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Abstract: Alzheimer’s disease (AD) is a progressive disease that causes problems of cognitive and
memory functions decline. Patients with AD usually lose their ability to manage their daily life.
Exploring the progression of the brain from normal controls (NC) to AD is an essential part of
human research. Although connection changes have been found in the progression, the connection
mechanism that drives these changes remains incompletely understood. The purpose of this study is
to explore the connection changes in brain networks in the process from NC to AD, and uncovers the
underlying connection mechanism that shapes the topologies of AD brain networks. In particular,
we propose a mutual information brain network model (MINM) from the perspective of graph
theory to achieve our aim. MINM concerns the question of estimating the connection probability
between two cortical regions with the consideration of both the mutual information of their observed
network topologies and their Euclidean distance in anatomical space. In addition, MINM considers
establishing and deleting connections, simultaneously, during the networks modeling from the stage
of NC to AD. Experiments show that MINM is sufficient to capture an impressive range of topological
properties of real brain networks such as characteristic path length, network efficiency, and transitivity,
and it also provides an excellent fit to the real brain networks in degree distribution compared to
experiential models. Thus, we anticipate that MINM may explain the connection mechanism for the
formation of the brain network organization in AD patients.

Keywords: Alzheimer’s disease; graph theory; mutual information; network model; connection
mechanism; functional magnetic resonance imaging; topological structures; anatomical distance

1. Introduction

Alzheimer’s disease (AD) is the primary form of dementia and the most common degenerative
brain disease among older people [1]. AD patients show symptoms of a decline in memory, language,
problem-solving and other cognitive functions that affects a person’s ability to perform daily activities.
This decline occurs because the functional connections between two brain regions involved in cognitive
function have been damaged, which blocks the normal information transformation [2–4]. Although a
large amount of research has been devoted to Alzheimer’s disease, it is still a significant challenge to
discover the underlying connection patterns that cause the alteration of functions in brain network of
AD [5–7]. Addressing these problems have profound significance for a better understanding of how
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the interactions alter among brain regions, and it is crucial for the early detections and early treatments
of AD.

More recently, both graph theory and mutual information (MI) have emerged as powerful
and efficient mathematical techniques for investigating AD. Indeed, graph theory provides many
topological properties for evaluating the characteristics of human brain networks [8–12]. Taking
the form of a graph, people can learn the alterations of brain network properties in terms of
network connectivity, transitivity, efficiency, degree distribution, modularity, and small-world-ness
between normal controls (NC) and AD patients [13–15]. Particularly, graph theory also provides
numerous methods of network modeling for simulating the evolution processes of real complex
networks [16–19]. Through network modeling, one can surmise the fundamental causes that result
in the existence of connections among nodes, and explain the underlying mechanisms of networks
organization [20]. Previous studies have reported that network modelings could be effectively applied
in various science fields to help explore the dynamic connection schemes in networks of real-world
systems [21–25], e.g., friendships recommendation in social networks [21,22], and spurious links
identification in biological networks [23,24]. We can generate network topologies that incorporate
desired properties by employing suitable network models. Network modeling is viewed as a promising
way to help us understand how the inter-connection mechanism affects the topological structures in
complex networks.

It is worth mentioning that network modeling has made some significant advances, particularly
in the study of brain networks simulation, with the intersecting developments of graph theory and
network neuroscience [26–31]. One of the critical contributions that should be mentioned, for instance,
is the Economical Clustering Model (ECM) proposed in [26]. ECM can construct the brain network
by adopting the local topologies of common neighbors (CN) between two regions, and the authors
tried to uncover the connection mechanism of the formation of brain networks. Simulation results
show that networks modeled by ECM can dramatically capture a range of topological features of real
functional brain networks. Similarly, Betzel et al. proposed a series of generative models of human
brain networks according to different network structures. They aimed to explore the wiring rules that
shape the topologies of the brain connectome [27]. Their efforts play a vital role in understanding how
the cognitive function changes across the lifespan. Previous studies indicate that network modeling has
emerged as an essential way in brain network investigations. By studying the associated connection
mechanisms of the network models, we can explain the workings of systems built upon those networks.

Besides, as a fundamental quantity of information theory, MI provides a measure of the statistical
dependence between two random variables [32,33]. At present, MI has been intensively investigated
in the evaluation of the functional brain connectivity and the changes in interactions between mild
cognitive impairment (MCI) and AD [34]. (Mild cognitive impairment (MCI) causes a slight but
noticeable and measurable decline in cognitive abilities, including memory and thinking skills.
A person with MCI is at an increased risk of progressing Alzheimer’s or another dementia [35]).
Besides, MI is applied to estimate the probability of successfully information transmission over the
brain connections between different cortical regions of patients suffering from AD [36]. Moreover,
previous studies have found that MI can be used to quantify the effect of correlations between the
Mini-mental state examination (MMSE) scores of AD and cognitive stage [37,38]. (Mini-mental state
examination (MMSE) is a method to evaluate the cognitive state of AD patients and has been routinely
used in clinical settings [39]). By comparing the MMSE scores between MCI and the moderate stages of
AD, researchers find that the cognitive ability of probable AD patients declines more severe than that
of MCI [40]. Furthermore, MI is treated as an effective measure in evaluating the inter-relationships
of gene expression networks for AD and other neurodegenerative diseases [41,42]. Consequently,
previous studies indicate that MI has a significant influence in brain research of AD.

However, it is worth mentioning that mutual information between different cortical regions in
brain networks has not been considered in previous brain network models. Additionally, although
extensive research has been carried out on brain network modeling, far too little attention has been
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paid to the dynamic process of brain networks simulation from one existing state, e.g., NC, to another,
e.g., AD. Most of the previously proposed models start their simulation with the assumptions that
nodes are isolated and no connections exist in the initial simulation networks. Apparently, these
models are not suitable for simulating the brain networks changes from NC to AD. Moreover, these
models generate the desired synthetic networks by continually adding connections into the initial
simulation networks. They have ignored the fact that real brain networks combine both emerging new
connections and disappearing old connections in the progression from NC to AD [43,44]. Therefore,
models that only take adding connections into account are not realistic. To realize a better brain
networks construction of AD patients, the models should consider adding and deleting connections,
simultaneously.

