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Abstract: Extracting effective features from ship-radiated noise is an important way to improve the
detection and recognition performance of passive sonar. Complexity features of ship-radiated noise
have attracted increasing amounts of attention. However, the traditional definition of complexity
based on entropy (information stored in the system) is not accurate. To this end, a new statistical
complexity measure is proposed in this paper based on spectrum entropy and disequilibrium. Since
the spectrum features are unique to the class of the ship, our method can distinguish different ships
according to their location in the two-dimensional plane composed of complexity and spectrum
entropy (CSEP). To weaken the influence of ocean ambient noise, the intrinsic time-scale decomposition
(ITD) is applied to preprocess the data in this study. The effectiveness of the proposed method is
validated through a classification experiment of four types of marine vessels. The recognition rate
of the ITD-CSEP methodology achieved 94%, which is much higher than that of traditional feature
extraction methods. Moreover, the ITD-CSEP is fast and parameter free. Hence, the method can be
applied in the real time processing practical applications.

Keywords: statistical complexity measure; complexity-spectrum entropy plane; intrinsic time-scale
decomposition; feature extraction

1. Introduction

Feature extraction of ship-radiated noise has attracted considerable attention from sonar engineers
because it is an important way to improve the detection and recognition performance of passive
sonar [1–6].

Due to the time-varying nature of the ocean medium and the interference of ocean ambient noise,
it is challenging to extract effective characteristics from the received ship sound [7]. Traditional feature
extraction methods, including the power spectrum density (PSD) and the wavelet transform, attempt
to solve this problem in the frequency domain [7–9]. In general, the spectrum of a ship-radiated noise
contains the continuous broadband spectral envelope and the narrowband discrete tones (i.e., the
spectral lines). For a long time, the line-spectrum features have been widely used for ship detection and
classification. This is because the narrowband spectral lines are produced by the rotating machinery
(e.g., pumps, propellers, and engines) that are unique to the class of the vessel [10,11]. Since PSD is
not able to reflect the time-varying characteristics of the signal to be analyzed, the wavelet transform,
which can provide time–frequency information simultaneously, has received much attention [12,13].
However, there is still the lack of criteria to select the wavelet basis function that may influence
the performance of the wavelet transform [6,9]. In addition, the well-known line-spectrum shift
phenomenon limits the performance of spectrum-based methods [2].
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Entropy is one of the most powerful metrics to evaluate the disorder degree (randomness) and
unpredictability of a signal [14]. There have been a lot of entropic algorithms in the literature, such
as permutation entropy (PE) [15], sample entropy (SE) [16], fuzzy entropy [17], dispersion entropy
(DE) [18], and fluctuation-based dispersion entropy (FDE) [19]. These methodologies are applicable for
any type of signal, whether they are linear or nonlinear, stationary or nonstationary, chaotic or stochastic.
Owing to this, they have attracted increasing attention in the field of underwater acoustic signal
processing. Shashidhar et al. applied SE to detect a weak target embedded in ocean ambient noise [20].
Chen et al. [21] proposed an improved version of PE to classify different types of marine vessels
under noisy conditions. In order to weaken the influence of ocean noise, the de-noising procedure
has been performed prior to the entropy estimation in recent studies, utilizing the famous variational
mode decomposition (VMD), empirical mode decomposition (EMD), and its modifications [22–25]. To
process the data in real time, a recent work used intrinsic time-scale decomposition (ITD) instead of
EMD and VMD [26,27].

The definition of entropy is associated with the information stored in the system, and to some
extent, it can reflect the complexity of the physical process. However, it is crude to simply defines the
complexity in terms of only order and information [28,29]. For example, despite its unpredictable and
disordered character, a white-noise random process should also be regarded as simple since it does not
contain any non-trivial structure [30,31]. In order to comprehensively define the complexity, a statistical
complexity measure called Lopez–Mancini–Calbert (LMC) complexity measure was proposed in
Ricardo et al. [29] by integrating the entropy H and disequilibrium Q (i.e., complexity C = HQ), where
the disequilibrium denotes the distance between the given probability distribution and the equilibrium
distribution of the accessible states of the system [29–31] (for a detailed description of the method,
please check Section 2.2). By this definition, a given value of H can correspond to a range of possible
C values. The two-dimensional plane composed of H and C is called the complexity–entropy plane,
which can provide abundant information related to the correlation structure of the system [32]. It is
worth noting that this plane is a valuable tool for differentiating time series. As a matter of fact, it has
achieved great success in distinguishing between chaotic time series and stochastic ones [33–35].

