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Abstract: In this paper we consider pricing problems of the geometric average Asian options
under a non-Gaussian model, in which the underlying stock price is driven by a process based
on non-extensive statistical mechanics. The model can describe the peak and fat tail characteristics of
returns. Thus, the description of underlying asset price and the pricing of options are more accurate.
Moreover, using the martingale method, we obtain closed form solutions for geometric average Asian
options. Furthermore, the numerical analysis shows that the model can avoid underestimating risks
relative to the Black-Scholes model.
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1. Introduction

It is very important for investors to accurately describe the law of asset price movement, which is
the foundation of the pricing and risk management of derivatives. We know that the stock price model
based on Brownian motion has appeared in many literatures. For example, Black and Scholes [1] and
Merton [2] studied the pricing of financial derivatives of the underlying stock following such a model.
It is well known that the hypothesis that the asset price changes follow Brownian motion implies that
the price changes are independent and the distributions of log-returns are normal, but a number of
studies have shown that empirical distributions of returns are not normal distributions. Researchers
have found that long-term dependence of prices is common in stock markets all over the world [3–6]
and the distributions of returns usually exhibit fat tails [7–9].

Recently, along with the development of Tsallis non-extensive thermostatistics, some studies
have suggested that the power-law distributions characteristic of the Tsallis non-extensive statistics
framework can well model the distributions of the returns of some financial asset. For example, Rak
and Drożdż [10] studied the Polish stock market and found that the Tsallis distribution of index q
provides a satisfactory representation of the distribution of returns. Queirós and Moyano [11], and Biró
and Rosenfeld [12] found that the empirical distribution of returns of the Dow Jones Industrial Average
can be well fitted by a Tsallis distribution. Kozaki and Sato [13] found that the distribution of the
S&P100 index returns is well described by a Tsallis distribution. Ryuji and Masayoshi [14] found
that the time-series of foreign exchange rates can be well fitted by the Tsallis non-extensive statistics.
Yuri and Katz [15] studied leverage returns and default risk valuations using Tsallis distributions.
In addition, Borland [16,17] proposed a stock price model within the non-extensive statistical mechanics
framework, in which the driving noise followed a statistical feedback process that can describe fat-tail
characteristics of distributions of stock returns. Using the model, Borland derived closed form solutions
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for European options. Furthermore, empirical results showed that the option pricing model can closely
reproduce market prices.

An Asian option is a special type of option contract, which is a path-depending exotic option
whose terminal payoff depends on the average underlying price over some pre-set period of
time [18–22]. Hence it has a lower volatility than its underlying asset and is less subject to price
manipulation. Asian options are broadly segregated into two categories: geometric average Asian
options and arithmetic average Asian options. Due to their popularity, Asian options have been
studied by a number of researchers. For example, Caverhill and Clewlow [23] obtained numerical
approximations of the price of Asian options using the fast Fourier transform. Alziary et al. [24]
obtained approximate formulas for the Asian options using the partial differential equation method.
Devreesea et al. [25] derived closed form solutions for the price of geometric average Asian options by
the use of the path integral approach. Wang et al. [26] obtained closed form solutions for geometric
average Asian options using the Lie group analysis method. But in the above literatures, underlying
stocks were driven by the geometric Brownian motion. In the first paragraph, we have introduced
that the return curve of underlying stock usually has a peak and fat tail phenomenon in real financial
markets, not is a normal distribution. That is to say, the use of geometric Brownian motion to describe
the underlying stock price is inaccurate. This usually makes the price of options higher than the actual
value and causes investors to underestimate the risk. Therefore, in order to more accurately describe
the movement of underlying stock price, several researchers have tried to replace the geometric
Brownian motion with others recently. For example, Chung et al. [27] employed a mean reversion and
jump process to describe the movement of underlying stock price instead of the geometric Brownian
motion and studied the pricing of arithmetic average Asian options. Chiu et al. [28] studied the pricing
of Asian options under Lévy processes and obtained efficiently approximate formulas by the Fast
Fourier Transform.