Considering the above, in this work, we propose a network model named MINM for brain
network modeling. Both MI and graph theory are used to simulate the connection changes in the
progression of human brain networks of AD. The ultimate goal of the study is to uncover the connection
mechanism that produces synthetic networks with properties similar to those of real observed brain
networks topologies. The rest of this paper is organized as follows. In Section 2, we introduce the
materials and methods, including the construction of real brain network, the presentation of our
proposed models MINM in detail and the evaluation of synthetic networks. Then, we show the results
of our experiments in Section 3. Section 4 is devoted to performance analysis and discussion of our
proposed MINM. Finally, in Section 5, we draw the conclusion of this work.

2. Materials and Methods

2.1. Data Acquisition and Participants Selection

Data used in this study were recruited from the public resting-state functional magnetic resonance
imaging (rs-fMRI) datasets named Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://adni.
loni.ucla.edu) consisting of a total of 147 participants. They are divided into three groups: normal
controls (NC) group, mild cognitive impairment (MCI) group, and Alzheimer’s disease (AD) group.
Table 1 shows the demographic and clinical characteristics of the three groups. The NC participants
were non-depressed, non-demented, and had an average MMSE score of 28.72. The MCI group had an
average MMSE score of 27.68. Patients with AD had an average MMSE score of 22.36. Each participant
underwent a scan session using a 3.0T Philips MRI scanner. All the resting fMRI scans were collected
axially by adopting an echo-planar imaging (EPI) sequence with the following parameters: repetition
time (TR) = 3000 ms; echo time (TE) = 30 ms; axial slices = 48; slice thickness = 3.313 mm; slice
acquisition order = sequential ascending; and flip angle (FA) = 80.0◦. Participants were informed to
relax their minds and keep their eyes closed during the scanning to obtain resting state MRIs.

Table 1. Demographic and clinical characteristics of the participants in Normal controls (NC), Mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) groups.

NC MCI AD

Number 62 45 40
Gender (Male/Female) 27/35 20/25 21/19

Age 73.95 ± 4.83 74.38 ± 4.92 74.86 ± 5.52
MMSE score 28.72 ± 1.06 27.68 ± 1.86 22.36 ± 2.77
CDR score 0.00 ± 0.00 0.51 ± 0.17 0.93 ± 0.16

Values of Age, MMSE score and CDR score are expressed as the mean ± SD (standard deviation). MMSE: Mini-Mental State
Examination; CDR: Clinical Dementia Rating. Significant differences were noted in MMSE scores between any two groups
(p < 0.05, the p-value was obtained by two sample t-test).

2.2. Data Preprocessing

A standard data preprocessing strategy was performed in our study using the Data Processing
Assistant for Resting-State fMRI (DPARSF) software (http://www.rfmri.org/DPARSF) [45] and the
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well-known Statistical Parametric Mapping software package (SPM8) (http://www.fil.ion.ucl.ac.
uk/spm) [46]. The data preprocessing for each resting-state scan contained the following steps:
(1) To guarantee the stabilization of the magnetic field, the first ten slice time points were discarded.
(2) Slice timing correction was performed to ensure all remaining time points in the correct time
domain. (3) Realignment was then executed to eliminate the movement artifact in the BOLD time
series. Participants whose head translation exceeded 3.0 mm and participants whose head rotated more
than 3.0◦ were discarded. (4) The functional volumes would subsequently be Spatial normalized
to the standard EPI template and re-sliced to 3× 3× 3 mm3 resolution in Montreal Neurological
Institute (MNI) space. (5) Spatially smoothing was further performed on the normalized images
using a Gaussian kernel of 4 mm full width at half-maximum (FWHM). (6) To reduce the influence
of low-frequency drifts and high-frequency noise, temporal band-pass filtering in the frequency
range 0.06–0.11 Hz was achieved over each smoothed images. (7) Both linear and quadratic trends
were removed. (8) Nuisance covariates such as six head motion parameters, whole-brain signal,
cerebrospinal fluid, and white matter were regressed out from the preprocessed data.

2.3. Construction of Real Brain Network

The real brain network of each participant is represented by a binary graph in this work. First,
we used the automated anatomical labeling (AAL) template [47], which functionally parcels the
cerebrum into 90 regions (45 regions for each hemisphere) of interest (ROIs), to define the nodes in
the graph. Second, we calculated the Pearson correlation coefficient between the whole-run BOLD
time courses of any pairs of nodes, to obtain one 90 × 90 inter-regional symmetric correlation matrix
for each participant. Then, Fisher’s r-to-z transformation was performed to improve the normality of
the correlation coefficients in the matrix. Third, each inter-regional correlation matrix was threshold
to retain a fraction of the strongest connections for statistical significance. The element in the matrix
was set to 1, with the condition that the corresponding correlation coefficient of the node pair was
greater than a given threshold θ. Alternatively, it was set to 0. Finally, we obtained a binary graph g
to represent the real brain network of one participant. The element g(u, v) = 1 means that there is a
functional connection between node u and node v. Moreover, different connectivity densities of the
real brain networks were generated by defining different θ.

2.4. Synthetic Brain Network Modeling

In this study, we aimed to simulate the progression from NC to AD through network modeling.
Here, we call the networks generated by our proposed model synthetic brain networks, and the
networks constructed from the preprocessed images real brain networks. By comparing the properties
of synthetic networks with real target brain networks, we could predict the connection mechanism
that causes the topological alterations of AD.

