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Abstract: A key factor for fall prevention involves understanding the pathophysiology of stability.
This study proposes the postural stability index (PSI), which is a novel measure to quantify different
stability states on healthy subjects. The results of the x-, y-, and z-axes of the acceleration signals were
analyzed from 10 healthy young adults and 10 healthy older adults under three conditions as follows:
Normal walking, walking with obstacles, and fall-like motions. The ensemble empirical mode
decomposition (EEMD) was used to reconstruct the acceleration signal data. Wearable accelerometers
were located on the ankles and knees of the subjects. The PSI indicated a decreasing trend of its
values from normal walking to the fall-like motions. Free-walking data were used to determine the
stability based on the PSI. The segmented free-walking data indicated changes in the stability states
that suggested that the PSI is potentially helpful in quantifying gait stability.

Keywords: postural stability index; stability states; ensemble empirical mode decomposition; gait

1. Introduction

Each year, approximately one third of older adults aged >65 years experience falls [1]. Falls can
cause physical injuries that may lower the quality of life and health or even lead to death in older
adults. Additionally, falls are a common cause of psychological stress and extended hospitalization for
older adults [2]. Falls are potentially related to the difficulty in maintaining walking stability. Therefore,
quantifying walking stability is potentially key to preventing falls.

Previous studies focused on the fall detection method [3–5]. However, the indexes can only be
used to count the number of falls. They detect falls based on the sudden changes in a series of data.
Despite the ability to detect falls, the aforementioned methods merely count the number of falls that
occur in a given time. Although falls are caused by poor postural stability, it is difficult to determine
the stability of the movement if the fall does not occur.

A previous study used dynamic stability to determine postural stability [6]. The acceleration root
mean square (RMS), step and stride regularity, and sample entropy (SampEn) are parameters used to
measure dynamic stability. Dynamic stability can be used to identify asymmetrical stability patterns
related to ageing and illness [7–9]. However, the approach may not be as sensitive in discriminating
stability patterns in healthy subjects.

In 2014, Cui et al. [10] used ensemble empirical mode decomposition (EEMD) to construct the
step stability index (SSI) to discriminate between the walking patterns of fallers from non-fallers.
When compared to fall detection methods, the SSI is a more promising approach to evaluate human
postural stability because it evaluates the characteristics of movements irrespective of whether or not
subjects fall during the evaluation. The SSI can be used to quantify gait dynamics and discriminate
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non-fallers from fallers although the real question concerns the extent of the stability of the movement
of non-fallers. The evaluation of the postural stability of non-fallers may not be as simple as comparing
fallers and non-fallers. EEMD was developed to overcome the empirical mode decomposition (EMD)
mode mixing issues [11]. EMD decomposes signal data into a set of zero-mean underlying components
called intrinsic mode functions (IMF). The main advantage of EMD is that its algorithm depends only
on the signal under analysis. However, performance evaluation of EMD compared to discrete wavelet
transform (DWT) and wavelet packet decomposition (WPD) showed that the EMD performed the
worst in detecting seizures in electroencephalogram (EEG) signals. Machine learning methods, such as
random forest (RF), k-Nearest neighbor (k-NN), artificial neural network (ANN), and support vector
machines (SVM), were used to predict the accuracy of the EMD, DWT, and WPD [12].

The current study proposed a measure that can distinguish different stability states in healthy
subjects using an accelerometer. This study used EEMD and multiscale entropy (MSE) to develop the
measure. The performance of EEMD was also evaluated by comparing its performance with the wavelet
transform method. The organization of this paper is prepared as follows. The methods section provides
the experiment protocol and a brief description of previous postural stability measures as well as the
theoretical background behind EEMD, MSE, and wavelet transform methods. Results are then presented
in Section 3 and the discussion is in Section 4. Finally, a conclusion section is presented in Section 5.

2. Methods

2.1. Subjects

Ten young adults (24 ± 0.94 years) and 10 older adults (69 ± 6.77 years) were recruited. All
subjects were free of any postural stability-related disorder based on self-reports. The study was
approved by the Institutional Review Board and informed consent forms were obtained from all
subjects before their participation. The subjects were asked to perform walking, walking with obstacles,
free walking, and fall-like motions (Figure 1). Young adults performed free-falling and fall-like motions
while older adults only performed fall-like motions. The subjects were instructed to walk at their
own pace regardless of the distance for the duration of 60 s. For the fall-like motions, the subjects
were asked to sit on a mattress from the standing-still position. The fall-like motion was repeated 10
times. The subjects were allowed to hold on to the pole in front of them while performing the fall-like
motions. The results of the pilot study indicated that the subjects did not feel comfortable wearing
safety harnesses while performing fall-like motions. The safety harness made the subjects bounce back
during the task. For the free-fall task, subjects were asked to jump down from the standing position on
the chair to imitate the free-fall. This free-fall task was repeated five times. Wearable accelerometers
were attached to the ankle and knee of each subject with the assumption that the ankle and knee
corresponded to the most relevant body parts during the experiment. The acceleration data were
acquired at 30 Hz and were imported into Matlab R2016a [13] for feature computation.