For the purpose of extracting complexity features from ship-radiated noise, in this paper, a new
kind of statistical complexity measure is proposed based on spectrum entropy and disequilibrium. The
flow diagram of the proposed feature extraction algorithm is depicted in Figure 1. First, ITD is applied to
decompose the analyzed signal into some proper rotation components (PRCs), and the noise-dominant
components are removed. After that, the sum of the remaining PRCs is transformed to the frequency
domain. Then, the spectrum entropy is defined and the corresponding complexity is calculated.
Since the spectrum features are unique to the class of the ship, our method can distinguish different
types of ships according to their location in the two-dimensional plane composed of complexity and
spectrum entropy (CSEP). Moreover, unlike the line spectrum that only considers the local character of
the spectrum, our proposed method can adequately reflect the energy distribution structure of the
spectrum. As will be shown below, the proposed ITD-CSEP methodology is fast, free of parameters,
and can significantly improve the classification accuracy of diverse types of ships.Entropy 2019, 21, x FOR PEER REVIEW 3 of 12 
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The remainder of this paper is organized as follows: the basic theory is described in Section 2,
feature extraction results are provided in Section 3, ship classification results are given in Section 4,
and the paper is concluded in Section 5.

2. Basic Theory

2.1. Intrinsic Time-Scale Decomposition (ITD)

ITD is a relatively new signal decomposition technique proposed by Frei et al. [27]. Compared
with EMD and VMD, it can accurately extract the PRCs within a few iterations and thus is able to
process data in real time. Thanks to this, we selected ITD for de-noising in our study.

For a time series Xt(t ≥ 0), let L(·) and H(·) be the baseline extraction operator and the PRC
extraction operator, respectively. The relationship of Xt, L(·), and H(·) can be expressed as Xt =

L(Xt) + (1− L)(Xt) = L(Xt) + H(Xt) = Lt + Ht. The main steps of the ITD algorithm are as follows:

1. Let Xk be the local extrema of Xt at time index τk. Suppose that Xt is available on t ∈ (0, τk+2) and
that Lt is defined on interval [0, τk]. Then, Lt on the interval (τk, τk+1] can be computed using:

L(Xt) = Lt = Lk + (
Lk+1 − Lk

Xk+1 −Xk
)(Xt −Xk), t ∈ (τk, τk+1] (1)

where:

Lk+1 = α

[
Xk + (

τk+1 − τk

τk+2 − τk
)(Xk+2 −Xk)

]
+ (1−α)Xk+1 (2)

According to Frei and Osorio [27], the constant α is typically fixed at α = 0.5.
2. Set the obtained Lt as the input signal and continue the iteration until the terminal condition is

reached. In our study, once the energy of Lt was less than 1% of Xt, the iteration was stopped.
3. Finally, the ITD of Xt can be expressed as:

Xt = H(Xt) + L(Xt) = H(Xt) + (H + L)L(Xt) = (H(1 + L) + L2)(Xt)

= (H
P−1∑
k=0

Lk + Lp)(Xt)
(3)

where HLk(Xt) denotes the obtained PRC after k + 1 iterations, and Lp(Xt) is the monotonic trend
(if the terminal condition is reached before the monotonic trend is obtained, Lp(Xt) represents the
lowest frequency baseline). ITD is a fully data-driven method; the produced PRCs are adaptively
arranged in order from high frequency to low frequency in the frequency domain. In general, the
kth PRC will be “noisier” than that of the (k + 1)th [26,36]. Hence, in this study, the first PRC of
the ship-radiated noise is regarded as a noise-dominant component, and is removed.