2.4.1. Network Modeling Steps

The dynamic process of synthetic brain network modeling was executed step by step, starting from
the Initialization step, followed by the Connection probabilities calculation step and the Evolution
step. The detailed network modeling steps are listed in the following:

1. Initialization: At the beginning of modeling, all participants in groups of NC, MCI and AD were
preprocessed and the corresponding inter-regional correlation matrices Gn = (gn1, gn2, . . . , gnk1),
Gm = (gm1, gm2, . . . , gmk2), Ga(ga1, ga2, . . . , gak3) were obtained, where k1, k2 and k3 represent the
number of participants in NC, MCI, and AD, respectively. We calculated the average correlation
matrix of each group, and each average correlation matrix was threshold with the same θ = 0.15
to construct the corresponding real brain networks, i.e., Ḡn for NC, Ḡm for MCI and Ḡa for
AD. The real brain network in each group consisted of a constant number of nodes, |V| = 90.
The connection number of Ḡn, Ḡm and Ḡa were represented by |En|, |Em| and |Ea|, respectively.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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In current work, we studied the evolution process of AD networks from two stages, i.e., the stage
from NC to MCI and the stage from NC to AD. By comparing the elements in the binary graphs
Ḡn, Ḡm and Ḡa, we obtained a constant number α1 of connections that need to be added; another
constant number β1 of connections that need to be deleted in the stage from NC to MCI; and α2

connections to be added and β2 connections to be deleted from NC to AD. Here, α1 ≤ β1 and
α2 ≤ β2 because a declining number of connections was found when comparing |Em| and |Ea|
with |En| (|Ea| ≤ |En| ≤ |Em|). It is worth mentioning that we call the real brain network Ḡn of
NC the initial network in our modeling, and call Ḡm and Ḡm the real target brain networks (TN).

2. Connection probabilities calculation: After initialization, we calculated the connection
probabilities of any node pairs in Ḡn according to the proposed connection probabilities models,
i.e., ECM and MINM introduced in the following subsection. Then, we sorted each node pair in
line with its connection probability. The node pair with the largest connection probability and the
node pair with the smallest connection probability were recorded, respectively.

3. Evolution : Our model started to evolve from the initial graph Ḡn. In each iteration, a random
number was generated to decide whether to add or delete one connection in Ḡn. The node pair
with the largest connection probability will establish a link if its two nodes disconnected with
each other. Meanwhile, the node pair with the smallest connection probability would cut off its
link if there were a connection between its two nodes. It should be noted that each node must
have a connection to ensure the connectivity of the synthetic network. Therefore, a new pair of
nodes must be chosen according to the sorted connection probabilities, if either node’s connection
number in the node pair is equal to 1 when deleting the link between them. We upgraded
connection set in Ḡn at the end of this step.

4. End of the modeling: Our model ran the above steps of connection probabilities calculation and
evolution round by round. The simulation did not proceed to the end, if α1 connections were
established and β1 connections were deleted successfully for Ḡn in the stage from NC to MCI;
or α2 connections were established and β2 connections were deleted in the stage from NC to
AD. Finally, we obtained two synthetic networks with the same connection size as Ḡm and Ḡa,
respectively.

2.4.2. Connection Probabilities Models

To explore the formation mechanism of generating human brain network topologies, Vértes et al.
proposed the Economical Clustering Model (ECM) [26]. Their experiment results show that both the
topological similarity of common neighbors (CN) and the Euclidean distance similarity between
two brain regions are treated as essential impactors in brain networks modeling. The connection
probability of ECM is defined in the following function:

• Connection probability of ECM: The more common neighbors (CN) that node u and node v have,
the higher topological similarity to one another [48]. The number of common neighbors between
node u and node v can be described by

SCN
(u,v) = |Γ(u)

⋂
Γ(v)| (1)

where Γ(u) and Γ(v) represent the set of neighboring nodes of node u and node v, respectively.
Scaling SCN

(u,v) by the Euclidean distance similarity E(u, v) between two brain regions, the ECN
connection probability between node u and node v, i.e., the probability that u prefers to build the
connection with v, is given by

P(u, v) = SCN
(u,v)

γ · E(u, v)−η . (2)

In this expression, P(u, v) is the connection probability of ECM. SCN
(u,v) is the contribution of the

topological similarity computed by CN. The other term, E(u, v), is the contribution of the Euclidean
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distance similarity which represents the anatomical distance between nodes u and v. γ and η represent
the parameters of topological similarity and anatomical distance penalization, respectively. Although
ECM can construct networks similar to the real target brain networks on several essential topological
features, there are still two major problems that have been pointed out.

One problem is that ECM is devoted to calculating the topological similarity between node u and
node v only according to the number of their common neighbors; it does not consider the individual
characteristics of node u and node v. In fact, the individual topological characteristics of node u and
node v are paramount for the formation of a connection between them. Additionally, the other problem
is that ECM gives each common neighbor the same score to the topological similarity. However,
various common neighbors may have different topological characteristics, e.g., degree and clustering
coefficient. Therefore, they make a different contribution to establishing the connection. In this study,
we propose a novel brain network model named MINM from the perspective of mutual information
to solve above issues. Mutual information provides a measure of the statistical relationship between
two random variables. More specifically, it is a measure of the reduction in uncertainty about one
random variable given knowledge of another [32]. MINM adopts not only the individual features of
node u and node v, but also the topological-based mutual information of their common neighbors.
The topological-based mutual information is used to distinguish the different contributions of the
common neighbors of the node pair (u, v) in calculating the existence probability of one connection.
Moreover, higher mutual information indicates a substantial reduction in the uncertainty of the
formation of a connection; otherwise, lower mutual information means a smaller probability of the
existence of one connection. The question we investigate is whether the mutual information between
node u and node v can be helpful for the modeling of brain networks during the evolution process from
NC to AD. Next, we introduce the definitions of self-information and mutual information, and then,
we give a precise definition of our proposed connection probability of MINM.