2.2. Subject Characteristics

Twenty healthy subjects with no history of falling in the past two years were grouped by age. Table 1
presents the descriptive statistics of the subjects. The Mann Whitney test was used to compare the two
groups. The differences between the two groups were all statistically insignificant, except for age.

Table 1. Descriptive statistics of the subjects.

Young Adults Older Adults p-Value

Age (years) 24 (0.88) 70 (5.27) <0.001 *
Gender (% Female) 50% 60% 0.66

Height (cm) 164 (6.84) 160 (9.93) 0.36
Weight (kg) 59 (10.67) 60 (9.12) 0.79

* p-values were obtained using the Mann Whitney test. For the SSI and the new PSI, higher scores indicate
better performance.
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Figure 1. Subject performs the activities: (a) normal walking, (b) walking with obstacles, (c) free-falling,
and (d) fall-like motions. The older adults did not perform the free-falling task.

2.3. Ensemble Empirical Mode Decomposition

Ensemble empirical mode decomposition (EEMD) was introduced to overcome the mode mixing
phenomenon in empirical mode decomposition (EMD). Given signal intermittence, mode mixing
situations typically occur during the EMD decomposition process. Mode mixing occurs when a single
intrinsic mode function (IMF) either consists of oscillations with different frequencies or a signal with
a similar frequency is in different IMF components. Mode mixing can change the physical meaning of
each IMF component by replacing the part of the IMF and driving it to the next IMF, thereby falsely
suggesting that different physical processes may exist in an IMF [11].

White noises of the same length were added to the original signal to form a mixture signal, xi(t),
and subsequently the EMD decomposition was performed to obtain n layers of IMFs (IMF11, IMF12,
. . . , IMF1n). We assumed that the process was conducted for m times, and this is defined as the
number of ensemble members. The original signals were subsequently added by m white noises
of the same energies to form m mixture signals. In the current study, white noises of an amplitude
that was about 0.2 standard deviation of the signals were added [11]. Each mixture signal, xi(t), was
decomposed into n layers of IMF components. Thus, there were m x n IMF components, where m
denotes the number of ensemble members and n denotes the nth layer of the IMF. The decomposed
results were averaged and subsequently each layer of the IMF was calculated as follows:

IMFn =
1
m

m

∑
i=1

IMFn (1)

The purpose of adding the white noise of the finite amplitude to the signal was to populate the
whole time-frequency space uniformly with the constituting components of different scales. The white
noise cancels each other out in the time-space ensemble mean. Thus, only the true and physically
meaningful signal can survive in the EEMD [11].
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2.4. Wavelet Transform

Wavelet transform decomposes a signal into a set of basic functions by scaling and shifting the
mother wavelet function. These basic functions are called wavelets because they wave up and down
across the axis, and integrate to zero. Wavelets are highly effective in analyzing non-stationary signals,
such as for noise reduction [12]. The discrete wavelet transform (DWT) transforms a discrete time
signal to a discrete wavelet representation. It converts an input series, x0, x1, . . . xm, into one high-pass
wavelet coefficient series and one low-pass coefficient series.

Wavelet packet decomposition (WPD) is a continuous wavelet transform. The difference between
DWT and WPD is how the scale parameter is discretized. The WPD discretizes the scale more finely
than DWT. Thus, it gives a better frequency resolution for the decomposed signal [12]. However, the
WPD is less stable for signal reconstruction. Whereas the DWT is able to provide perfect reconstruction
of the signal upon inversion, and its coefficients can be used to reproduce an exact signal within
numerical precision. In the current study, the number of decomposition levels in DWT was selected to
be 6, whereas the daubechies4 (db4) mother wavelet function with 4 levels of decomposition was used
for WPD [12].

2.5. Multiscale Entropy

Following its introduction by Costa et al. [14], multiscale entropy (MSE) was successfully
applied to quantify the complexity of signals in different research fields, such as biomedical [15–19],
electroseismic [20], and the vibration of rotary machines [21].

MSE proposed a method to measure complexity by constructing a consecutive coarse-grained
time series by averaging a successively increasing number of data points in non-overlapping windows
as follows:

y(τ)
j =

1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N
τ

(2)

where τ denotes the scale factor, and the length of each coarse-grained time series is N/τ. For scale 1,
the time series,

{
y(1)

}
= {x1, x2, x3, . . . xN}, simply corresponds to the original time series. The length

of each coarse-grained time series is equal to the length of the original time series divided by the scale
factor, τ. Subsequently, sample entropy (SampEn) is calculated for each of the coarse-grained time
series plotted as a function of the scale factor as follows:

SampEn(m, r, N) = −ln(A/B) (3)

where A denotes the total number of forward matches of a length, m + 1, and B denotes the total
number of template matches of a length, m [22].

