: ∆R1 = 0.2
Case 2: ∆R2 = 0.1
Case 3: ∆R3 = 0.25

Initial channel capacity I(1)(W) in Figure 6 0.3, 0.4, 0.6, 0.7
Rate difference of the Case 1 in Figure 6 Case 1: ∆R1 = 0.2
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Figure 5 shows the average number of transmissions of our RC IR-HARQ scheme and the RCP
scheme for a sequential of 100 data blocks transmission in 3 cases with the initial channel capacity
I(1)(W) = 0.5. Our RC IR-HARQ scheme can reduce half of the average number of transmissions than
the RCP scheme as shown in Figure 5a, and also significant less than the RCP scheme in Figure 5b,c.
Because all the initial code-rates of the data blocks in the RCP scheme are equal to R(1)

1 = 0.8,
the average number of transmissions for the sequential data blocks is substantially equal to the first
data block, and the successful transmission of previous data block does not help enhance the efficiency
of the next ones. Therefore, the average number of transmissions in the RCP scheme is about 2.8 times
in Case 1 as shown in Figure 5a, and 3.5 times in Case 2 as shown in Figure 5b, and 2.7 times in Case 3
as shown in Figure 5c.
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Figure 5. The comparison of the average number of transmissions of 100 data blocks in our RC
IR-HARQ scheme and the RCP scheme with initial channel capacity I(1)(W) = 0.5 in three cases:
(a) Case 1: ∆R1 = 0.2; (b) Case 2: ∆R2 = 0.1; (c) Case 3: ∆R3 = 0.25.

In contrast with the RCP scheme, our RC IR-HARQ scheme is more adaptable to the continuously
data blocks transmission. The PCPP codes for the 1st data block are with the initial code-rate R(1)

1 = 0.8
PCPP coding block; then, the optimal initial code-rate of the PCPP codes for the continuously data
block transmission can be determined in different cases as discussed in Section 5.2. Therefore, after
the 1st data block transmission, the average number of transmissions of our RC IR-HARQ scheme
is rapidly decreased compared to the RCP scheme. The average number of transmissions in the RC
IR-HARQ scheme is about 1.8 times in Case 1, as shown in Figure 5a, and 2.4 times in Case 2, as shown
in Figure 5b, and 2.5 times in Case 3, as shown in Figure 5c, which is verified by our theoretical analysis,
as shown in Table 2. It is worth noting that our RC IR-HARQ scheme has the best performance in
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Case 1, which means the accurate statistical information of the time-varying channel can help the PCPP
encoding and decoding in the RC IR-HARQ transmission scheme, and it can help joint optimization
with the channel estimation.

Moreover, we simulate the performance with different initial channel capacity I(1)(W) in Case 1
as shown in Figure 6, where I(1)(W) is 0.3, 0.4, 0.6, and 0.7, and other simulation parameters are the
same as is given in Table 4. The average number of transmissions in the RCP scheme are 3.8 times,
3.1 times, 2.2 times, and 1.8 times in Figure 6a–d, respectively. Obviously, the average number of
transmissions of the RCP scheme is strongly dependent on the difference between R(1)

1 and the
I(1)(W), as shown in Figure 6a–d.

It is worth noting that the average number of transmissions in both schemes is about 1.8 times
when I(1)(W) = 0.7, as shown in Figure 6d. Because the initial code-rates in Case 1 is R(1)

1 = 0.8, and
∆R1 = 0.2 for both schemes, when I(1)(W) = 0.7, both schemes can finish the transmission in no
more than two time transmissions.

In our RC IR-HARQ scheme, the average number of transmission in Figure 6 are all about 1.8 times
under different I(1)(W), which proves that our scheme can perform well over the time-varying
channel if the sender has statistical information on the channel. Furthermore, as the average number
of transmissions is less than the RCP scheme, the encoder and decoder pairs are also less in the sender
and receiver, which is important in practical wireless communication systems.
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Figure 6. The comparison of the average number of transmissions of 100 data blocks in our RC
IR-HARQ scheme and the RCP scheme in Case 1 with different initial channel capacity I(1)(W):
(a) I(1)(W) = 0.3; (b) I(1)(W) = 0.4; (c) I(1)(W) = 0.6; (d) I(1)(W) = 0.7.
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7. Conclusions

In this paper, we proposed a RC IR-HARQ transmission scheme based on PCPP codes to support
data transmission over a time-varying channel. First, we designed an improved random puncturing
algorithm that limited the puncturing patterns in the frozen bits of polar codes, which can provide
RC polar codes for practical wireless communication systems, and gain about 0.2–1 dB decoding
performance better than the existing puncturing schemes. Then, considering the continuous block
transmission over a time-varying channels scenario, by utilizing analyzing the overhead of the previous
successful decoded PCPP coding block in our RC IR-HARQ scheme, the optimal initial code-rate can
be determined for each new PCPP coding block over time-varying channels. Simulation results show
that the average number of transmissions is about 1.8 times for each PCPP coding block in our RC
IR-HARQ scheme with a 2-level PCPP encoding construction, if the sender has the accurate statistical
information of the time-varying channel. Our proposed scheme is independent of channel state and
can be flexible over the time-varying channel. Furthermore, if the statistical information of the channel
is not accurate, the PCPP codes can achieve joint optimization with a channel estimation algorithm for
future work.
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