In this paper, in order to describe the movement of underlying stock price more accurately, we
consider an asset price model with a Tsallis distribution of index q in the framework of non-extensive
statistical mechanics. The model can describe the peak and fat tail characteristics of returns. Moreover,
we study the pricing of geometric average Asian options and obtain closed form solutions by the use
of the martingale method.

The paper is organized as follows. In Section 2, we model a price process of an underlying
stock using Tsallis non-extensive statistical mechanics. In Section 3, we derive the analytic formulas
and call-put parity relationship of geometric average Asian options. In Section 4, we carry out a
comparative analysis between the model and the Black-Scholes model based on the geometric Brown
motion. In the final section, we summarize the paper.

2. Market Model

Suppose that there are two types of tradable assets in a continuous financial market. One is a
risk-free asset, called a bond. Its price B(t) follows the equation{

dB(t) = rB(t)dt
B(0) = 1

(1)

where r is a risk-free interest rate. The other one is a risky asset, called a stock. Its price S(t) satisfies
the stochastic differential equation{

dS(t) = µS(t)dt + σS(t)dΩ(t)
S(0) = S0

(2)

where
dΩ(t) = P(Ω(t))

1−q
2 dW(t)
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P(Ω(t), t) =
1

z(t)
(1− β(t)(1− q)Ω(t)2)

1
1−q (3)

z(t) =
∫ +∞

−∞
(1− (1− q)β(t)Ω(t)2)

1
1−q dΩ(t) = ((2− q)(3− q)ct)

1
3−q (4)

β(t) = c
1−q
3−q ((2− q)(3− q)t)

2
q−3 (5)

1 < q < 5
3 , c = π

q−1
Γ2( 1

q−1−
1
2 )

Γ2( 1
q−1 )

, Γ(·) is a Gamma function. Let (Ω,F ,P) be a complete probability

space. W(t) is a standard Brownian motion on the probability space (Ω,F ,P). The probability density
function (3) is called Tsallis distribution [16]. Its mean is zero and variance is

Var[Ω(t)] =
1

(5− 3q)β(t)
(6)

Furthermore, the probability density function (3) satisfies nonlinear Fokker-Planck equation

∂P(Ω(t), t)
∂t

=
1
2

∂P2−q(Ω(t), t)
∂Ω(t)2 (7)

It is not difficult to find that when q > 1 the distribution exhibits fat tails which can describe
long-term memory of asset price, when q → 1 it reduces to Gaussian distribution and hence the
standard model is recovered. In order to price geometric average Asian options, we first introduce the
following three lemmas.

Lemma 1. For any given time t and T, between the random variables Ω(t) and Ω(T) there exists a transformation

Ω(t) =

√
β(T)
β(t)

Ω(T) (8)

Proof of Lemma 1. For any given time t, the probability density distribution (3) can be mapped onto
the distribution of the standardized random variable x∗ through the transformation

x∗ =

√
β(t)
β∗

Ω(t) (9)

with the probability density distribution

P(x∗) =
1
z∗

(1− β∗(1− q)x∗2)
1

1−q (10)

Substituting (9) into (4), we have

z∗ =
∫ +∞
−∞ (1− (1− q)β∗x∗2)

1
1−q dx∗

=
√

β(t)
β∗

∫ +∞
−∞ (1− (1− q)β(t)Ω(t)2)

1
1−q dΩ(t)

=
√

β(t)
β∗ z(t)

(11)

Substituting (9) and (11) into (10), thus, we obtain the relation

P(x∗) =

√
β∗

β(t)
1
z
(1− β(t)(1− q)Ω(t)2)

1
1−q

=

√
β∗

β(t)
P(Ω(t), t)
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For a given time T, we can also map the standardized distribution of x∗ onto the distribution of
Ω(t) through transformation

Ω(t) =

√
β∗

β(T)
x∗ (12)

From (9) and (12), we have that for any given time t and T, between the random variables Ω(t)
and Ω(T) there exists a transformation

Ω(t) =

√
β(T)
β(t)

Ω(T)

Let
γ(t) =

µ− r

σP
1−q

2
q

(13)

W̃(t) = W(t) +
∫ t

0
γ(s)ds (14)

and E[exp( 1
2

∫ t
0 γ2(s)ds)] < ∞ [29]. Then, we can define an equivalent martingale measure Q, which

is related to P through the Radon-Nikodym derivative

dQ
dP = exp(

∫ t

0
γ(s)dW(s)− 1

2

∫ t

0
γ2(s)ds) (15)

According to the Girsanov theorem, we know that W̃(t) is the standard Brownian motion under
the probability measure Q.

