M entropy MBPY

Article
Joint Content Recommendation and Delivery in
Mobile Wireless Networks with Outage Management

Yaodong Li 1%, Lingyu Chen **, Haibin Shi !, Xuemin Hong " and Jianghong Shi 12

1 School of Information Science and Technology, Xiamen University, Xiamen 361005, China;

liyaodongwork@163.com (Y.L.); shihaibin@xmu.edu.cn (H.S.); xuemin.hong@xmu.edu.cn (X.H.);
Shijh@xmu.edu.cn (J.S.)

Key Lab of Underwater Acoustic Communication and Marine Information, Ministry of Education,
Xiamen University, Xiamen 361005, China

*  Correspondence: chenly@xmu.edu.cn; Tel.: +86-592-258-0150

Received: 6 November 2017; Accepted: 10 January 2018; Published: 15 January 2018

Abstract: Personalized content retrieval service has become a major information service that
consumes a large portion of mobile Internet traffic. Joint content recommendation and delivery
is a promising design philosophy that could effectively improve the overall user experience with
personalized content retrieval services. Existing research mostly focused on a push-type design
paradigm called proactive caching, which, however, has multiple inherent drawbacks such as
high device cost and low energy efficiency. This paper proposes a novel, interactive joint content
recommendation and delivery system as an alternative to overcome the drawbacks of proactive
caching systems. We present several optimal and heuristic algorithms for the proposed system
and analyze the system performance in terms of user interest and transmission outage probability.
Some theoretical performance bounds of the system are also derived. The effectiveness of the
proposed system and algorithms is validated by simulation results.
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1. Introduction

Due to the rapid proliferation of content-centric applications (e.g., social media websites) and
broadband mobile communication networks, content-retrieval service has become a major service that
consumes a large portion of traffic on the mobile Internet. Personalized content-retrieval service is
a novel type of content-retrieval service that can use recommender technologies [1] to recommend
content to users. As an effective means for users to acquire the most relevant information from a massive
pool of content, personalized content-retrieval service has quickly gained popularity in recent years.

The personalized content retrieval service consists of two basic tasks: content recommendation
and content delivery. The former task is in charge of predicting each user’s interest in a piece of content
based on contextual information such as users’ historical preference, social relationships, mood, time,
location, etc. [1-5]. The latter task is in charge of delivering the requested contents to users with
quality-of-service (QoS) guarantee, which is further translated to throughput and delay requirements
on the underlying communication links. From the users’ perspective, the quality-of-experience (QoE)
of a personalized content retrieval service is related to both tasks: at the semantic level, recommended
content should first appear attractive to the user; at the data communication level, the process of
content download /access should be smooth enough to avoid user frustrations.

Traditionally, content recommendation and content delivery are considered as separate tasks
carried out by different commercial entities. The former task is performed by content providers (CP) or
over-the-top players (OTTs), while the latter by content delivery networks (CDNs) or Internet service
providers (ISPs). Recent studies suggested that adapting a joint CP-CDN design can greatly help to
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improve the system performance and user experience. For example, in the context of the fixed Internet,
it has been shown that CP-level intelligence can be used to improve the performance of traditional
CDN networks [6]. In mobile networks, a content-format adaptive system was proposed in [7],
which can adapt content formats according to wireless channel conditions. Among the various
proposals, joint content recommendation and delivery has emerged as an important class of design
that has attracted significant research interest.

The underlying philosophy of joint content recommendation and delivery is to exploit the domain
of the content file size as a new design space. This is based on the fact that different contents with
roughly the same level of user interest may vary dramatically in file size. Such diversity in content
file sizes can be exploited to shape the traffic volume, thereby giving content delivery another degree
of freedom for performance optimization. For example, a user may have a relatively lower interest
in a web page that is ten-times smaller in size than a video clip. When the channel is congested, it is
desirable to recommend the web page to avoid causing excessive delays. On the contrary, when the
channel is clear, recommendation of the video clip is preferred. In this way, content recommendation
can serve as a new mechanism of congestion avoidance in the communication network. This is
particularly useful for mobile communication networks, whose capacity is severely limited by the
available radio and infrastructure resources.

In the literature, most studies on joint content recommendation and delivery in mobile
communication networks fall into a category of technologies called proactive caching [8-10], which
can recommend, push and cache contents of interest to the user devices according to the status of
communications links. Multiple issues such as energy efficiency [11,12], multicast support [13,14],
heterogeneous networks [14] and adaptive traffic pricing [15,16] had been investigated. Although
proactive caching technology can help to improve network performance via load balancing and
enhance user QoE by reducing content access delay, it also has some inherent drawbacks. First, large
caching space is required at the user device, which is not always available in practice. Second, even
using the state-of-the-art content recommendation technologies, a significant portion of pushed content
will not be viewed by the users due to user behavior uncertainties [17]. This will result in significant
waste of network resource and energy consumption. Third, because a portion of pushed contents is
unavoidably “invalid”, traffic pricing also becomes a problematic issue.

Apart from the push-type protocols, a few novel “pull-type” content retrieval protocols were recently
reported in the literature [18-22]. These studies mainly focused on how to use traffic pricing as an
incentive to influence user behavior and achieve better performance in terms of load balancing [18-20]
or load offloading [21,22]. These pull-type protocols proposed in [18-22], however, do not involve the
procedure of content recommendation. Thus, we classify them as the “conventional pull-type protocols”.
The typical signaling procedure of conventional pull-type protocols is illustrated in Figure 1b.