2.2. LMC Complexity Measure

In order to comprehensively define the complexity, a statistical complexity measure called the
Lopez–Mancini–Calbert (LMC) complexity measure was proposed in Ricardo et al. [29]. First, LMC
defines the disequilibrium Q[P] as:

Q[P] = Q0 ·D[P, Pe] (4)

In Equation (4),Q0 is a normalization constant ranging from 0 to 1; P =
{
p j, j = 1, . . . , N

}
denotes the

probability distribution of the system; Pe represents the equilibrium distribution; and D[P, Pe] is the
distance between P and Pe. Then, the LMC complexity measure, which combines the concepts of
entropy and disequilibrium, is defined as:

C[P] = H[P] ·Q[P] (5)
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where H[P] stands for the entropy of the system. By this definition, a given value of H[P] may
correspond to a range of possible C[P] values. The two-dimensional plane composed of H[P] and
C[P] is called the complexity–entropy plane, which can provide abundant information related to the
correlation structure of the system [32].

2.3. Complexity–Spectrum Entropy Plane

There are several approaches toward quantifying H[P]. Without being exhaustive, we can
enumerate Shannon entropy, Tsallis entropy, Renyi entropy, and permutation entropy [28–32]. There
are also a variety of distance metrics used to compute the disequilibrium Q[P], including the Euclidean
norm, the Wootters’s distance, and the Jensen divergence. In this paper, a new statistical complexity
measure is proposed. The spectrum entropy is applied to calculate H[P], and the Jensen divergence
is selected to measure Q[P]. For a time-series x = {x1, x2, . . . , xN}, the proposed CSEP is calculated
as follows:

1. Transform the input signal to the frequency domain using:

P(k) =

∣∣∣X(k)
∣∣∣2

N f f t
, k = 1, 2 . . . , N f f t (6)

where X is the Fourier transform of x, X(k) is a frequency point of X, and N f f t is the length of X.

2. The probability distribution of X can be computed using:

pk =
X(k)

N f f t∑
k=1

X(k)

, k = 1, 2 . . . , N f f t (7)

3. The spectrum entropy and its normalized version are then, respectively, defined as:

HSPE = −

N f f t∑
k=1

pk · log(pk) (8)

HNSPE = HSPE/ −
N f f t∑
k=1

pe · log(pe) = HSPE/ log(N f f t), pe = 1/N f f t (9)

4. Compute the disequilibrium QSPE using Equations (10)–(12), where the distance between
{
pk

}N f f t

1

and
{
pe

}N f f t

1 are calculated using the Jensen divergence:

Q0 = −2
{
(

N f f t + 1

N f f t
) · log(N f f t + 1) − 2 · log(2 ·N f f t) + log(N f f t)

}−1

(10)

JSPE = −

N f f t∑
k=1

(
pk + pe

2
) · log(

pk + pe

2
) − 0.5 ·HSPE − 0.5 · log(N f f t) (11)

QSPE = Q0 · JSPE (12)

5. Define the new complexity CSPE as:

CSPE = QSPE ·HNSPE (13)
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6. Finally, the two-dimensional plane composed of HNSPE and CSPE is called the CSEP, which can be
used to discriminate different types of ship-radiated noise according to their location (i.e., the
(HNSPE,CSPE) points).

3. Results and Discussion

In this section, the effectiveness of the proposed method is validated through analyzing four types
of real ship-radiated noise.

3.1. Data Description

The data used in this study were measured in South China Sea, containing four types of marine
vessels: cruise ship, freighter, ocean liner, and oiler (the four types of ships are denoted as ship-I,
ship-II, ship-III, and ship-IV, respectively). An omnidirectional hydrophone, whose sampling rate is
20 kHz, was mounted at a depth of 30 m. The ship-radiated noise was recorded when different kinds
of vessels passed by the hydrophone within a range of ≈500–1500 m. It is worth mentioning that only
one vessel was measured for each type of ship. The time domain waveforms of diverse ship-radiated
noise are provided in Figure 2, and the corresponding spectrograms are offered in Figure 3.

The line-spectrum features are obvious in Figure 3a–d. In practical engineering, ship recognition
is usually done according to the frequency of spectral lines. However, it is found that the line-spectrum
features are not so stable. Taking Figure 3d as an example, at the point where the arrows directed, there
are two spectral lines that somehow appear suddenly. In addition, within the region of the ellipse, the
spectral line at 724 Hz sometimes disappears. The unstable line-spectrum features might cause the
ship recognition rate to decline.
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Figure 2. The time domain waveforms of four kinds of marine vessels where ships I–IV are a cruise
ship, freighter, ocean liner, and oiler, respectively.
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3.2. Complexity Feature Extraction of Ship-Radiated Noise

In this subsection, the experimental data were analyzed using our methodology (ITD-CSEP).
For comparison purposes, the data were also processed using the multi-scale dispersion entropy
(MDE) [19]. Each type of ship-radiated noise contained 6 million sample points (i.e., duration of 300 s),
which was equally cut into 300 pieces.