Lemma 2. Under the probability measureQ, the discounted stock price process S∗(t) = e−rtS(t) is a martingale.

Proof of Lemma 2. Substituting (13) and (14) into the first equation of (2), we have

dS(t) = µS(t)dt + σS(t)dΩ(t)

= µS(t)dt + σS(t)P(Ω(t))
1−q

2 dW(t)

= rS(t)dt + σS(t)P(Ω(t))
1−q

2 dW̃(t)

(16)

Applying the Itô formula to the discounted process S∗(t) = e−rtS(t), we obtain

dS∗(t) = (−re−rtS(t) + e−rtS(t)r)dt + e−rtS(t)σP
1−q

2
q dW̃(t)

= S∗(t)σP
1−q

2
q dW̃(t)

Since W̃(t) is the standard Brownian motion under the probability measure Q, the discounted
process S∗(t) is a martingale.

Lemma 3. Under the probability measure Q, the stochastic differential Equation (2) has a solution

S(t) = S(0) exp{rt− 1
2

σ2at
2

3−q +
1
2

σ2ab(1− q)Ω(t)2 + σΩ(t)} (17)

where a = 1
2 ((2− q)(3− q)c)

q−1
3−q , b = c

1−q
3−q ((2− q)(3− q))−

2
3−q .
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Proof of Lemma 3. Applying the Itô formula to ln S(t) and substituting (16), we get

d ln S(t) = (rS(t) ∂ ln S(t)
∂S(t) + 1

2 σ2P1−qS(t)2 ∂2 ln S(t)
∂S(t)2 )dt

+ σP
1−q

2 S(t) ∂ ln S(t)
∂S(t) dW̃(t)

= (r− 1
2 σ2P1−q)dt + σP

1−q
2 dW̃(t)

(18)

Over the time interval [0, t], taking the integral of (18), we have

ln S(t)− ln S(0) = rt− 1
2

σ2
∫ t

0
P(Ω(v))1−qdv + σ

∫ t

0
P(Ω(v))

1−q
2 dW̃(t) (19)

Taking the exponent of (19), we obtain

S(t) = S(0) exp{rt− 1
2

σ2
∫ t

0
P1−qdv + σ

∫ t

0
P

1−q
2 dW̃(v)}

= S(0) exp{rt− 1
2

σ2
∫ t

0
[z(v)q−1(1− β(v)(1− q)Ω(v)2)]dv + σΩ(t)}

= S(0) exp{rt− 1
2

σ2
∫ t

0
[((2− q)(3− q)cv)

q−1
3−q (1− β(v)(1− q)Ω(v)2)]dv

+σΩ(t)}

Using Lemma 1, we have the above equation

= S(0) exp{rt− 1
2

σ2
∫ t

0
[((2− q)(3− q)cv)

q−1
3−q (1− β(t)(1− q)Ω(t)2)]dv + σΩ(t)}

Let a = 1
2 ((2− q)(3− q)c)

q−1
3−q , b = c

1−q
3−q ((2− q)(3− q))−

2
3−q , we get the above equation

= S(0) exp{rt− 1
2

σ2at
2

3−q (1− b(1− q)t−
2

3−q Ω(t)2) + σΩ(t)}

= S(0) exp{rt− 1
2

σ2at
2

3−q +
1
2

σ2ab(1− q)Ω(t)2 + σΩ(t)}

In the above calculation process, we equate distribution equality to almost sure equality. Therefore,
there is a little regret that there may be arbitrages.