To overcome the drawbacks of proactive caching, this paper introduces a novel pull-type
joint content recommendation and delivery design for personalized content-retrieval services.
The contributions of our paper are as follows. First, an interactive, cross-layer-based joint content
recommendation and delivery protocol is proposed. Second, based on the proposed protocol, optimal
and low-complexity heuristic algorithms are given to jointly optimize content recommendation and
radio resource allocation. Third, several theoretical bounds are derived to characterize the performance
of the proposed system in a simple scenario. Fourth, the performance of the proposed algorithms
is thoroughly compared via simulation in complex scenarios with realistic parameters. Simulation
results show that the proposed system can achieve a good balance between maximizing user interest
and minimizing transmission outage probability.

The remainder of this article is organized as follows. Section 2 introduces the system model and
formulates the problem of joint content recommendation and delivery. The optimal and heuristic
algorithms to solve the problem are proposed in Sections 3 and 4, respectively. A novel performance
evaluation framework is introduced in Section 5, followed by derivations of several theoretical
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performance bounds in Section 6. Section 7 presents simulation results. Finally, conclusions are
drawn in Section 8.
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Figure 1. Illustration of the proactive caching protocol, the conventional pull-type protocol and the
proposed content retrieval protocol.

2. System Model

2.1. Interactive Content Retrieval Protocol

In this paper, we propose a novel interactive content retrieval protocol for personalized multi-user
content retrieval in mobile communication networks. As illustrated in Figure 1, the proposed protocol
includes the following four steps: (1) The BS monitors the channel state information (CSI) of each active
user and sends the CSI information to the content server; (2) The content server continuously runs
a recommender algorithm and maintains a user interest matrix R (users are arranged in a column and
contents in a row). Each element of R is a real number indicating a user’s interest in a piece of content.
Based on R and the CSI information feedback, the server generates a list of recommended content for
each user and sends the lists to users. The list is a small file that includes the title or short abstract
of the contents; (3) Each user browses the recommended list and chooses interesting files from the
list to download and view; (4) The chosen files are transmitted to users via a shared wireless channel.
The basic idea of our protocol is to jointly consider user interest, channel condition and content file
size in the content retrieval process, so that only files that are likely to be delivered in time will be
recommended to users.

The proposed protocol is different from existing protocols. Compared with the “push-type”
proactive caching protocols (e.g., [8,9]), our protocol will not start transmitting a file before an actual
user request occurs. Therefore, it is a “pull-type” protocol and does not have the inherent drawbacks
of proactive caching. Compared with conventional “pull-type” protocols (e.g., the hypertext transport
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protocol), our protocol is more advance in that it jointly considers the physical layer constraint
(i.e., channel information) and application layer semantics (e.g., user interests) to manage the overall
system performance. In this way, our protocol can not only give users better experiences in content
retrieval, but also avoid network congestion and ensure better coexistence with other applications.
The typical signaling procedures of the push-type protocol, conventional pull-type protocol and
the proposed protocol are illustrated in Figure la—c, respectively. Moreover, the advantages and
disadvantages of these three types of protocols are summarized in Table 1.

Table 1. Pros and cons of the three types of protocols.

Pros Cons

1. Require large cache space;

2. Low resource efficiency (due to invalid
transmission);

3. Difficult traffic pricing.

Proactive caching

protocol 1. Possibly less time delay.

Conventional
pull-type protocol

. High resource efficiency;
Small cache space and easy traffic pricing;
. High user interest.

1. Uncontrollable content access delay;
2. Uncontrollable congestion probability.

. High resource efficiency;

Small cache space and easy pricing;
. Controllable content access delay;

. Controllable congestion probability.

Proposed content

retrieval protocol 1. User interest may be compromised.

BN =N e

2.2. Scenario Description

The performance of the proposed protocol will be analyzed in a scenario described below. Without
loss of generality, we consider a single cell with one base station (BS) and multiple users. The BS is
connected to a content server, which stores a large set of contents. The number of users in the cell is
denoted as U; the number of content files stored in the server is denoted as F. Let f(f = 1,2,...,F)
and u(u = 1,2,...,U) be the indexes of the content file and user, respectively. The interest of the
u-th user in the f-th file is represented by a real value parameter r,¢(0 < r,¢). The user interest
matrix R is a U X F matrix, whose entries are taken from r, ;. We assume that by applying existing
recommendation technologies [23-26], the user interest matrix R is known by the server in advance.
The goal of the content retrieval system is to maximize the aggregated interests of recommended
content files that can be delivered to users in time.

To proceed with our analysis, the following assumptions are made. (1) We assume that the size of
a recommendation list file is much smaller than the size of the content files, so that transmission of
the recommendation list (in Step 2 of the protocol) costs negligible time. (2) It is assumed that after
browsing the recommended list, each user will click one and only one content file to view at a time
instance. (3) We assume that the (slow fading) channel gains remain consistent in a recommendation
cycle, i.e., the channel gains do not change during a single round of the four steps of the proposed
protocol. (4) We consider an extreme case where user behaviors are synchronous, so that all users
request a piece of content at the same time. This extreme case represents the worst case scenario
because it is the most demanding for system capacity. Our subsequent analysis will focus on such
a worst case scenario.

2.3. Wireless Transmission Model

An orthogonal frequency division multiplexing (OFDM)-based multi-user wireless transmission
system is assumed. The number of OFDM subcarriers is denoted as K. Let us denote aﬁk as the
instantaneous channel gain between the BS and the u-th user on subcarrier k (k=1,2,...,K), cyx as
the number of bits allocated to user u on subcarrier k and p,x as the transmit energy assigned to user u
on subcarrier k. We have p,, = f(c,x)/a2,, where f(c) represents the transmit energy required for
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the subcarrier to reliably receive c bits per symbol when the channel gain is one. It is assumed that
the channel gains follow an exponential distribution [27-29]. The total transmit power of the BS is
denoted as Pr.