Definition 1. (Self-information) The Self-information of a random variable is a function that concentrates on
quantifying the information involved in the value of a random variable. Given a random variable X with a
probability distribution P(X), where X takes on values in a set X = {x1, x2, . . . , xn}, the self-information of
the random variable can be expressed by

I(X) = − ∑
x∈X

P(x)logP(x). (3)

Definition 2. (Mutual information) Mutual information is a quantity that measures the number of messages
that can be acquired about one random variable by observing another. Formally, the mutual information of two
random variables X and Y, whose joint distribution is given by P(X, Y), can be defined as

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
= ∑

x∈X
∑
y∈Y

p(x, y)log
p(y)p(x|y)
p(x)p(y)

= ∑
x∈X

∑
y∈Y

p(x, y)log
p(x|y)
p(x)

= ∑
x∈X

∑
y∈Y

p(x, y)logp(x|y)− ∑
x∈X

∑
y∈Y

p(x, y)logp(x)

= − ∑
x∈X

p(x)logp(x)− [− ∑
x∈X

∑
y∈Y

p(x, y)logp(x|y)]

= I(X)− I(X|Y)

(4)

where P(X) and P(Y) represent the marginal distributions of X and Y, respectively. I(X; Y) = 0 if and
only if X and Y are independent.
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• Connection probability of MINM: Given a pair of node (u, v), whose common neighbors can be
represented by ωu,v = Γ(u)

⋂
Γ(v), the connection probability of MINM between them can be

given by
P(u, v) = SMI

(u,v)
γ · E(u, v)−η . (5)

where SMI
u,v is the topological similarity between node u and node v, which represents the

topology-based mutual information between them. E(u, v) is the Euclidean distance similarity,
which is similar with ECM. SMI

u,v can be given by

SMI
u,v = −I(L1

u,v|ωu,v) (6)

where I(L1
u,v|ωu,v) denotes the conditional self-information of an event that there is a connection

between node u and node v, whose common neighbors are known as ωu,v. From Equation (6),
we can know that the smaller I(L1

u,v|ωu,v) is, the higher topological similarity SMI
u,v is, and this

indicates that a larger probability for node u and node v to establish one connection between them.

Next, we give a comprehensive illustration about how to calculate SMI
u,v . According to the definition

of Mutual Information in Equation (4), the topological similarity of SMI
u,v can be given by

SMI
u,v = −I(L1

u,v|ωu,u) = I(L1
u,v; ωu,v)− I(L1

u,v) (7)

where I(L1
u,v; ωu,v) denotes the mutual information between two events L1

u,v and ωu,v. L1
u,v describes

the event that there is one link between node u and node v, and ωu,v represents the event that the
common neighbors between node u and node v are observed. I(L1

u,v; ωu,v) evaluates the increment
of the probability for the formation of one connection between node u and node v by knowing the
information of their common neighbors. I(L1

u,v) represents the self-information of the event that node
u and node v are connected. According to the definition in Equation (3), I(L1

u,v) can be obtained by
calculating the probability of p(L1

u,v). In this work, we assumed that the common neighbors in ωu,v are
independent with each other, and thus,

I(L1
u,v; ωu,v) = ∑

z∈ωu,v

I(L1
u,v; z). (8)

Given one common neighbor z in ωu,v, I(L1
u,v; z) can be estimated by calculating the average

mutual information of all pairs of nodes that have node z as their neighbor in common.

I(L1
u,v; z) =

1
|Γ(z)|(|Γ(z)| − 1) ∑

m,n∈Γ(z)
I(L1

m,n; z), ∀m 6= n,

=
1

|Γ(z)|(|Γ(z)| − 1) ∑
m,n∈Γ(z)

{I(L1
m,n)− I(L1

m,n|z)}, ∀m 6= n
(9)

where Γ(z) is the neighbor set of z; I(L1
m,n) represents the self-information of an event that node m and

node n are connected; and I(L1
m,n|z) is used to describe the conditional self-information of the event

that node m and node n are connected on the condition that node z is known as one of their common
neighbors. Here, we can get I(L1

m,n) through calculating p(L1
m,n). p(L1

m,n) can be given by

p(L1
m,n) = 1− p(L0

m,n) = 1−
kn

∏
i=1

|E| − km − i + 1
|E| − i + 1

= 1−
Ckn
|E|−km

Ckn
|E|

(10)

where L0
m,n represents the event that node u and node v are disconnected with each other; |E| represents

the existing number of connections in the network; and km and kn denote the connection number of
node m and node n, respectively.
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Then, we give an explanation of the calculation of I(L1
m,n|z), which is described in Equation (9).

According to the definition of self-information, to obtain I(L1
m,n|z) we need to calculate the p(L1

m,n|z).
In the current work, p(L1

m,n|z) is equal to the clustering coefficient of node z

p(L1
m,n|z) =

N∧z

N∧z + N∨z
, (11)

where N∧z and N∨z represent the connected and disconnected link number in Γ(z), respectively.
Obviously, N∧z + N∨z = |Γ(z)|(|Γ(z)| − 1)/2, which represents the total connections that could
possibly exist within Γ(z). Then, p(L1

m,n|z) can be described by

p(L1
m,n|z) =

2|Ez|
|Γ(z)|(|Γ(z)| − 1)

, (12)

where Γ(z) represents neighbors set of node z, |Ez| denotes the existing link number in |Γ(z)|. Therefore,
I(L1

u,v; z) is given by

I(L1
u,v; z) =

1
|Γ(z)|(|Γ(z)| − 1) ∑

m,n∈Γ(z)
I(L1

m,n − I(L1
m,n|z)), ∀m 6= n

=
1

|Γ(z)|(|Γ(z)| − 1) ∑
m,n∈Γ(z)

{−logp(L1
m,n)− (−logp(L1

m,n|z))}, ∀m 6= n

=
1

|Γ(z)|(|Γ(z)| − 1) ∑
m,n∈Γ(z)

{log
Ckn
|E|

Ckn
|E| − Ckn

|E|−km

+ log
2|Ez|

|Γ(z)|(|Γ(z)| − 1)
}, ∀m 6= n.