The complexity index (CI) is obtained from the total value of the SampEn as a function of the
scale factor as follows:

CI =
N

∑
i=1

SampEn(i) (4)

2.6. Step Stability Index

The step stability index (SSI) was proposed to distinguish the walking patterns of fallers from
non-fallers [10]. The magnitude of the acceleration signals is decomposed using EEMD with 8-modes
of IMFs. Subsequently, the standard deviations of the IMF1 to IMF4 are used to develop the index
as follows:

SSI =
SD IMF4

SD IMF1 + SD IMF2 + SD IMF3
(5)

where SSI denotes the step stability index, and SD denotes the standard deviation.
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The non-fallers exhibited a higher SSI value that indicated a more stable gait pattern because the
energy (as measured by the standard deviation) of the component at the step frequency exceeds the
energy of higher frequency components that are potentially related to subtle unsteadiness of stepping.

The SSI is used to quantify gait dynamics and discriminates between subjects with and without a
history of falls. However, it is potentially not sufficiently sensitive to distinguish the postural stability of
healthy subjects. The difference of the postural stability in non-fallers is potentially not as evident. Thus,
the SSI may not be adequate to measure the likelihood of falls or to provide a better understanding as to
humans’ maintenance of stability given that it distinguishes non-fallers from fallers without the ability to
understand how postural stability corresponds to the movement of non-fallers.

2.7. Dynamic Stability

Dynamic stability parameters include the ratio of root mean square (RMS), step and stride regularity,
and sample entropy (SampEn) [6]. The ratio of RMS was used to capture the variability as obtained from
the ratio of each axis RMS relative to the resultant vector RMS. The step and stride regularity were used
to capture the consistency of the gait. Step regularity was obtained from the primary dominant unbiased
autocorrelation coefficient while stride regularity is the second dominant coefficient [23]. The SampEn
was used to capture the periodicity of the gait with a higher value indicating less periodicity [22].

2.8. Machine Learning

Machine learning can be used to evaluate the accuracy of measurement methods. This current
study used Fisher’s linear discriminant analysis (LDA), artificial neural network (ANN), support vector
machines (SVM), and random forest (RF). The LDA is the oldest classifier, and it is used to find a linear
combination, which characterizes two or more classes of objects or events. The ANN has been used
extensively in classification problems, and it can be understood as a parallel-distributed processing system.
This study used multilayer perception (MLP) as it is the most used and powerful neural network [24]. The
SVM is a discriminative classifier that can efficiently perform both linear and non-linear classification. The
last classifier used in the current study is RF, which is one of the decision-tree’s classifiers that improves the
classification performance of a single-tree classifier by combining the bootstrap aggregating method and
randomization in the selection of segmenting data nodes in the construction of a decision tree [25]. The
majority vote of the different decisions provided by each tree constituting the forest is used to assign the
new observation vector to a class. In the comparative studies, RF outperformed the other classifiers [26].
However, RF requires large amounts of labeled data to achieve high performance.

3. Results

3.1. Evaluation Using Dynamic Stability

Dynamic stability can distinguish the different stability patterns due to ageing and illness.
However, the approach cannot detect the difference between normal walking and walking with
obstacles in healthy subjects, as shown in Table 2. For young adults, the significant differences were
observed in fall-like motions when compared to normal walking and walking with obstacles for the
ratio of RMS, step regularity, and stride regularity in all axes for the ankle data. Conversely, for the
knee data, significant differences were observed in fall-like motions when compared to normal walking
and walking with obstacles for the ratio of RMS, step regularity in the vertical (VT) and anteroposterior
(AP) axes, and stride regularity in the vertical axis. For older adults, significant differences were
observed in fall-like motions when compared to normal walking and walking with obstacles for the
ratio of RMS in the VT and AP axes, step and stride regularity in all axes, and sample entropy in the
VT and mediolateral (ML) axes for the ankle data. Significant differences of the knee data for older
adults were only observed in fall-like motions when compared to normal walking and walking with
obstacles for the ratio of RMS in the VT and AP axes and sample entropy in the VT axis.
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Table 2. Activity differences of the dynamic stability in young and older adults. Data are reported as mean (SD). (a) Activity differences of the dynamic stability in
young adults. (b) Activity differences of the dynamic stability in older adults.

(a)

Measures Axis NW WO FLM FF
p-Value

NW-WO NW-FLM WO-FLM

Ankle Data

Ratio of RMS
VT 0.50 (0.05) 0.48 (0.03) 0.64 (0.06) 0.64 (0.06) 0.16 <0.001 <0.001
ML 0.64 (0.03) 0.62 (0.05) 0.57 (0.13) 0.57 (0.13) 0.51 0.03 0.03
AP 0.59 (0.05) 0.62 (0.03) 0.48 (0.05) 0.48 (0.05) 0.19 0.04 0.009

Step regularity
VT 0.61 (0.09) 0.58 (0.08) 0.11 (0.06) 0.46 (0.23) 0.53 <0.001 <0.001
ML 0.61 (0.07) 0.53 (0.09) 0.16 (0.09) 0.48 (0.11) 0.04 <0.001 <0.001
AP 0.54 (0.10) 0.51 (0.09) 0.20 (0.11) 0.36 (0.09) 0.32 <0.001 <0.001