We consider a M quadrature amplitude modulation (M-QAM) system. It follows that M = 2¢,
where c is the number of bits carried by a QAM symbol. In this case, the bit error rate (BER) of the

system is given by [30]:
42
el {2)

where d is the minimum distance between two points in the signal constellation, Ny is the additive
white Gaussian noise (AWGN) power spectral density and Q(-) is the Q-function [31]. The average
carrying energy of an M-QAM signal is [30]:

fle) = (2°—1)d*/e. @)
Substituting Equation (1) into (2), we get [30]:
2
fo="ot (E)] e, ®

This equation establishes the required received power f(c) as a function of bits per symbol c at
a target BER P,. Let us further define a binary variable p,; € {0,1} to denote whether channel k is
assigned to user u. When the channel is assigned, we have p,; = 1. The energy assigned to user u is:

- f )
2

114

K
Py = 2 Puk * Puk = * Puk 4)
k=1 k

=1 uk

where P, is the energy required for user u to transmit Zle Cuk * Pk bits per symbol. Therefore, the total
power allocated to user u is:

P]/tlotlll — B x

K
Puk * Puk (5)

k=1

where B is the system bandwidth. Because the total power of the BS is constrained by Pr, we have:
u K
B*Zzpuk*PukSPT- (6)
u=1k=1

Let us define S, as the transmit data rate assigned to user u, which is the sum of the number of
bits in all subcarriers allocated to the user. It follows that:

K
Sy = Z Cuk * Puk (bit/symbol). ?)
k=1
Given the system bandwidth B, the bit rate of user u is approximately:

K
R,=S,*B= Z Cuk * Pk * B (bit/s). (8)
k=1

2.4. Problem Formulation

We consider the decision problem of joint content recommendation and delivery at the content
server. Apart from tracking the users’ interests on content files, the content server also periodically
monitors the user and channel dynamics reported from the BS. Based on such information, a decision
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should be made to recommend to each user a list of N contents. To manage the user QOE,
the recommendation algorithm should guarantee that in the worst case (when all users each request
a piece of content from their lists at the same time), the system capacity is able to satisfy the user
requests within a time constraint T;.

At the system level, the service QoE is evaluated by two matrices. One is the sum user interests
over recommended contents and the other is the outage probability in the worst case scenario. There is
a tradeoff between these two matrices. As a result, the basic idea underpinning our problem formation
is to maximize the sum user interests, under the condition that the outage probability is constrained
by a predefined parameter. However, in practice, the exact outage probability is difficult to calculate.
Therefore, as an indirect approach to outage management, we propose two alternative methods to
constrain the sizes of recommended files according to the available channel capacity. The first approach
constrains the maximum file size to give:

K
max {x,¢l;} <6 Bx Y cuxpuexTs  Vu 9)
f=1--F k=1

where x,¢ € {0,1} is the decision variable that takes binary values. When x, is one, it means that
content f is recommended to user u, otherwise x, s is zero. Here, parameter 6(1 < ¢) is a parameter
used to control the outage probability. When § = 1, this means that the recommendation is conservative
in the sense that the maximum size of all N recommended files will not be greater than the estimated
channel capacity allocated to the user. When ¢ is larger than one, this means that a certain outage is
allowed in the system. The maximum file size constraint in (9) is intuitive, but nonlinear. To simplify
the problem, it is desirable to have a linear constraint. To this end, we propose another constraint
as follows:

1 F K
N quflfoS*B*ECuk*Puk*Ts Vu. (10)
f=1 k=1

This constraint limits the average file size in the recommendation list instead of the maximum
file size.

Applying the above constraints, the problem of joint content recommendation and delivery is
formulated as:

u F
maximize E Z TufXyf
u=1f=1

subject to Equation (9) or (10)

(11)

xuf S {O,l},puk S {0,1}.

In this problem formulation, the objective is to maximize the total user interest. The first constraint
corresponds to the capacity outage control; the second constraint reflects the total BS transmit power
limit Pr; the third constraint limits the number of recommended files to be N; the fourth constraint
implies orthogonal subcarrier allocation. The decision variables in our problem are x, ¢, p,x and c .
This means that the optimization is jointly performed over content recommendation and content
delivery (i.e., channel/power/bit allocations in OFDM-based wireless communications systems).
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If we do not consider the aspects of content delivery, the above problem reduces to the traditional
recommendation problem given by:

u Fr
maximize Z Z TufXuf
u=1f=1

F 12
subjectto ) xuf =N 12)
f=1

Xuf € {0,1}.

The traditional recommendation is able to recommend the most interested contents to users, but often
at the cost of high capacity outage probability and hence degraded user experience. The solution of the
traditional recommendation problem will be used as a performance benchmark in this paper.

3. Optimal Algorithm for Joint Content Recommendation and Delivery

The problem of joint content recommendation and delivery formulated in (11) is a nonlinear mixed
integer programming problem, which is NP-hard. The optimal solution to this problem can be found
by using the branch and bound algorithm [32-34], which is a general method for global optimization in
nonconvex problems. If the feasible space is continuous, this algorithm can give a provable upper and
lower bound on the (globally) optimal objective value and terminate with a certificate proving that the
suboptimal point found is e-suboptimal. For integer programming problems, the branch and bound
algorithm can essentially search the entire feasible space to obtain the optimal solution. However,
the complexity (or convergent rate) of the algorithm depends on the problem structure. In the worst
case, the branch and bound method has an exponential complexity [35,36].