(13)

Finally, substituting Equations (8), (10) and (13) back into Equation (7), we can get the topological
similarity of SMI

u,v .

SMI
u,v = ∑

z∈ωu,v

{ 1
|Γ(z)|(|Γ(z)| − 1) ∑

m,n∈Γ(z)
{log

Ckn
|E|

Ckn
|E| − Ckn

|E|−km

+ log
2|Ez|

|Γ(z)|(|Γ(z)| − 1)
}}

− log
Ckn
|E|

Ckn
|E| − Ckn

|E|−km

, ∀m 6= n.

(14)

As we can see from Equations (7) and (14), both the mutual information ∑z∈ωu,v I(L1
u,v; z) and the

self-information I(L1
u,v) are used to define the topological similarity between node u and node v. Thus,

two different node pairs (u, v) who have the same number of common neighbors may get various
topological similarity.

2.5. Evaluation of Synthetic Networks

To evaluate the performance of our proposed model, we defined a similarity index SI function
as described in [26,27], by comparing different topological properties between synthetic networks
and real target brain networks (TN), i.e., the real brain networks of MCI and AD. Moreover, to make
it a more convincing and reasonable evaluation, the most important network properties including
clustering coefficient, local efficiency, modularity, characteristic path length, global efficiency, and
transitivity are chosen. The detailed description of these features is shown in Table 2, and they can
reflect the performance of one network from different aspects. The definition of SI is given by

SI =
1

ξC + ξEloc + ξM + ξL + ξEglob + ξT
. (15)
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where ξC is the relative error of clustering coefficient between the synthetic network and real target
brain network (TN); ξEloc and ξEglob represent the relative errors of local efficiency and global efficiency,
respectively. Similarly, ξM, ξL, and ξT are the relative errors of modularity, the characteristic path
length, and transitivity, respectively. A smaller value of SI indicates that the synthetic networks are
more similar to the real target brain networks of MCI or AD. Obviously, we can get different values of
SI with various γ and η. To find the optimal synthetic networks that overall most closely approximate
the real target group, simulated annealing (SA) on SI is used. Moreover, the optimal γ and η in the
parameter space that minimizes SI are recorded.

Table 2. Description of topological properties in complex networks.

Property Name Symbol Description

Clustering coefficient C It is a measure of the number of triangles in a graph.
Local efficiency Eloc It is a measure to quantify the efficiency of local information transmission.

Global efficiency Eglob It is a measure to quantify the efficiency of global information transmission.
Characteristic path length L L is the average shortest path length between all node pairs in the network.

Modularity M It is used to detect the strength of the division of a network into communities.
Transitivity T It measures the probability that the adjacent nodes of a node are connected.

Degree k It indicates the number of links connecting with a node.

3. Results

In this study, we propose one novel brain network model named MINM for a better understanding
of the connection mechanism of AD brain networks from two stages, i.e., the stage from NC to MCI,
and the stage from NC to AD. Both topological-based mutual information and the anatomical distance
are taken into account in MINM. We give detailed descriptions of the modeling results in the two
stages, respectively, in the following subsections.

3.1. Topological Differences in Brain Networks of NC, MCI and AD

Before introducing the modeling results, we discuss the topological differences among brain
networks of NC, MCI, and AD. Figure 1 shows the changes of the six topological features among the
real observed networks of NC, MCI, and AD groups. The results indicate that noticeable topological
changes are found in the networks of these three groups. Specifically, clustering coefficient, local
efficiency, global efficiency, and transitivity of brain networks decrease gradually from NC, via MCI
to AD, whereas characteristic path length and modularity increase progressively. The analysis of
these topological differences can help us explain how connections change in brain networks, and it is
valuable for proposing a more reasonable simulation model.
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Figure 1. Topological differences among the real brain networks of NC, MCI and AD. NC represents
the real brain network of normal control (NC) group; MCI and AD are the real brain networks of Mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) group, respectively.

3.2. Network Modeling of the Stage from NC to MCI

In this subsection, we evaluate the performance of our proposed model MINM and five other
well-known models in the stage from NC to MCI. The compared models are similar with MINM
except for the definitions of the topological similarities. Table 3 makes a detailed description of the
topological similarities in the compared models. In addition, we also perform a random model for
comparison. In the random model, we selected two disconnected nodes to establish one connection
and two connected nodes to delete one connection, randomly.

Table 3. The definitions of topological similarities in the compared models.