The ITD results are depicted in Figure 4. For each type of ship, only one piece of data is randomly
selected to show. As can be seen, the PRCs are arranged in order from high frequency to low frequency.
In general, the kth PRC will be “noisier” than that of the (k + 1)th [26,36]. Hence, the first PRC is
regarded as a noise-dominant component, and is removed. Compared with VMD, ITD can extract the
PRCs accurately within a few iterations and thus is able to process data in real time. Table 1 compares
the running time of VMD and ITD for processing 10 pieces of data (parameters for running the VMD
algorithm were set to be the same according to Yang et al. [24]). Both algorithms were run on a PC with
an Intel(R) Core(TM) i5-7300HQ CPU at 2.50 GHz with the MATLAB (R2016a, Mathworks, Natick,
MA, United States of America) platform. It was found that VMD demanded much more computation
time than that of ITD, which was unacceptable for our real-time processing application.
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Table 1. Comparison of VMD and ITD in terms of computation time for processing 10 pieces of data.

ITD VMD

Computation time 0.8 s 557.8 s

After de-noising, the sum of the remaining PRCs was processed using the CSEP. The results are
plotted in Figure 5, where diverse ships are represented with different color and symbols. It can be
seen that different kinds of vessels are located in distinct regions in the CSEP, illustrating that the
method is effective for ship classification. Unlike a line spectrum that only considers the local character
of the spectrum, the proposed method can adequately reflect the energy distribution structure of the
spectrum. Since spectrum features are unique to the class of the ship, the effectiveness of our method
is reasonable.
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Figure 5. ITD-CSEP results of four kinds of marine vessels.

It is also important to show why the experimental data is not processed directly using the CSEP.
Figure 6 provides the CSEP results without preprocessing using ITD. In contrast to Figure 5, the
distance between the features obviously became closer, meaning it was more difficult to discriminate
between the targets. Even though the data analyzed in our study was measured at a close distance,
they were inevitably contaminated by ocean ambient noise. Hence, applying ITD to de-noise is of
great necessity.
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Figure 6. CSEP results of four kinds of marine vessels.

For comparison purposes, the MDE [19] and selective noise-assisted EMD (SN-EMD) [25] were
also utilized to extract features of the four types of ships. There were several parameters that needed
to be predefined in MDE, including the embedding dimension m, time delay τ, classes c, and scale
factor s. According to the suggestion in Azami and Escudero [19], they were set as m =4, τ = 1, c =6,
and s =20. The MDE results are shown in Figure 7, where the mean DE values with their standard
deviation (SD) error bars are plotted. As can be seen, the DE values of ship-I and ship-IV overlapped
with each other over most scales, especially when s ≥ 10. It is worth noting that the performance of
MDE may be quite different if the parameters are not appropriately selected.
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Figure 7. MDE results of four kinds of marine vessels.

The SN-EMD [25] is a modification of the EMD, which overcomes the mode mixing problem. As
a consequence, it obtains more accurate decomposition results. The energy distribution ratio (EDR) of
each intrinsic mode function (IMF) is one of the most effective features for ship recognition [25]. For
a fair comparison, parameters for computing the SN-EMD were set to be the same as those in Niu
et al. [25]. According to Niu et al. [25], the EDR of the first three IMFs are plotted in Figure 8, where
EDRi refers to the EDR of the ith IMF. It is seen that, despite some overlapping, different targets are
located in distinct regions in the three-dimensional space.
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Figure 8. SN-EMD-EDR results of four kinds of marine vessels.