To improve the convergent rate of the branch and bound algorithm, a useful method is to linearize
the problem and constraints. To this end, a linearization process is proposed as follows. First, let us
define C as the maximum number of bits that can be transmitted in a QAM symbol. It follows that
the feasible space of bit allocation is integer, i.e., c,x € {0,1,2,...,C}. Given ¢, the required received
power f,(c,x) can be calculated as constants according to (3), i.e.,

fuleu) €10, fu(1), fu(2), -, fu(C)}. (13)

Now, define a new variable [37]:

)1 ifpy=1landcy =c
Vuke = { 0 otherwise (14)

It follows that we can rewrite f,(c,x) and p, as [37]:

C
fuleur) = Z Yukefu(c) (15)
c=0
and:
C
Puk = 2 Yuke- (16)
c=0

Substituting (15) and (16) into (9) and (10), we get:

K C
max {x,¢l;} <6xBxY Y cyucxTs  Vu (17)
f=1-F k=1c=0
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and:

F K C
% Y oxufly <6xBx Y Y oy xTs Vu (18)
f=1 k=1c¢=0

for the maximum file size constraint and average file size constraint, respectively. Substituting
Equations (15)-(18) into (11), we can transform the original optimization problem into:

u F
maximize Z Z TufXuf
u=1f=1

subject to Equation (17) or (18)

. (19)
Z xuf =N
f=1
u cC
Z Z Yuke < 1
u=1c=0

Xuf S {Oll}r'Yukc € {0/1}'

In this new problem, the decision variables are x, s and 7y,.. Simulations show that the linearization
can significantly improve the convergence rate of the branch and bound algorithm. However, in the worst
case, the algorithm complexity is still exponential (i.e., O(ZUZF KCY). Therefore, we will subsequently
propose several heuristic algorithms to reduce the algorithm complexity.

4. Heuristic Algorithms for Joint Content Recommendation and Delivery

In this section, we propose several heuristic algorithms that divide the task of joint content
recommendation and delivery into two steps. The first step is resource allocation, which aims to
optimize multi-user radio resource allocation based on certain heuristics, for example to maximize
the sum capacity or user fairness. After this step, each user will have a pre-allocated transmission
capacity. The second step is content recommendation, which aims to maximize user interests based on
the pre-allocated user capacity. We note that the above heuristic algorithms still try to jointly optimize
content recommendation and delivery. The difference with the optimal algorithm is that in the optimal
algorithm, content recommendation and radio resource allocation are jointly optimized, so that the
radio resource allocated to a user is directly related to the user’s interest profile. In the proposed
heuristic algorithms, radio resource allocation is based on other chosen criteria and is hence not directly
related to the users’ interest profiles. In what follows, we will introduce the heuristic algorithms in
detail and analyze their performance.

4.1. Radio Resource Allocation

Two different heuristic algorithms are proposed for radio resource allocation: the sum rate
maximization algorithm and minimum rate maximization algorithm.

4.1.1. Sum Rate Maximization

A straight-forward heuristic is to maximize the sum data rate of multi-user OFDM systems. In this
case, the problem becomes a classic multi-user OFDM system rate adaptive optimization problem.
The optimization problem is formulated as:
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u K
maximize Z Z CukPuk
u=1k=1

subi d &K f(cuk)
jectto Bx ) ) k0, < Pr (20)

u=1k=1 %uk

u
2 Puk <1
u=1

where decision variables are bit allocation variables c,; and channel allocation variables p,.
This problem is itself an NP-hard integer programming problem. To solve this problem effectively,
an improved subcarrier and power adaptive allocation algorithm is proposed. The pseudo code of
the algorithm is shown in Algorithm 1. The algorithm is a low complexity suboptimal algorithm,
which includes two steps: subcarrier allocation and bit/power allocation. First, let us define

a new variable:

Apu(e) = LEF D=1 @1)

Xk

which indicates the extra power required when one more bit is allocated to user u on subcarrier k.
This variable is used for our algorithm to allocate the channel and bits in a greedy fashion. To prevent
the case where some users are not assigned with any bit, the algorithm initiates by allocating a carrier
to each user. Once the bit allocation is completed, we can get the available transmission data rate of
each user.

Algorithm 1 Sum rate maximization algorithm.
Input: U, K, Pr, a2,

Output: ¢, P,
1: (1) Initialization:
Let A = {1,2,...,K} denote unassigned subcarrier sets; P, = 0 is the power allocated to user
u; ¢, = 0 represents the number of bits allocated on the subcarrier k allocated to the user u; ¢, =0
indicates the total number of bits allocated to the user u; A, = & denotes the set of subcarriers

assigned to the user u;
2: (2) Carrier allocation:
3 foru=1,2,...,Udo
4 find subcarrier k that minimizes Ap,;(0), and assign the subcarrier to the user 1; meanwhile,

Ay =A,U{k},A=A—{k}
5: if A = & then break;

6: while A # @ do
7: find the subcarrier k with the smallest Ap,(0) in the set A, and assign them to the

corresponding user u; meanwhile A, = A, U {k}, A = A — {k}
8: (3) Bit and power allocation:
9: while Y-*/ | p, < Pr do
10: Traverse the subcarriers corresponding to all the users; find the subcarrier k and the
corresponding user u with the smallest Ap,(c,x), and allocate 1 bit of data to the subcarrier;

meanwhile ¢, = ¢ +1, Py = Py + Apyi(c), cu = cu + 1

11: return ¢y, P,
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We note that Algorithm 1 tends to allocate more bits and power to users with good channel
conditions. Although this will maximize the sum capacity, it results in unfairness among users and
does not necessarily give high total interest. For example, a user with poor channel condition may
be allocated with a very low capacity and hence cannot support the transmission of large, but highly
interested files. To overcome such a drawback and improve user fairness, the following algorithm is
proposed as an alternative to Algorithm 1.

4.1.2. Minimum Rate Maximization

Another useful heuristic is to maximize the minimum data rate among multiple users. This means
that users with poorer channel conditions will have higher priorities in resource allocation and that the
capacity allocated to users tends to be equal and fair. The optimization problem is a max-min problem
formulated as:

K
max min Z CukPuk
' k=1

u=1---U

y ! ff”") « pu < Pr (22)

u
subjectto  Bx ) _ .
u=1k=1 uk

u
Z Puk <L
u=1

This problem can be effectively solved by a heuristic algorithm proposed as Algorithm 2.