3. Pricing Geometric Average Asian Options

Assume that there are geometric average Asian options with the strike price K and expiration
date T. Let GT = exp{ 1

T
∫ T

0 ln S(t)dt}. In the risk-neutral framework, the value of an option is equal to
the expected value of discounted price at the risk-free rate under the equivalent martingale measureQ.
Thus, the value of a geometric average Asian call option can be written as

Cq(K, T) = EQ[e−rT(GT − K)+] (20)

The value of a geometric average Asian put option can be written as

Pq(K, T) = EQ[e−rT(K− GT)
+] (21)

where (x)+ is x > 0. We will give pricing formulas of geometric average Asian call and put options in
the following theorems.
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Theorem 1. Suppose there is a geometric average Asian call option with the strike price K and expiration date
T, and the underlying stock price follows the stochastic differential Equation (2). Then, under the risk neutral
framework its value can be written as

Cq ( K, T) = S(0)
z(T) e−

1
2 rT− 1

2
3−q
5−q σ2aT

2
3−q ∫ r2

r1
exp{ 1

2 σ2ab(1− q)x2 + σx} ×

( 1 − (1 − q)β(T)x2)
1

1−q dx− K
z(t) e−rT∫ r2

r1
(1−(1 − q)β(T)x2)

1
1−q dx

(22)

where

r1 =
−1− [1− 2ab(1− q)( 1

2 rT − 1
2

3−q
5−q σ2aT

2
3−q + ln S(0)− ln K)]

1
2

σab(1− q)

r2 =
−1 + [1− 2ab(1− q)( 1

2 rT − 1
2

3−q
5−q σ2aT

2
3−q + ln S(0)− ln K)]

1
2

σab(1− q)

a =
1
2
((2− q)(3− q)c)

q−1
3−q , b = c

1−q
3−q ((2− q)(3− q))−

2
3−q

Proof of Theorem 1. Calculating (20), we have

Cq(K, T) = EQ[e−rT(GT − K)]{GT>K}

= EQ[e−rTGT ]{GT>K} − EQ[e−rTK]{GT>K}

, I−q

where

I = EQ[e−rTGT ]{GT>K}

q = EQ[e−rTK]{GT>K}

In order to calculate I and q, we first solve the inequality {GT > K}. Substituting GT =

exp{ 1
T
∫ T

0 ln S(t)dt}, we obtain

GT > K ⇐⇒ exp{ 1
T

∫ T

0
ln S(t)dt} > K (23)

Taking the log of (23), we have

1
T

∫ T

0
ln S(t)dt > ln K∫ T

0
ln S(t)dt > T ln K

Substituting (17), we get

∫ T

0
ln(S(0) exp{rt− 1

2
σ2at

2
3−q +

1
2

σ2ab(1− q)x2 + σx})dt > T ln K

Calculating the log

∫ T

0
(ln S(0) + rt− 1

2
σ2at

2
3−q +

1
2

σ2ab(1− q)x2 + σx)dt > T ln K
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Calculating the integral

T ln S(0) +
1
2

rT2 − 1
2

3− q
5− q

σ2aT
5−q
3−q +

1
2

σ2ab(1− q)Tx2 + σTx > T ln K

Multiplying the 1
T

ln S(0) +
1
2

rT − 1
2

3− q
5− q

σ2aT
2

3−q +
1
2

σ2ab(1− q)x2 + σx > ln K

Transposing

1
2

σ2ab(1− q)x2 + σx +
1
2

rT − 1
2

3− q
5− q

σ2aT
2

3−q + ln S(0)− ln K > 0 (24)

Now, we need to solve the quadratic inequality (24). Owing to 1 < q < 5
3 , it is not difficult for us

to know a > 0, b > 0. Thus, the coefficient 1
2 σ2ab(1− q) < 0. In addition, let

K < exp{1
2

rT + ln S(0)− 1
2

3− q
5− q

σ2aT
2

3−q − 1
2ab(1− q)