Stride regularity
VT 0.34 (0.11) 0.27 (0.08) 0.06 (0.05) 0.29 (0.16) 0.18 <0.001 <0.001
ML 0.44 (0.09) 0.39 (0.07) 0.06 (0.04) 0.27 (0.13) 0.07 <0.001 <0.001
AP 0.39 (0.10) 0.35 (0.08) 0.05 (0.03) 0.17 (0.10) 0.10 <0.001 <0.001

Sample entropy
VT 0.15 (0.11) 0.10 (0.03) 0.13 (0.06) 0.04 (0.01) 0.19 0.77 0.16
ML 0.15 (0.13) 0.10 (0.03) 0.13 (0.07) 0.05 (0.03) 0.26 0.76 0.42
AP 0.18 (0.27) 0.10 (0.03) 0.13 (0.06) 0.06 (0.03) 0.33 0.62 0.14

Knee Data

Ratio of RMS
VT 0.43 (0.06) 0.45 (0.05) 0.69 (0.04) 0.55 (0.08) 0.20 <0.001 <0.001
ML 0.66 (0.04) 0.64 (0.03) 0.56 (0.03) 0.65 (0.08) 0.25 <0.001 <0.001
AP 0.61 (0.04) 0.46 (0.05) 0.51 (0.08) 0.52 (0.04) 0.45 <0.001 <0.001

Step regularity
VT 0.34 (0.14) 0.36 (0.14) 0.22 (0.12) 0.60 (0.12) 0.33 0.07 0.02
ML 0.57 (0.11) 0.55 (0.10) 0.34 (0.05) 0.52 (0.14) 0.60 <0.001 <0.001
AP 0.51 (0.10) 0.54 (0.09) 0.33 (0.10) 0.47 (0.15) 0.16 <0.001 <0.001

Stride regularity
VT 0.09 (0.06) 0.13 (0.07) 0.08 (0.04) 0.31 (0.14) 0.05 0.64 0.09
ML 0.29 (0.11) 0.29 (0.12) 0.11 (0.05) 0.25 (0.13) 0.93 <0.001 <0.001
AP 0.24 (0.09) 0.27 (0.08) 0.14 (0.08) 0.24 (0.11) 0.11 0.01 0.005

Sample entropy
VT 0.09 (0.05) 0.20 (0.11) 0.11 (0.05) 0.04 (0.03) 0.02 0.30 0.02
ML 0.07 (0.03) 0.11 (0.05) 0.12 (0.04) 0.06 (0.04) 0.01 0.003 0.58
AP 0.06 (0.02) 0.14 (0.08) 0.11 (0.04) 0.56 (0.03) 0.02 0.02 0.33
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(b)

Measures Axis NW WO FLM
p-Value

NW-WO NW-FLM WO-FLM

Ankle Data

Ratio of RMS
VT 0.52 (0.05) 0.48 (0.05) 0.60 (0.06) 0.08 0.002 <0.001
ML 0.56 (0.03) 0.58 (0.05) 0.56 (0.06) 0.19 0.39 0.19
AP 0.64 (0.03) 0.65 (0.04) 0.56 (0.09) 0.30 0.007 0.005

Step regularity
VT 0.48 (0.21) 0.46 (0.22) 0.28 (0.15) 0.41 0.012 0.02
ML 0.55 (0.14) 0.54 (0.16) 0.41 (0.09) 0.46 0.008 0.02
AP 0.55 (0.11) 0.53 (0.16) 0.39 (0.15) 0.40 0.01 0.03

Stride regularity
VT 0.21 (0.14) 0.22 (0.15) 0.12 (0.08) 0.46 0.04 0.04
ML 0.35 (0.17) 0.35 (0.17) 0.15 (0.11) 0.49 0.003 0.003
AP 0.36 (0.15) 0.35 (0.14) 0.14 (0.14) 0.47 0.002 0.001

Sample entropy
VT 0.09 (0.04) 0.11 (0.04) 0.06 (0.03) 0.05 0.03 <0.001
ML 0.08 (0.04) 0.10 (0.04) 0.06 (0.03) 0.06 0.10 0.001
AP 0.11 (0.09) 0.12 (0.06) 0.12 (0.17) 0.38 0.48 0.45

Knee Data

Ratio of RMS
VT 0.47 (0.06) 0.47 (0.10) 0.60 (0.08) 0.47 <0.001 0.001
ML 0.58 (0.03) 0.61 (0.04) 0.56 (0.06) 0.08 0.12 0.02
AP 0.66 (0.03) 0.63 (0.07) 0.56 (0.06) 0.16 <0.001 0.01

Step regularity
VT 0.38 (0.18) 0.43 (0.22) 0.34 (0.18) 0.32 0.31 0.18
ML 0.56 (0.12) 0.61 (0.10) 0.52 (0.12) 0.13 0.25 0.04
AP 0.55 (0.14) 0.59 (0.11) 0.53 (0.11) 0.27 0.36 0.14