4. Pattern Recognition

To evaluate the feature extraction performance quantitatively, the probability neural network
(PNN) [37] was applied to further process the extracted features. For each type of ship, 200 randomly
selected pieces of data were used for training and the remaining 100 pieces were used for testing.
Tables 2–6 demonstrate the detailed classification results of the test data, which correspond well with
the feature extraction results in Section 3. The ITD-CSEP obtained the highest classification accuracy of
94%, followed by MDE, CSEP, SN-EMD-EDR, and PSD, with recognition accuracies of 87.75%, 83.5%,
83%, and 68.25%, respectively. The pattern recognition results further proved the effectiveness of the
proposed method for the feature extraction of ship-radiated noise.
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Table 2. PNN classification results of ITD-CSEP.

Type
Recognized as

Accuracy
Ship-I Ship-II Ship-III Ship-IV

Ship-I 83 6 4 7 83%
Ship-II 0 99 1 0 99%
Ship-III 4 0 96 0 96%
Ship-IV 0 2 0 98 98%
In total - - - - 94%

Table 3. PNN classification results of CSEP.

Type
Recognized as

Accuracy
Ship-I Ship-II Ship-III Ship-IV

Ship-I 74 0 26 0 74%
Ship-II 0 97 2 1 97%
Ship-III 34 1 65 0 65%
Ship-IV 0 2 0 98 98%
In total - - - - 83.5%

Table 4. PNN classification results of MDE.

Type
Recognized as

Accuracy
Ship-I Ship-II Ship-III Ship-IV

Ship-I 96 3 0 1 96%
Ship-II 10 82 8 0 82%
Ship-III 0 0 100 0 100%
Ship-IV 26 1 0 73 73%
In total - - - - 87.75%

Table 5. PNN classification results of SN-EMD-EDR.

Type
Recognized as

Accuracy
Ship-I Ship-II Ship-III Ship-IV

Ship-I 83 13 4 0 83%
Ship-II 6 58 36 0 58%
Ship-III 0 0 100 0 100%
Ship-IV 8 0 1 91 91%
In total - - - - 83%

Table 6. PNN classification results of PSD.

Type
Recognized as

Accuracy
Ship-I Ship-II Ship-III Ship-IV

Ship-I 61 0 9 30 61%
Ship-II 0 99 1 0 99%
Ship-III 0 48 52 0 52%
Ship-IV 38 0 1 61 61%
In total - - - - 68.25%

Since our application requires real time processing, it is also necessary to compare the computation
cost of above-mentioned feature extraction methods. Table 7 lists the computation time these methods
needed to process all 1200 pieces of data. All algorithms were run on a PC with an Intel(R) Core(TM)
i5-7300HQ CPU at 2.50 GHz with the MATLAB (R2016a, Mathworks, Natick, MA, United States of
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America) platform. It can be found that PSD and ITD-CSEP ran significantly faster than other algorithms.
Generally, the ITD-CSEP obtained the highest recognition rate with an acceptable computation cost.

Table 7. Comparison of feature extraction methods in terms of computation time for analyzing 1200
pieces of data.

ITD-CSEP MDE
(scale = 1–20)

MDE
(scale = 1–10) SN-EMD-EDR PSD

Computation time 81.82 s 528.27 s 390.87 s 825.6 s 3.19 s

5. Conclusions

In order to extract effective features from ship-radiated noise, a new statistical complexity measure
is proposed in this paper based on spectrum entropy and disequilibrium. Since the spectrum features
are unique to the class of the ship, the proposed method can distinguish different types of ships
according to their location in the two-dimensional CSEP. In order to weaken the influence of ocean noise,
the intrinsic time-scale decomposition (ITD) was utilized for de-noising in this study. Advantages of
the ITD-CSEP methodology are listed below:

1. The proposed algorithm was fast. It only required 81.82 s to process all 1200 pieces of data while
the MDE and SN-EMD-EDR needed 528.27 s (scale = 1–20) and 825.6 s, respectively.

2. Unlike MDE and VMD whose performance may be influenced by parameter selection, the
ITD-CSEP is completely free of parameters.

3. The ITD-CSEP features are unique for different types of ships. The ship classification experiment
proves that the recognition rate of the proposed method achieved 94%, which was much higher
than other traditional feature extraction methods.

Owing to the above-mentioned advantages of the proposed methodology, the ITD-CSEP algorithm
is suitable for our practical application that requires real-time processing. In future studies, our
methodology can be extended for image de-noising.
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