Models Abbreviation Mathematical

Preferential Attachment [49] PA SPA
u,v = |Γ(u)| × |Γ(v)|

Jaccard [50] JC SJC
u,v = |Γ(u)⋂ Γ(v)|

|Γ(u)⋃ Γ(v)|
Adamic–Adar [51] AA SAA

u,v = ∑
ξ∈|Γ(u)⋂ Γ(v)|

1
log|Γ(ξ)|

Resource Allocation [52] RA SRA
u,v = ∑

ξ∈|Γ(u)⋂ Γ(v)|
1
|Γ(ξ)|

Table 4 shows the SI of different models with the best-fitting parameters λ and η. We found
that MINM outperformed the other models with the largest SI = 3.9683 and the optimal parameters
λ = 0.4, η = 2.0, followed by RA (SI = 2.4358, λ = 0.4, η = 2.0), PA (SI = 2.4010, λ = 0.4, η = 1.8)
and JC (SI = 2.3714, λ = 0.2, η = 0.2). The results indicated that MINM considering both network
topology-based mutual information and anatomical distance could generate synthetic networks
capturing all of the key topological features of real target brain networks. Specifically, MINM
minimized the difference between the synthetic network and the real brain network on properties
of local efficiency (ξEloc = 0.0077), global efficiency (ξEglob = 0.0292), the characteristic length
(ξL = 0.0598), and transitivity (ξT = 0.0010). Therefore, MINM was the best model in simulating the
underlying mechanism that causes the connection changes in brain networks in the stage from NC
to MCI. Moreover, we found that PA generated synthetic networks most similar with the real brain
network of MCI on properties of clustering coefficient, but it failed to match real MCI networks well on
transitivity (ξT = 0.0480). RA generated synthetic networks most similar with the real brain network
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of MCI on properties of modularity, but mismatched real MCI networks on properties of clustering
coefficient (ξC = 0.0975) and local efficiency (ξEloc = 0.0638). In contrast, the results also indicated
that the SI of ECM was the smallest among the six topology-based models. The performance of ECM
was limited primarily by mismatches in characteristic path length (ξL = 0.1851) and global efficiency
(ξEglob = 0.1413). Additionally, we also compared the six topology-based models with the Random
model. As shown in Table 4, we found that the SI of random model had the lowest SI = 1.0912.

Table 4. The optimal SI-value of different brain network models for networks modeling in the stage
from NC to MCI. ξC is the relative error of clustering coefficient between synthetic networks and the
real target brain network (TN); ξEloc and ξEglob represent the relative errors of local efficiency and
global efficiency; and ξM, ξL, and ξT are the relative errors of modularity, the characteristic path length,
and transitivity, respectively. A larger value of SI indicates that the model could generate synthetic
networks with properties more similar to the real target brain network of MCI.

Models λ η ξC ξEloc ξM ξL ξEglob ξT SI

ECM 0.2 1.6 0.0687 0.0302 0.0713 0.1851 0.1413 0.0205 1.9339
PA 0.2 1.8 0.0213 0.0187 0.0639 0.1464 0.1356 0.0480 2.4010
AA 0.2 1.4 0.0811 0.0578 0.1210 0.1324 0.0514 0.0173 2.1692
RA 0.4 2.0 0.0975 0.0638 0.0465 0.1345 0.0502 0.0164 2.4358
JC 0.2 0.2 0.0844 0.0515 0.1082 0.0861 0.0789 0.0126 2.3714

MINM 0.4 2.0 0.0816 0.0077 0.0727 0.0598 0.0292 0.0010 3.9683
Random – – 0.1406 0.1132 0.1796 0.1558 0.1204 0.2068 1.0912

Furthermore, to make a detailed illustration of the above results, we also present the values of the
six topological properties in both synthetic networks generated by the topology-based models and
the real target brain network (TN) of MCI in Figure 2. In the figure, the black dot lines indicate the
property values of TN, and the red dot lines describe the property values of the best models which
minimize the relative errors.
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Figure 2. Topological properties of the synthetic brain networks generated by various models and the
real target brain network (TN) of MCI.
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3.3. Network Modeling of the Stage from NC to AD

We studied the evolution process of network connections in the stage from NC to MCI. SI was
again used to evaluate the performance of our proposed model MINM and five other known
topology-based models. A random model was also performed for comparison. By comparing SI and
the relative errors of different topological properties, we estimated the connection mechanism that
causes the changes of connections in AD patients.

Table 5 gives a detailed illustration of the largest SI for the six topology-based models and
the random model. The corresponding best-fitting parameters λ and η and the relative errors on
the six topological properties are listed in the table. We found good correspondence between the
synthetic network constructed by MINM and the real target brain network of AD on all of the key
topological properties of global efficiency (ξEglob = 0.0303), the characteristic length (ξL = 0.0253),
and transitivity (ξT = 0.0368). Overall, the results confirmed that our proposed model MINM achieved
the largest SI = 3.9231 with the optimal parameters λ = 0.2, η = 1.8, which meant the corresponding
synthetic network was significantly more AD-like than either of the other topological models previously
considered. Therefore, MINM was the best model for anticipating the connection mechanism of the
real brain network in the stage from NC to AD. In addition, the SI of PA was equal to 2.4358, with the
optimal parameters λ = 0.4, η = 2.0, preceded only by MINM. The SI and the optimal parameters
of AA and RA were SI = 2.4010, λ = 0.4, η = 1.8 and SI = 2.3714, λ = 0.2, η = 0.2, respectively,
followed by PA. Another finding was that the synthetic network generated by PA had clustering
coefficient and modularity that exactly matched with that of the real brain network of AD. ξEloc of
the synthetic network generated by RA was the closest to the real target brain network. However,
the synthetic network failed to match the real network well regarding modularity (ξM = 0.1370) and
the characteristic path length (ξL = 0.0732). Furthermore, the results of the current study also revealed
that the performance of JC was not as clustering or local efficient as the real brain network of AD. ECM
had the worst performance in simulating the global efficiency (ξEglob = 0.1413), and it obtained the
smallest SI among the six topology-based models. Finally, the comparison results showed that all the
six topology-based models outperformed the random model, significantly.

Table 5. The optimal SI-value of different brain network models for networks modeling in the stage
from NC to AD. ξC represents the relative error in clustering coefficient between synthetic networks
and the real target brain network (TN); ξEloc represents the relative error in local efficiency; ξM is the
relative error in modularity; ξL is the relative error in the characteristic path length; ξEglob is the relative
error in global efficiency; and ξT is the relative error in transitivity.