Stride regularity
VT 0.14 (0.10) 0.21 (0.21) 0.15 (0.12) 0.16 0.38 0.22
ML 0.30 (0.09) 0.36 (0.12) 0.21 (0.18) 0.14 0.08 0.02
AP 0.29 (0.12) 0.31 (0.09) 0.30 (0.19) 0.37 0.48 0.42

Sample entropy
VT 0.13 (0.05) 0.14 (0.04) 0.08 (0.04) 0.28 0.02 0.001
ML 0.09 (0.05) 0.08 (0.02) 0.07 (0.05) 0.24 0.24 0.40
AP 0.09 (0.05) 0.07 (0.02) 0.08 (0.06) 0.25 0.41 0.37

VT: vertical (y-axis), ML: mediolateral (x-axis), AP: anteroposterior (z-axis), NW: normal walking, WO: walking with obstacles, FLM: fall-like motions, FF: free-falling.
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As shown in Table 2, the parameters of dynamic stability evidently did not distinguish the
difference between normal walking and walking with obstacles. This was potentially caused by
the slight difference in the stability pattern between normal walking and walking with obstacles in
healthy subjects.

3.2. Development of Postural Stability Index

Each resultant of the x-, y-, and z-axes of the acceleration signal was decomposed using the
8-modes EEMD. This study used the resultant as opposed to a single axis to avoid information
loss. Body sway indicates poor postural stability-ability and can occur in any axis of the signal.
The complexity index of each IMF was calculated and subsequently normalized by dividing the
complexity index of each IMF by the total complexity index of all IMFs to minimize the influence of
individual differences.

The postural stability index (PSI) is defined as follows:

PSI =
CI o f IMF3

CI o f IMF1 + CI o f IMF2 + . . . + CI o f IMF6
(6)

where CI denotes the complexity index obtained from the MSE.
The IMF3 was selected as the dominant IMF considering its frequency is closely related to the

frequency of walking. Based on past studies, the range of walking frequency was 1.4–2.5 Hz while
less stable movement exhibited a lower frequency [27,28]. Table 3 shows the frequency of each IMF
component of the walking data. The frequency of IMFs was obtained from the instantaneous frequency
of the Hilbert-Huang transform.

Table 3. The average frequencies of intrinsic mode functions (IMFs) of walking data decomposed by
ensemble empirical mode decomposition (EEMD).

IMF Average Frequency

1 6.67 Hz
2 2.49 Hz
3 1.48 Hz
4 0.82 Hz
5 0.36 Hz
6 0.22 Hz

The results of the Pearson correlation showed that the IMF3 was correlated with the gait variability
parameters of dynamic stability, as shown in Table 4. Step and stride variability in all axes were
selected to represent gait variability. As shown in Table 4, based on the ankle data, IMF3 indicates
more correlations than the other IMFs. However, the correlations between IMF3 and dynamic stability
parameters were mostly negative. This implies that the IMF3 decreased with increases in gait variability.
Conversely, based on the knee data, IMF1 to IMF3 were positively correlated in most dynamic stability
parameters except for step and stride regularity in the vertical and anteroposterior axes. Although
all three IMFs were correlated with the gait variability parameters, the correlation between dynamic
stability and IMF3 exceeded those of the other IMFs.
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Table 4. Correlations between the step stability index (SSI), the postural stability index (PSI), the intrinsic mode functions (IMFs), and dynamic stability.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

r (p-value) r (p-value) r (p-value) r (p-value) r (p-value) r (p-value)

Ankle
Step Reg-ML All Subjects NS 0.28 (<0.001) 0.29 (<0.001) 0.2 (<0.001) 0.23 (<0.001) 0.28 (<0.001)

Young Adults NS −0.26 (<0.001) −0.21 (<0.001) −0.24 (<0.001) NS NS
Older Adults NS −0.21 (<0.001) −0.42 (<0.001) NS −0.24 (<0.001) NS

Step Reg-VT All Subjects NS 0.21 (<0.001) NS NS NS NS
Young Adults NS NS NS −0.23 (<0.001) NS −0.22 (<0.001)
Older Adults NS −0.29 (<0.001) −0.25 (<0.001) NS NS NS

Step Reg-AP All Subjects NS NS 0.22 (<0.001) NS NS NS
Young Adults NS NS NS NS NS −0.22 (<0.001)
Older Adults NS NS −0.37 (<0.001) NS −0.28 (<0.001) NS

Stride Reg-ML All Subjects NS NS 0.27 (<0.001) NS NS NS
Young Adults NS NS −0.22 (<0.001) NS NS NS
Older Adults −0.20 (<0.001) NS −0.46 (<0.001) NS −0.28 (<0.001) NS