Algorithm 2 Minimum rate maximization algorithm.
. 2
Input: U, K, Pr, a

Output: ¢, P,
1: (1) Initialization:
Let A = {1,2,...,K} denote unassigned subcarrier sets; P, = 0 is the power allocated to user
u; ¢, = 0 represents the number of bits allocated on the subcarrier k allocated to the user u; ¢, =0
indicates the total number of bits allocated to the user u; A, = & denotes the set of subcarriers
assigned to the user u;

: (2) Carrier allocation:

2
3: while A # @ do

4: foru=1,2,...,Udo

5 find the subcarrier k with the smallest Ap,(0) in the set A, and assign them to the

corresponding user u; meanwhile A, = A, U{k}, A=A —{k}

6: if A = & then break;

7: (3) Bit and power allocation:

8 while Y'', p, < Prdo

9: foru=1,2,...,Udo

10: Traverse the subcarriers corresponding to the user u; find the subcarrier k with the smallest
Api(cyx), and allocate 1 bit of data to the subcarrier; meanwhile ¢, = ¢, + 1, P, = Py + Api(c),
cu=cy+1

11: if Zgzl pu > Pr then break;

12: return ¢y, P,
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Once the pre-allocation of radio resource is completed, the data rate of user u can be calculated as:

K
cu =Y cupux  (bit/symbol). (23)
k=1

The bit rate assigned to the u-th user is approximately:

K
Ry=c¢,*B= Z CukPuk * B (bit/s). (24)
k=1

4.2. Content Recommendation

Based on the pre-allocated user capacity, we can formulate two content recommendation problems
as follows.

4.2.1. Maximum File Size Constraint

u F
maximize Z Z TufXuf
u=1f=1
subjectto I, = fglla--)-(F{xuflf} <6 xRy * T Yu (25)
F
E: xuf = N.
f=1

In this problem, maximizing the sum interest is equivalent to maximizing each user’s interest
because the capacities of users are already fixed and decoupled. The optimal algorithm that solves this
problem runs as follows: For each user, we exclude contents whose size exceeds the data rate R, and
then recommend the top N contents with the highest interests in the remaining content. The minimum
heap algorithm (time complexity O(FlogN)) or partial sorting algorithm (time complexity O(FN)) can
be used here.

4.2.2. Average File Size Constraint

u F
maximize Z Z TufXyf

u=1f=1
1 F
subject to N f; Xuplp <OxRyxTs  Vu (26)
F
2: xuf =N
f=1

Similarly, this problem can be decoupled and solved with respect to each user. For each user,
the problem becomes a two-dimensional cost knapsack problem [38], which could be solved by
dynamic programming. Define g(f, 1, j) to be the maximum interest that can be attained with the file
size less than or equal to / and the number of contents less than or equal to j using contents up to f
(first f contents). Then, the state transition equation is:

8(f/ L)) = max{g(f =1,1,j),8(f =11 =1lp,j—jf) +rus} (27)

where [ represents the size of content f and j; always equals one, which means that one content is
recommended. That is, when it is decided whether or not to put the f-th content, we need to compare
the interest in putting the f-th content and the interest in not putting the f-th content.
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4.3. Complexity of Heuristic Algorithms

Let us first consider the time complexity of the two algorithms in resource allocation. Recall that
K is the number of OFDM subcarriers and U is the number of users. For the sum rate maximization
algorithm (i.e., Algorithm 1), the complexity is O(UK) in the carrier allocation step and O(PrK) at
the bit allocation step. For the minimum rate maximization algorithm (i.e., Algorithm 2), the time
complexity is O(K?) in the carrier allocation step and O(Pr) in the bit allocation step. In practice,
K is typically much greater than U, so that Algorithm 1 tends to have a lower complexity compared
with Algorithm 2.

Let us now consider the time complexity of the content recommendation algorithms. For the
average file size constraint, the time complexity of the two-dimensional cost knapsack algorithm is
O(éF RNZ), where R is the data rate assigned to the user. Here, R is related to power Pr, channel
number K and user number U. Considering a total of U users, the total time complexity is O(SUFRN?).
For the problem with maximum file size constraint, the complexity of the algorithm is O(UFN).

We can see that the proposed heuristic algorithms can reduce the exponential complexity of
the optimal algorithm to polynomial complexities as the problem size scales. However, the reduced
complexity comes at a cost of degraded performance. For example, in a special case where a user with
good condition is only interested in small files, the heuristic algorithm may assign a large amount of
radio resource to this user to maximize the overall capacity. However, much of the capacity allocated
to this user is unnecessary and wasted. In what follows, an analytical framework will be introduced to
evaluate the performance of the proposed algorithms.

5. Performance Evaluation Framework

To evaluate the performance of joint content recommendation and delivery algorithms, we consider
two major metrics: total user interest and transmission outage probability. The first metric is related to
the effectiveness of content recommendation, while the second metric is related to the reliability of
content delivery. The total user interest is given by:

u F
Ltotal = Z Z TufXuf- (28)

u=1f=1

The transmission outage is defined as the probability that when each user randomly requests content
from the recommended list (with N contents), the BS cannot deliver the request contents within a time
constraint T;. An outage event can be defined with respect to the following mathematical problem:

Find ¢, puk
K
subjectto I <Bx ) cyxpu*Ts  Vu
k=1

Bx Z Z ) o < by 29)

u=1k=1 uk

u
Z Puk <1
u=1
xuf S {Orl}/puk S {0,1}

where [} represents the size of the file i requested by user u. Because the file should be delivered
within a time constraint T, it is directly related to the instantaneous data rate requirement of user u.
The problem is whether there exist any feasible channel and power allocation policy (i.e., ¢, and px)
that can satisfy the instantaneous data rate requirements of all users. If the above problem is solvable,
this means that content delivery is successful; otherwise, a transmission outage occurs. We note that
the above outage metric is defined at the system level by considering multiple users.
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Approximation of Outage Probability