Models λ η ξC ξEloc ξM ξL ξEglob ξT SI

CN 0.4 1.2 0.0426 0.0491 0.1263 0.0665 0.1460 0.0419 2.1169
PA 0.2 1.6 0.0194 0.0289 0.0395 0.0551 0.1377 0.0515 3.0111
AA 0.2 1.6 0.0386 0.0339 0.1291 0.0576 0.0551 0.0881 2.4851
RA 0.2 2.0 0.0448 0.0245 0.1370 0.0732 0.0496 0.0758 2.4697
JC 0.4 0.4 0.0653 0.0661 0.1249 0.0364 0.0786 0.0709 2.2614

MINM 0.2 1.8 0.0432 0.0358 0.0835 0.0253 0.0303 0.0368 3.9231
Random – – 0.0888 0.1355 0.2304 0.0534 0.0611 0.1476 1.3951

Detailed information about the six topological properties of the synthetic networks and the real
target brain network (TN) of AD are shown in Figure 3.
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Figure 3. Topological properties of the synthetic brain networks generated by various models and the
real target brain network (TN) of AD.

3.4. Degree Distribution

In this subsection, we explore the degree distribution of the synthetic networks. In the study of
graph theory, the degree of a node indicates the connections number it has to other nodes. The node
degree describes the characteristic of the network from the view of local structures. The degree
distribution is the probability distribution of these degrees over the whole network. It makes an
evaluation of the structural and dynamical properties in the network from a global view. Therefore,
it is necessary to make a detailed illustration of the degree distribution of the synthetic networks in the
current study. Figure 4 shows the fitting results of the cumulative degree distribution of both the real
target brain networks (TN) of MCI and AD, and synthetic networks generated by the topology-based
models in the simulation of two specified stages, i.e., the stage from NC to MCI and the stage from NC
to AD.
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Figure 4. Degree distributions of the real target brain networks (TN) and the synthetic brain networks.

Figure 4a demonstrates the fitting results of the cumulative degree distribution for synthetic
networks generated in the stage from NC to MCI, and the real MCI network in a log-log plot. Figure 4b
shows the fitting results of the cumulative degree distribution for synthetic networks generated in
the stage from NC to AD, and the real AD network. Both results show that the generated topologies
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of MINM were approximately the same as the real target brain networks (TN) of MCI and AD.
Additionally, the results indicate that a significant difference existed between the synthetic network
generated by the random model and the real target brain networks (TN).

3.5. Topological Properties of the Synthetic Networks Generated by MINM with Different λ and η

We subsequently investigated the influence of the variety of parameters λ and η on the topological
properties in the modeling stage from NC to AD. Figure 5a–c describes the changes of the topological
properties with η, when λ = 0.2 is a constant. An interesting finding is that the clustering coefficient,
local efficiency, characteristic path length, and transitivity increased with a gradual increase of η.
These properties obtained the largest values when η = 1.8, which is consistent with the observation
from the results in Table 5. It is worth mentioning that modularity and global efficiency did not
change greatly with the increase of η, confirming that the anatomical distance makes little influence on
these two features. Additionally, we also investigated the topological properties of the networks by
varying λ with η = 1.8. As can be seen in Figure 5d–f, we observed a decreasing trend in clustering
coefficient, local efficiency, characteristic path length, and transitivity with the increase of λ from
0.2 to 2.0. Especially, these properties obtained the largest values when λ = 0.2, which indicates a
good agreement with the results in Table 5. It is interesting to note that both the modularity and
global efficiency change little with the increase of λ, confirming that the topological similarity has little
influence on these two features.
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Figure 5. The changes of topological properties of the synthetic networks generated by MINM with
different λ and η in the stage from NC to AD.

3.6. Connections Deleted in the Early Stage from NC to AD

As described in the above results, we proved that our proposed MINM could achieve good
performance in the progression simulation of AD. In this subsection, we show how a normal brain
network converts to an AD brain network step-by-step by displaying the simulated progress of MINM.
Specifically, we explore which connections are deleted in the early stage of AD. Table 6 records the
connections disrupted between particular brain regions. (These brain regions are defined according
to the Automated anatomical labeling (AAL) template. The detailed number and abbreviation
of each region can be accessed at the following link, http://neuro.imm.dtu.dk/wiki/Automated_
Anatomical_Labeling). As can be seen in Table 6, the connections linked to brain regions such as
Region 8 (Frontal_Mid_R), Region 85 (Temporal_Mid_L), Region 51 (Occipital_Mid_L), Region 53
(Occipital_Inf_L) and Region 54 (Occipital_Inf_R) disrupt frequently in the early stage of transition.
The finding of these early-loss connections may be helpful for early detection of AD in clinical.

http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_Labeling
http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_Labeling
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Table 6. Detailed connections deleted in the early stage of transition. It should be noted that (85,2)
in this table means there is a connection between Region 85 and Region 2. The first column “Deleted
connections number = 10” records the first ten connections deleted from the NC brain network; the
second and the third columns record the additional connections deleted when our model evolved to
the further steps.

Deleted Connections
Number = 10

Deleted Connections
Number = 20

Deleted Connections
Number = 30

(85,2) (53,4) (54,7) (53,2) (51,10) (54,23)
(77,12) (85,4) (51,14) (49,26) (51,23) (54,24)
(51,4) (86,85) (52,7) (54,3) (50,7) (49,14)
(51,8) (51,2) (53,14) (51,24) (53,24) (54,13)
(53,8) (85,8) (49,8) (49,10) (49,24) (52,9)

In addition, we also describe the topological properties changes simulated by MINM in the
progress of deleting a different number of connections. As shown in Table 7, we find that the properties
such as clustering coefficient, local efficiency, global efficiency, and transitivity decrease progressively
along with the increasing of the deleted connection number. Moreover, characteristic path length and
modularity increase gradually. These variations are consistent with the findings of Figure 1.

Table 7. Description of topological properties changes in the progress of deleting a different number of
connections.