Stride Reg-VT All Subjects NS 0.22 (<0.001) 0.24 (<0.001) NS NS NS
Young Adults NS −0.21 (<0.001) −0.24 (<0.001) −0.27 (<0.001) NS −0.24 (<0.001)
Older Adults −0.36 (<0.001) −0.28 (<0.001) NS NS NS

Stride Reg-AP All Subjects NS NS 0.25 (<0.001) NS NS NS
Young Adults NS NS NS −0.21 (<0.001) NS −0.22 (<0.001)
Older Adults NS NS −0.41 (<0.001) NS −0.34 (<0.001) NS

Knee
Step Reg-ML All Subjects 0.45 (<0.001) 0.36 (<0.001) 0.48 (<0.001) NS NS NS

Young Adults 0.40 (<0.001) 0.45 (<0.001) 0.41 (<0.001) 0.28 (<0.001) 0.34 (<0.001) 0.33 (<0.001)
Older Adults 0.39 (<0.001) 0.24 (<0.001) 0.57 (<0.001) NS NS −0.25 (<0.001)

Step Reg-VT All Subjects 0.24 (<0.001) 0.26 (<0.001) 0.26 (<0.001) NS NS NS
Young Adults NS 0.33 (<0.001) NS NS 0.26 (<0.001) NS
Older Adults 0.20 (<0.001) 0.21 (<0.001) 0.49 (<0.001) NS NS NS

Step Reg-AP All Subjects 0.38 (<0.001) 0.30 (<0.001) 0.42 (<0.001) NS NS NS
Young Adults NS 0.35 (<0.001) 0.44 (<0.001) 0.39 (<0.001) 0.27 (<0.001) 0.20 (<0.001)
Older Adults 0.43 (<0.001) 0.26 (<0.001) 0.29 (<0.001) NS NS −0.46 (<0.001)

Stride Reg-ML All Subjects 0.36 (<0.001) 0.28 (<0.001) 0.35 (<0.001) NS NS NS
Young Adults 0.39 (<0.001) 0.37 (<0.001) 0.29 (<0.001) 0.24 (<0.001) 0.29 (<0.001) 0.25 (<0.001)
Older Adults 0.23 (<0.001) 0.20 (<0.001) 0.43 (<0.001) NS NS NS

Stride Reg-VT All Subjects NS NS NS NS NS NS
Young Adults NS NS NS NS NS −0.20 (<0.001)
Older Adults NS NS 0.32 (<0.001) NS 0.36 (<0.001) NS

Stride Reg-AP All Subjects 0.27 (<0.001) NS 0.25 (<0.001) NS NS NS
Young Adults NS 0.26 0.27 0.25 NS NS
Older Adults 0.26 (<0.001) NS NS NS NS −0.23 (<0.001)

Reg = regularity, NS = not significant.
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4. Discussion

The differences of the SSI and PSI values for both young and older adults are shown in Table 5.
The Mann Whitney test was used to compare the differences between the two groups. The significant
difference between young and older adults were only observed in normal walking and walking with
obstacles with the sensor location corresponding to the ankle. The results between the groups were
similar, and this is explained by the fact that both groups were healthy. Unintentional falls were absent
during the experiment. The Wilcoxon test was used, and significant differences were observed in all
activities for the PSI (p = 0.005). Conversely, there was no significant difference for the SSI (p > 0.05).

Table 5. Group differences of the SSI and the new PSI measure. Data are reported as mean (SD).

Young Adults Older Adults p-Value

Ankle Data
SSI Normal walking 0.13 (0.02) 0.12 (0.03) 0.50
SSI Walking + obstacles 0.13 (0.03) 0.12 (0.02) 0.33
SSI Fall-like motions 0.11 (0.02) 0.11 (0.02) 0.50
SSI Free-fall 0.29 (0.06) N/A N/A
PSI Normal walking 0.33 (0.04) 0.25 (0.04) <0.001
PSI Walking + obstacles 0.27 (0.04) 0.19 (0.03) 0.001
PSI Fall-like motions 0.16 (0.03) 0.14 (0.02) 0.16
PSI Free-fall 0.12 (0.03) N/A N/A
Knee Data
SSI Normal walking 0.09 (0.01) 0.10 (0.02) 0.14
SSI Walking + obstacles 0.09 (0.01) 0.10 (0.02) 0.13
SSI Fall-like motions 0.12 (0.02) 0.11 (0.03) 0.60
SSI Free-fall 0.28 (0.04) N/A N/A
PSI Normal walking 0.28 (0.06) 0.27 (0.03) 0.60
PSI Walking + obstacles 0.21 (0.06) 0.19 (0.02) 0.41
PSI Fall-like motions 0.14 (0.04) 0.14 (0.02) 0.51
PSI Free-fall 0.10 (0.04) N/A N/A

The Wilcoxon test for the SSI on the ankle and knee did not indicate a significant difference
between different activities (p > 0.05). Conversely, the dynamic stability did not distinguish between
normal walking and walking with obstacles (Table 2). These findings are in agreement with the
comparisons of the postural stability indexes shown in Table 6.