Unfortunately, evaluating the system outage according to its real definition in Equation (29) is not
only mathematically intractable, but also computationally challenging. To facilitate our performance
evaluation, we propose a method that can approximately estimate the transmission outage according
to the following equation:

u u
W—P<215‘>Csys*TszZRu*TS>. (30)

u=1 u=1

Here, the outage probability # is defined as the probability that the overall requested file size
is greater than the instantaneous system capacity Csys. This approximation essentially neglects the
channel diversity of multiple users and uses a lump-sum capacity Csys to capture the resource limitation
of the system. There exist many methods to calculate the lump-sum capacity Csys. Without loss of
generality, we propose to calculate Csys as the sum capacity of a system that adopts the same radio
resource allocation strategy introduced in Section 4.1. In other words, the sum capacity obtained in the
capacity estimation phase will be used as the lump-sum system capacity for outage estimation.

Now, we proceed to investigate fast algorithms to evaluate the system outage according to the
definition in Equation (30). Once the user channels are known, Css can be calculated. The challenge is
to consider all possibilities of the sum sizes of requested content files. Let us consider U users each
selecting a file from a list of N items; the feasible space of the users’ request vector has an exponential
size of NY. Although we could use the backtracking algorithm to enumerate all the possibilities [39],
the computational complexity is too high. To this end, we further propose a fast method for outage
estimation, as explained in Algorithm 3.

Algorithm 3 The algorithm for outage estimation.

1: Run the model n times, and get nn * N * U recommended contents;
2: Calculate the frequency of the file size of the above contents, then the PDF of file size in each user’s

recommended list could be obtained;
3: Assume that all users are independent of each other. Then, the joint PDF of sum file size of U users

is the U — 1 convolution of the above PDF;
4: With the joint PDF of the sum file size of U users, the joint CDF could be obtained. Then, the outage

is 1 — CDF(Csys).

In Algorithm 3, we assume that all users are independent of each other. Hence, the outage can be
evaluated using statistical methods.

The accuracy of our outage approximation method is evaluated via Monte Carlo simulations.
In each simulation, a user request profile and user channel gains are randomly generated. The exact
value of outage probability is obtained by solving a large incident of the problem defined in (29) and
calculating the empirical probability. The approximated outage is obtained according to Algorithm 3.
Figure 2 compares the exact and approximated outage in different settings. We can see that the
estimated outage makes a fairly good approximation to the exact outage curve.
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Figure 2. Comparison of the exact outage probability obtained by Monte Carlo simulations and
the estimated outage probability calculated by Algorithm 3 (the file size distribution is subject to
Lognorm(10,1), U =5, F = 500, N = 50, K = 256).

6. Theoretical Performance Bounds with Simple Models

This section aims to characterize some theoretical performance bounds of the joint content
recommendation and delivery system. For tractability, we assume a simple scenario with simplified
models. More specifically, it is assumed that the user interests in different contents follow a uniform
distribution in [a, a + h] (e.g., rating scores uniformly distributed from 1-10), and all users’ interest
profiles are independent. In addition, it is assumed that content file sizes also follow a uniform
distribution in [b, b + gJ.

6.1. Upper Limit of Mean User Interests

We first evaluate the upper limit of mean user interests. Given that the users’ interest is uniformly
distributed, the total interest in the highest N content scores for each user is:

S :X(P+1—N) +X(F+2—N) +...—|—X(p) (31)

where X(i) represents the i-th order statistics. According to [40—42], the PDF of the i-th order statistics
of the standard uniform distribution is:

F!
(G—1)(F—i)!

That is, X(;) obeys the beta distribution with parameters i and F + 1 — i, where F is the total
number of contents.

Given that X = (X3, X, ..., XF) is a uniform distribution in [a,a + h], where a € R, h € (0, ),
then fori € {1,2,..., F}, X(;) obeys a beta distribution with left parameter i, right parameter F —i +1,

fi(x) = ¥la-x)Fo<x<1. (32)

position parameter a and scale parameter k. In particular, we have [42]:

i
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g2 (F—it1)
var(X(;)) = h F+12(F12) (34)
It follows that the mean of S is given by:
E(S;F} N) = E(X(F+1—N) + X(F+2—N) +...+ X(P))
=EX(ry1-n) TEX(r2-n) +--- TE(X(F)
F+1-N F
= h———) +... h——-
(@th—p =)+ .+ (athegg) 35)
_ h (F+1-N+F)F
=Nt E 2
B Nh(2F +1—N)
=No+ D

Here, E(S; F; N) is the total interest shown on the recommended list of an individual user. If there
are U users, the total interest becomes:

Ity = U-E(S;F;N). (36)

6.2. Upper Limit of Mean Outage

Let us assume that the number of files is F, and the file size is subject to a uniform distribution on
[b, b + g]. We further assume that user’s interest is independent of the file size. In this case, each user’s
recommended list is an independent sample on the content set L.