Deleted Connections Number C Eloc M L Eglob T

0 0.5906 0.7667 0.2691 2.0082 0.5651 0.5672
10 0.5829 0.7626 0.2723 2.0109 0.5639 0.5492
20 0.5784 0.7626 0.2760 2.0254 0.5616 0.5459
30 0.5764 0.7626 0.2772 2.0397 0.5575 0.5438

AD 0.5190 0.7258 0.3045 2.2821 0.5277 0.5027

4. Discussion

In this study, we investigated several brain network models to explore the fundamental reason that
results in the alteration of connections in real AD brain networks. We showed that the previous models,
which consider either node feature, i.e., node degree, or shared nearest neighbors in common, could not
satisfactorily account for all the topological properties of real target brain networks. We demonstrated
that the addition of the topological-based mutual information to the model, favoring additional
formation of connections between two nodes, could markedly improve the simulation of realistic
brain network properties. Notably, our proposed model MINM provided a good account of network
properties regarding local efficiency, global efficiency, the characteristic path length, and transitivity.
MINM also provided an excellent fit to the degree distribution in both simulation stages of MCI and
AD. Therefore, we confirm that MINM is a promising method for understanding the underlying
mechanism that shapes the organization of brain networks during the progression of AD.

We intensively studied the topology differences between functional brain networks of NC and
AD, and significant alterations of topological properties were found, i.e., the increase of characteristic
path length and the decrease of network efficiency. Specifically, the increasing of the characteristic
path length indicates a long average time in dealing with the information transmission among brain
areas; and the dropping down of both local efficiency and global efficiency implies the reduction of
the ability in data processing. The alterations of these properties are related to the functional decline
of cognition in AD patients, which is consistent with results in the literature [43,44]. These previous
works show that the abnormal alterations of networks topologies play vital roles in the influence of
cognitive functions such as attention, working memory and executive control of human brains during
the neuro-development. The disorder of network organizations will lead to the deficit of cognition and
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result in the emergence of AD. Therefore, better understanding the topological characteristics would
be helpful for us to know the relationship between the functions and the architectures of AD brain
networks.

In the current work, we have studied the changes of network properties for a further investigation
of the fundamental rule that causes the formation of AD network topologies. Prior models, such as
ECM, AA, and PA, estimate the connection mechanism of the brain networks formation by emphasizing
the importance of increasing connections among brain regions [26,27]. Although the authors have
confirmed that synthetic networks generated by these models can well match several properties of
the real target brain networks, such an effort is accompanied by much debate in recent years in the
simulation of the progression of AD. One obvious limitation of previous models is that they ignore
the fact that the alterations in AD brain networks are caused by both decreasing and increasing
connections between brain regions [43,44]. Consequently, previous models cannot successfully identify
the potential mechanism that results in the variation of network topologies in the progression from NC
and MCI, or NC and AD. It is worth mentioning that our proposed model MINM takes both decrease
and increase of connections among brain regions into account, and this consideration is suitable for
the actual situation of AD. Thus, it obtains good performance in the modeling of AD brain networks.

It is also clear that mutual information has been extensively investigated in human brain research.
The previous study has demonstrated that mutual information is associated with the cognitive
functions of human brain networks [37,38,40]. In addition, much work has suggested that mutual
information makes a crucial influence on information transmission in brain networks [36]. Therefore,
topological-based mutual information is considered an essential factor in MINM to make the modeling
more efficient. MINM can appropriately distinguish the connection probabilities between any two
pairs of nodes by considering the topological-based mutual information. This consideration may make
it much reasonable for capturing the potential connection mechanism that shapes the topologies of AD
brain networks. Experimental results are shown in Tables 4 and 5. Based on our findings, it can be
concluded that our proposed topological-based mutual information model MINM can make a complete
understanding of the connection mechanism that causes the formation of AD networks. Furthermore,
we know that our proposed model MINM can generate networks with a better simulation in network
properties of global efficiency and transitivity in both modeling stage from NC to MCI and from NC to
AD. It means that the synthetic network has the same ability as the real ones in dealing with the global
information transformation.

We discuss several competitive models that consider both topological similarity and distance
penalization in this work. We make a further analysis of the influence of different topological structures
on the reconstruction of AD brain networks. In the ECM model, two nodes get higher connection
probability if they share more nearest neighbors in common. The PA model considers node degree
of one node when calculating the connection probability, and the node with a large degree, i.e.,
the hub node, has more opportunity to establish connections with others. While AA, RA, and
JC are similar to ECM, they all take the number of common neighbors into consideration when
calculating the connection probability between two nodes. Especially, both AA and RA take the
individual characteristic of the node, i.e., node degree into account besides the common neighbors.
JC defines the topological similarity for connection establishment with the consideration of not only
the number of the common neighbors of two nodes, but also their union neighbor set. As can be
seen in Tables 4 and 5, all the topological-based models generated synthetic networks much more
similar to the real target brain networks than the random model. Moreover, we also found that
models taking different topological structures into account generated various network topologies
that present their characteristics. Additionally, through comparing SI of MINM to those of other
topological-based models, we confirmed that MINM achieved the best performance in generating
synthetic networks with properties most resemblance to those of the real AD brain network, with the
best fitting parameters λ and η estimated by simulated annealing (SA). We devote our effort to propose
an explicit simulation model for a complete understanding of the connection mechanism that results in
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the network topologies of AD. In addition, our results reveal that the formation of the AD topologies
is not random; it follows an appropriate rule. Our findings draw attention to the critical requirement
for a comprehensive understanding of the relationship between the connection mechanism and the
functions of brain networks.

5. Conclusions

We have investigated how topological-based mutual information and Euclidean distance are
adopted in the simulation of brain network topologies with AD. We also concentrate on how
connections are established or deleted among different brain regions. Our ambition is to uncover the
fundamental connection mechanism that facilitates the alterations of brain networks in the progression
from NC to AD. We demonstrate that adding the mutual information into our model can promote
the modeling performance in this progression. Successful models of AD brain networks have been
instrumental in understanding how structural brain organizations affect the ability of cognition.
Our work has opened new avenues toward the diagnosis and treatment of AD.
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