The aim of this study was to develop a measure to quantify walking stability in healthy subjects.
The dynamic stability and the SSI were used as comparisons to evaluate the sensitivity of the PSI.
The differences between normal walking and walking with obstacles in healthy subjects were not as
evident as the differences between fallers and non-fallers. However, the PSI and step regularity in the
ML axis distinguished between normal walking and walking with obstacles.

As shown in Table 6, the PSI using EEMD outperformed the other methods using wavelets
decomposition. Step regularity in the ML axis was selected to represent the dynamic stability approach
because it is the only parameter that can differentiate between normal walking, walking with obstacles,
and fall-like motions (Table 2a). There was no decomposition process for dynamic stability since it
used the original signal data.

To determine the location of the sensor that is more sensitive, the results of the PSI for both groups
of subjects were grouped based on the ankle and knee. The comparison indicated that the knee group
performed better than the ankle group. Thus, the knee corresponds to a better sensor location than the
ankle with an accuracy of 82.22% based on the ANN.
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Table 6. Accuracy for activity recognition on the ankle and knee.

LDA ANN SVM RF

DS SSI PSI DS SSI PSI DS SSI PSI DS SSI PSI

Ensemble Empirical Mode Decomposition (EEMD)
Young—Ankle 86.67 66.67 86.67 82.22 60.00 88.89 82.22 57.78 82.22 73.33 53.33 82.22
Young—Knee 68.89 64.44 68.89 68.89 73.33 72.22 68.89 64.44 64.44 74.44 71.11 68.89
Elder—Ankle 66.67 51.11 77.78 60.00 51.11 80.00 60.00 42.22 71.11 48.89 46.67 75.56
Elder—Knee 57.78 53.33 93.33 64.44 53.33 93.33 60.00 53.33 71.11 53.33 42.22 93.33
All—Ankle 71.11 54.44 74.44 71.11 53.33 80.00 68.89 57.78 74.44 62.22 51.11 74.44
All—Knee 63.33 60.00 82.22 63.33 60.00 82.22 58.89 62.22 74.44 61.11 50.00 81.11

Discrete Wavelet Transform (DWT)
Young—Ankle 86.67 80.00 68.89 82.22 80.00 70.00 82.22 71.11 66.67 73.33 75.56 57.78
Young—Knee 68.89 55.56 44.44 68.89 60.00 55.56 68.89 55.56 48.89 74.44 55.56 66.67
Elder—Ankle 66.67 71.11 75.56 60.00 71.11 68.89 60.00 55.56 68.89 48.89 55.56 71.11
Elder—Knee 57.78 62.22 71.11 64.44 57.78 68.89 60.00 51.11 68.89 53.33 44.44 64.44
All—Ankle 71.11 76.67 71.11 71.11 75.56 71.11 68.89 66.67 71.11 62.22 66.67 63.33
All—Knee 63.33 57.78 51.11 63.33 57.78 56.67 58.89 57.78 51.11 61.11 48.89 63.33

Wavelet Packet Decomposition (WPD)
Young—Ankle 86.67 70.00 56.67 82.22 73.33 61.11 82.22 71.11 60.00 73.33 64.44 60.00
Young—Knee 68.89 46.67 46.67 68.89 48.89 53.33 68.89 60.00 48.89 74.44 51.11 51.11
Elder—Ankle 66.67 60.00 50.00 60.00 55.56 51.11 60.00 60.00 46.67 48.89 51.11 60.00
Elder—Knee 57.78 53.33 51.11 64.44 57.78 53.33 60.00 57.78 55.56 53.33 53.33 55.56
All—Ankle 71.11 63.33 63.33 71.11 61.11 63.33 68.89 63.33 55.56 62.22 57.78 65.56
All—Knee 63.33 57.78 44.44 63.33 58.89 48.89 58.89 55.56 50.00 61.11 56.67 52.22

LDA = Fisher’s linear discriminant analysis, ANN = artificial neural network, SVM = support vector machines, RF = random forest, DS = dynamic stability, All = all subjects.
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The original SSI (using EEMD) performed the worst in both age groups. The poor performance
of the SSI happened because the SSI only considers the vertical axis data. Conversely, the PSI and
dynamic stability consider the data in all axes since instability can occur in any axis. However, other
than the ankle data of young adults, the accuracies for dynamic stability were generally low. The
poor performance of the SSI and dynamic stability for older adults potentially occurred because those
methods could not distinguish between the different activities of healthy subjects. Thus, the activities
were not classified correctly.

Interestingly, the performance of the PSI dropped when using DWT and WPD as the
decomposition method. Conversely, the performance of the SSI increased although it was not as good
as the performance of the PSI with EEMD. Other than that, the performance of the ankle improved
while the performance of the knee decreased. The poor performance of wavelet decomposition
compared to EEMD might be because of the short data records (60 s). Other than that, EEMD was able
to estimate the subtle changes that were obtained via the first temporal derivative of the phase angle
time series, scaled by the sampling rate. The decomposition by wavelet was not optimal because of
frequency smoothing and it assumed frequency stationarity during the time span of the wavelet. The
results in the current study are different from a previous study evaluating the performance of EMD
and wavelets [12], because the EMD in the previous study could not determine the number of IMFs in
the signal and there was mode mixing issues in the EMD.