According to [43,44], we can see that if X; is uniformly distributed on [0, g;|, the PDF of
Sx=X1+Xp+...+ Xy is:

foy (6 U; gi) = Au(J_l)!{xu1

u U k (37)
F L)1 Lt
k=1 I=1
where Ay = T, gx, x+ = max(0,x). If Y; follows a uniform distribution on [b;,b; + gil,
Sy = Ziu:1 Y; = Ziuzl X; + E}il b;, and the PDF of Sy is given by:
u u
fo, (5;U;bis &) = fs (Y Yi— ) bi; U gi). (38)
i=1 i=1
Correspondingly, the CDF of Sy is:
s
Fs, (5;U; bi; 8i) = /m fsy (£ U;b;; ;) dt. (39)
When the system capacity Csys is given, the outage is estimated as:
h=1- Fsy(Csys « Tg; U; bj; Qi) (40)

In Figure 3, we compare the numerical CDF calculated by Equation (40) with the empirical CDF
obtained via Monte Carlo simulations. The numbers of contents and users are set to be 500 and 10,
respectively, and the length of the recommendation list is set to be 50. It can be observed that the
numerical and empirical CDFs agree well in all cases with different file size distributions. This validates
the correctness of Equation (40).
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Figure 3. Comparison of the empirical value and the numerical value of the upper limit of outage,
where U(x, y) represents a uniform distribution in [x, y].

6.3. Upper Limit of Interest at Zero Outage

We assume that the file distribution follows a uniform distribution in [b, b 4 g]. Then, if the system
capacity is Csys and the outage is required to be zero, the file size in each user’s recommended list

should be limited to the range [b, szs |, which accounts for the ratio of the original interval [b, b + g] to:

CSS
i —b _ Cys—Ub

8 ug

P = (41)
Because the file size is uniformly distributed, in the case where the system capacity is Csys and the
outage is zero, the number of optional contents is approximately:

F=Fxg. (42)

Given the number of contents F, we can obtain the total interest when the outage is zero
according to (36):
Itootal = U'E(S; F; N) (43)

6.4. Validation of the Theoretical Bounds

In this subsection, simulations are performed to validate the theoretical bounds derived above.
The parameters are set as follows: the user interest follows a uniform distribution in [1, 10]; the file size
follows a uniform distribution in [1, 50] ; the number of users U = 10; the number of contents F = 500;
the length of the recommended list for each user N = 50; and the system capacity is 188.

Figure 4 shows the total user interest as a function of system outage when different algorithms
proposed in Section 4 are applied. The performance tradeoff curves are obtained by adjusting the value
of parameter ¢ in the algorithms. The theoretical bounds are also calculated and shown. The upper
limit of interest is shown to be 4771 according to Equation (36); the upper limit of outage is shown to
be 0.9306 according to Equation (40); and the upper limit of interest at zero outage is 4373. The point at
(0.9306,4771) shows the performance benchmark of traditional recommendation algorithm, in which
both the user interest and transmission outage reach the maximum. We can see that the three theoretical
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bounds derived above form a square area, which well characterizes the performance tradeoff region of
the proposed algorithms.

4800

Total interest

— ¥ — Opt-Ave

— 8 — Opt-Max

— © — Heu-Ave-Min

— % — Heu—-Ave-Sum

— A — Heu-Max-Min

— % — Heu-Max-Sum
Traditional

0.2 0.4 0.6 0.8 1
Outage probability

Figure 4. Performance comparison of different algorithms and theoretical performance bounds
(simple model). Opt, optimal; Heu, heuristic.

7. Performance Evaluation with Realistic Models

This section aims to thoroughly evaluate the performance of the proposed algorithms in
realistic scenarios. Some realistic models are first introduced, followed by performance comparisons
and discussions.

7.1. Realistic Models

In reality, the content file size and user interest do not follow simple uniform distributions.
Measurements showed that the file size is generally subject to a power law distribution [45]
or a lognormal distribution [46-50]. In this paper, we assume that the file size follows a lognormal
distribution. As for the distribution of aggregated /sum user interests on different contents, existing
literature suggest that it generally follows a power law distribution [51] or Zipf distribution [52].
We adapt the widely-accepted Zipf distribution in this paper. Moreover, multiple users have different
interest in a particular piece of content. The interest distribution among multiple users can be modeled
by a normal distribution [53], U-shaped (or J-shaped) distribution [54,55], Beta distribution [56] or Levy
alpha-stable distribution [57]. In this paper, the normal distribution is adopted as the multiuser interest
model by default. Parameter values adopted for our simulation in this section are summarized in
Table 2.
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Table 2. Simulation parameters.
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Simulation Parameter

Parameter Value

Number of users U 10

Number of contents F 500

Number of channels K 256

Recommended form length N 50

Time slot T 1s

System bandwidth B 10 MHz

Noise power spectral density Ny —174 dBm/Hz [58]

Bit error rate BER 1 x 107*[37]

Macrocell path loss model 128.1 + 37.6logod (d in km) [58]
Inter-site distance d 330 m

i o2
Channel gain a7,

Exponential distribution of parameter 1

Logarithmic normal distribution with location parameter of

File distribution L 9.357 and scale parameter of 1.318 [47]

Zipf distribution with parameter 1 [52]; Truncated Gaussian
distribution between 1 and 5 with a mean of 3 and a variance
of 2 [53].

Interest matrix R

7.2. Simulation Results and Discussions

According to our discussions in Sections 3 and 4, the performance of the following seven different
algorithms will be evaluated: (1) the optimal algorithm with maximum file size constraint (Opt-Max);
(2) the optimal algorithm with average file size constraint (Opt-Ave); (3) the heuristic algorithm with
maximum file size constraint and sum rate maximization (Heu-Max-Sum); (4) the heuristic algorithm
with maximum file size constraint and minimum rate maximization (Heu-Max-Min); (5) the heuristic
algorithm with average file size constraint and sum rate maximization (Heu-Ave-Sum); (6) the heuristic
algorithm with average file size constraint and minimum rate maximization (Heu-Ave-Min),
and (7) the traditional “pull-type” content retrieval algorithm without outage management (traditional).
The tradeoff between total user interest and outage probability will be used as the performance
evaluation framework.