}

Then, the discriminant

4 = σ2 − 4× 1
2

σ2ab(1− q)(
1
2

rT − 1
2

3− q
5− q

σ2aT
2

3−q + ln S(0)− ln K) > 0

Hence the quadratic equation

1
2

σ2ab(1− q)x2 + σx +
1
2

rT − 1
2

3− q
5− q

σ2aT
2

3−q + ln S(0)− ln K = 0 (25)

has two roots

r1,2 =
−σ± [σ2 − 2abσ2(1− q)( 1

2 rT − 1
2

3−q
5−q σ2aT

2
3−q + ln S(0)− ln K)]

1
2

σ2ab(1− q)

=
−1± [1− 2ab(1− q)( 1

2 rT − 1
2

3−q
5−q σ2aT

2
3−q + ln S(0)− ln K)]

1
2

σab(1− q)

So, the solutions of the inequality {GT > K} are x ∈ (r1, r2).Using this, then we can calculate I
and q. Substituting the roots into I, we have

I =
∫ r2

r1
e−rT exp{ 1

T
∫ T

0 ln S(t)dt}P(x, T)dx

=
∫ r2

r1
e−rT exp{ln S(0) + 1

2 rT − 1
2

3−q
5−q σ2aT

2
3−q + 1

2 σ2ab(1− q)x2 +

σx} × 1
z(T) (1− (1− q)β(T)x2)

1
1−q dx

= S(0)
z(T) e

1
2 rT− 1

2
3−q
5−q σ2aT

2
3−q ∫ r2

r1
exp{ 1

2 σ2ab(1− q)x2 + σx}×

(1− (1− q)β(T)x2)
1

1−q dx

(26)

Substituting the roots into q, we get

q =
∫ r2

r1
e−rTKP(x, T)dx

= K
z(T) e−rT ∫ r2

r1
(1− (1− q)β(T)x2)

1
1−q dx

(27)
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Subtracting (27) from (26), we can obtain the value of a geometric average Asian call option is

Cq(K, T) =
S(0)
z(T)

e−
1
2 rT− 1

2
3−q
5−q σ2aT

2
3−q

∫ r2

r1

exp{1
2

σ2ab(1− q)x2 + σx} ×

(1−(1−q)β(T)x2)
1

1−q dx− K
z(t)

e−rT
∫ r2

r1

(1−(1−q)β(T)x2)
1

1−q dx

Theorem 2. Suppose there is a geometric average Asian put option with the strike price K and expiration date
T, and the underlying stock price follows the stochastic differential Equation (2). Then, under the risk neutral
framework its value can been written as

Pq(K, T) = K
z(T) e−rT [1−

∫ r2
r1
(1− (1− q)β(T)x2)

1
1−q dx]

− S(0)
z(T) e−

1
2 rT− 1

2
3−q
5−q σ2aT

2
3−q

[
∫ r1
−∞ exp{ 1

2 σ2ab(1− q)x2 + σx} ×

(1− (1− q)β(T)x2)
1

1−q dx +
∫ +∞

r2
exp{ 1

2 σ2ab(1− q)x2 + σx} ×

(1− (1− q)β(T)x2)
1

1−q dx]

(28)

Proof of Theorem 2. Similar to the proof of theorem 1, we first solve the inequality {GT > K} and
easily get the solutions x ∈ (−∞, r1) ∪ (r2,+∞). Calculating (21), we have

Pq(K, T) = EQ[e−rTK]{K>GT} − EQ[e−rTGT ]{K>GT}

=
K

z(T)
e−rT [1−

∫ r2

r1

(1− (1− q)β(T)x2)
1

1−q dx]

− S(0)
z(T)

e−
1
2 rT− 1

2
3−q
5−q σ2aT

2
3−q

[
∫ r1

−∞
exp{1

2
σ2ab(1− q)x2 + σx} ×

(1− (1− q)β(T)x2)
1

1−q dx +
∫ +∞

r2

exp{1
2

σ2ab(1− q)x2 + σx} ×

(1− (1− q)β(T)x2)
1

1−q dx]

Corollary 1. The call-put parity relationship of geometric average Asian options is