Figure 5 compares the performance of all seven algorithms. The performance of the traditional
“pull-type” content retrieval algorithm is characterized by a single point (marked by the star sign).
This single point represents an extreme case where the system yields the highest user interest at the
cost of the largest outage probability. We note that the traditional algorithm does not offer the flexibility
to adjust the user interest or outage probability. In contrast, the performance of our algorithm is
characterized by a smooth curve, in which user interest can be flexibly traded for outage probability.
It is interesting to see that a small reduction in the user interest (e.g., a 25 percent reduction) can greatly
reduce the outage probability by almost 90 percent. Such a capability to flexibly manage the outage
probability is a major advantage of our algorithm compared with the traditional pull-type algorithm.
The flexibility offered by our protocol essentially comes from exploiting the content diversity as a new
degree of freedom.

Figure 5 also shows the performance comparison of different algorithms. Let us first compare
the two optimal algorithms. It is observed that the Opt-Ave algorithm outperforms the Opt-Max
algorithm. Moreover, the Opt-Ave algorithm tends to have a lower computational complexity than the
Opt-Max algorithm because it solves a strictly linear programming problem. As a result, we conclude
that the Opt-Ave algorithm has a better performance. As for the heuristic algorithms, it can be seen
that the two algorithms adapting minimum rate maximization yield better performance than the two
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algorithms adapting sum rate maximization. This suggests that it is beneficial to allocate capacity
evenly among users. It is shown that the best heuristic algorithms can achieve 80 percent of the optimal
performance in the worst case. The performance loss is acceptable and is traded for much lower
computational complexity.
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= &
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E 3000 g 55/ BRSPSl
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2500% x5 e — = Opt-Max
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2000 ¥ —A— - Heu-Max-Min
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* == - Traditional
150 : : :
0 0.2 0.4 0.6 0.8 1

Outage probability

Figure 5. Performance comparison of different algorithms (file size distribution is subject to
Lognorm(9.357,1.318), Pr = 0.5 W).

Figure 6 investigates the impact of time constraint T; on the system performance. The time
constraint represents the maximum allowable delay for a user to pull a content file from a BS. It can be
observed in Figure 6 that a decreased T; leads to a reduced user interest. This indicates the conflicting
objectives of maximizing the user interest and minimizing the content access delay, where both
objectives are desirable for enhancing user experience. In practice, a proper balance should be sought
by setting a proper value for T;. We note that in conventional pull-type protocols, the access delay is
generally random and out of control. Therefore, the ability to manage access delay by adjusting T is
also a major advantage of our protocol compared with conventional pull-type protocols.
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Figure 6. The effect of time constraint Ts; on the performance (the file size distribution is subject to
Lognorm(9.357,1.318), Pr = 0.5 W).
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In Figure 7, we demonstrate the impact of the total power constraint on the interest-outage tradeoff
performance. The two optimal algorithms and the two heuristic algorithms adapting minimum rate
maximization are simulated. It is observed that the overall user interest increases with increasing
power and outage until it researches the theoretical upper bound, which is 4586 in this particular case.
Moreover, when the power increases, the performance gaps between optimal and heuristic algorithms
reduce. It is interesting to see that at relatively high power values, a fairly good performance can be
achieved even when the outage is very small. For example, at Pr = 2 W, nearly 90 percent of the
optimal performance can be achieved at an outage of 0.05. This implies that sufficient power supply
(relative to the file size characteristics) can ensure that the system operates in a desirable state with
high performance and low outage.

T

Total interest

—B— Opt-Ave
—%— - Opt-Max
—O—- Heu-Ave-Min
—A— - Heu-Max-Min

ﬁ\( Traditional

0.4 0.6 0.8 1
Outage probability

Figure 7. Performance comparison of different algorithms with varying power constraint Pr (file size
distribution is subject to Lognorm(9.357,1.318)).

Figure 8 illustrates the impact of file size distribution on the system performance. It can be seen
that the impact of reducing the average file size is very similar to the impact of increasing the power
constraint. When the file size is small, the performance quickly approaches the optimal even at a low
outage probability. This observation reinforces our previous remarks that power constraint and file
size are two sides of the same coin and should be jointly considered when designing a system.

Lognorm(9,1) J—
umomsy

Total interest
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i
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Outage probability

Figure 8. Performance comparison of different algorithms with varying file size distributions
(Pr =2 W).
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Finally, Figure 9 compares the system performance when the distribution of individual user’s
interest in a piece of content across multiple users has different forms. We simulate all four types of
distributions reported in the literature. We can see that the normal, U-shaped and Beta distributions
yield similar performance. However, the Levy distribution yields a much better performance in terms
of the total user interest. This is because the former three distributions are balanced and the interest in
a content file tends to spread across many users. On the contrary, the Levy distribution is a heavy-tailed
distribution, so that the interest in a content file tends to concentrate with a few users. In this case,
higher total user interest can be obtained by satisfying a few users that have very high interest.
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Figure 9. Performance comparison with different distributions of individual user’s interest in a piece
of content across multiple users (file size distribution is subject to Lognorm(9.357,1.318), Pr = 1 W).

8. Conclusions

In this paper, we have proposed a novel design for personal content retrieval systems to jointly
optimize content recommendation and content delivery. Optimal algorithms with exponential
complexities have been introduced to solve the joint optimization problem. A linearization technique
has been proposed to reduce the computational complexity of the optimal algorithms. Moreover,
several heuristic algorithms have been presented to tackle the joint optimization problem with
polynomial complexity. The fundamental performance of the proposed system has been characterized
by theoretical bounds and evaluated via simulations. Theoretical and simulation results have shown
that the proposed system has the potential to achieve both high user interest and low transmission
outage probability. Moreover, it has been demonstrated that the best performing heuristic algorithm
can well approximate the optimal performance of the system. We conclude that the proposed system
can effectively balance the conflicting goals of maximizing user interest and minimizing transmission
outage; hence, it is a promising design paradigm for personalized content retrieval systems.
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