Cq(K, T)− Pq(K, T) =
S(0)
z(T)

e−
1
2 rT− 1

2
3−q
5−q σ2aT

2
3−q

∫ +∞

−∞
exp{1

2
σ2ab(1− q)x2

+ σx} × (1− (1− q)β(T)x2)
1

1−q dx− K
z(T)

e−rT

In addition, under the framework of the Black-Scholes model, the underlying asset price is
assumed to follow the geometric Brownian motion. That is, the underlying stock price S(t) satisfies
the following stochastic differential equation

dS(t) = µS(t)dt + σS(t)dW(t) (29)

where W(t) is a standard Brownian motion defined on a complete probability space (Ω,F ,P).
Let W̃(t) = W(t) +

∫ t
0 θds and θ = µ−r

σ . Then, there is an equivalent martingale measure Q, which is
related to P through the Radon-Nikodym derivative
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dQ
dP = exp(

∫ t

0
θdW(s)− 1

2

∫ t

0
θ2ds)

According to the Girsanov theorem, we know that W̃(t) is a standard Brownian motion under the
probability measure Q. Using the method of lemma 2, we can obtain that the discounted stock price
process S̃(t) = S(t)e−rt is a martingale and satisfies the following stochastic differential equation

dS̃(t) = σS̃(t)dW̃(t)

By the martingale method, it is not difficult to derive the pricing formula of a geometric average
Asian call option (29) in the framework of the Black-Scholes model. It satisfies the following equation

C(K, T) = S(0)e−
1
2 T(r+ 1

6 σ2)N(d1)− Ke−rT N(d2)

where d1 =
ln S(0)−ln K+ 1

2 T(r+ 1
6 σ2)

σ
√

T
3

, d2 = d1 − σ
√

T
3 , and the pricing formula of a geometric average

Asian put option can be written as

P(K, T) = Ke−rT N(−d2)− S(0)e−
1
2 T(r+ 1

6 σ2)N(−d1)

4. Numerical Results

In this section we carry out a comparative analysis between our model and the Black-Scholes
model based on the geometric Brownian motion. We use S(0) = 50, T = 0.5, r = 0.5, σ = 0.25, q = 1.5.
Without loss of generality, We can take µ = 0. Then we use (2) to generate a stock price sample of size
=5000. By fitting the geometric Brownian motion with µ = 0, we obtain the parameter σ = 0.29 for the
Black-Scholes model.

In Figure 1, the call option price as a function of the strike price K is plotted. In Figure 2, the put
option price as a function of the strike price K is plotted. These two figures show that the option
price calculated by our model is lower than that calculated by the Black-Scholes model. Furthermore,
the deviation is more significant as the strike price K goes away from the initial stock price S(0).
This suggests that investors underestimate the risk using the Black-Scholes model.

Figures 3 and 4 depict the price of call and put option as a function of the strike price K for our
model with q = 1.5 and q = 1.4 respectively. They show that under the same conditions, the price of
the option increases with an increase of the value of q. This is because when the value of q increases,
the tail of returns distribution is fatter.
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Figure 1. Call option price versus strike price. The dashed curve is for the Black-Scholes model.
The solid curve is for our model.
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Figure 2. Put option price versus strike price. The dashed curve is for the Black-Scholes model.
The solid curve is for our model.
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Figure 3. Call option price versus strike price, for different values of q. The dashed curve is for q = 1.5.
The Solid Curve is for q = 1.4.
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Figure 4. Put option price versus strike price, for different values of q. The dashed curve is for q = 1.5.
The Solid Curve is for q = 1.4.
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5. Sumary

We know that it is very important to accurately model the price process of underlying assets,
which is the foundation of derivatives pricing. In order to exactly describe asset price process, in this
paper we employ a non-Gaussian stochastic process based on the non-extensive statistical mechanics
framework, which can describe characteristics of long-run dependence of asset prices quite well.
Moreover, by the use of martingale method, we obtain closed form solutions for geometric average
Asian options.

As future work we will study the pricing of other exotic options and empirical analysis of the
financial market under the non-extensive statistical mechanics framework.
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