In contrast to the previous study [12], the decompositions by WPD resulted in the lowest accuracy
compared to EEMD and DWT. The DWT performed better than WPD in the current study, and this
may be a result of differences in the sampling frequency; 30 Hz in this study and 256 Hz in the previous
study [12]. Further, the nature of gait and brain signals are different. Another study by Barralon et
al. [29] showed that decomposition using a discrete wavelet was more efficient than a continuous
wavelet for gait signals with a 20 Hz sampling rate.

Walking Stability Determination

To better quantify the different stability states, the PSI values of the normal walking, walking with
obstacles, and fall-like motions were evaluated. The PSI of the normal walking was used to determine
the postural stability limit of each subject with the assumption that normal walking was at least 80% of
the upper limit. Subsequently, the scales were developed by normalizing each PSI of the less stable
movement to the upper limit value. There were small differences between young and older adults.
This indicated that the MSE can eliminate the range variations between young and older adults. The
normalization was calculated individually, and thus the similarity in the ranges was not equal to the
same index values for all subject groups. The values of the MSE in young subjects were generally
higher than those in older adults although the percentage of each movement when compared to the
upper limit of postural stability for both young and older groups, were significantly similar. Therefore,
the stability scales for both young and older adults can be unified as follows.

80–100%: Stable.
70–79%: Fairly stable, requires minor attention.
45–69%: Unstable, requires high attention.
<45%: Danger, may cause fall.
To determine the walking stability of the subjects, the free-walking data were evaluated using the

stability index. The evaluation was divided into two parts, namely general stability determination
and segmented stability state determination. In the general stability determination, the stability was
determined from the data across the entire 60 s period. Conversely, in the segmented determination,
stability was evaluated every 10 s.

Twenty subjects (10 young adults, 10 older adults) were asked to perform a free-walking task to
determine the stability of their walk in normal circumstances. The subjects were instructed to move
as they liked without any intervention. As shown in Table 6, there was one unstable movement for
the ankle and five unstable movements for the knee. During the experiment, the young adults were
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in a fit condition and did not exhibit any problems during the free-walking performance, and they
tended to walk normally in almost a straight line. However, the older adults tended to move around
the circle. However, only subject E3 admitted feeling dizzy while performing the free-walking task.
The results for the subject, E3, with a sensor on the knee, confirmed the real condition of the subject
during the experiment.

With respect to the subject, E7, complaints related to the free-walking task were absent. However,
this subject walked slower when compared to that in the normal walking and walking with obstacles
tasks. This subject also paused several times during his free-walking task. This potentially occurred
because the instruction involved walking freely as per the subjects’ wishes, and thus the subject, E7,
was potentially not sufficiently motivated to perform his best in the task.

Other unstable movements were detected on the knee for subjects, Y3, Y5, E1, and E3. With
respect to the situations during the experiment, the results did not indicate those subjects performed
poorly in the free-walking task. With respect to Table 6, the knee data performed better than the
ankle data. Thus, the knee is a more reliable sensor location since the accuracies on the knee exceeded
those on the ankle. This is potentially the reason why the stability determination of the free-walking
task indicated that more unstable movements are detected on knee. The acceleration values varied,
although the same type of sensor was used to simultaneously detect similar movements on a subject.
The placement of the sensor on the body of the subject significantly affected the performance of the
accelerometer. The placement on the ankle was potentially less sensitive than that on the knee.

Although the stability of a movement can be considered as stable in general, it is possible that
the postural stability quality of the movement is not the same all the time. Less stable movement can
occur in a particular time interval. To evaluate the quality of the movement, the free-walking data of
the subjects, Y3, Y5, E1, E3, and E7, were further analyzed. The sensor location on the knee was more
accurate, and thus only the knee data were analyzed to determine the stability states. Thus, 60 s of
walking data was divided into six segments, and postural stability was evaluated every 10 s, as shown
in Table 7.

Table 7. General walking stability determination.

Subject
Upper Limit Free Walking Normalization Category

Ankle Knee Ankle Knee Ankle Knee Ankle Knee

Y1 0.44 0.33 0.39 0.28 88.46% 84.19% S S
Y2 0.33 0.39 0.25 0.30 76.39% 77.44% F F
Y3 0.35 0.49 0.26 0.25 73.76% 51.41% F U
Y4 0.41 0.40 0.34 0.35 83.16% 87.98% S S
Y5 0.46 0.35 0.34 0.24 73.50% 67.00% F U
Y6 0.40 0.27 0.35 0.23 88.50% 85.11% S S
Y7 0.45 0.28 0.35 0.24 78.66% 85.00% F S
Y8 0.39 0.38 0.31 0.32 80.78% 83.99% S S
Y9 0.44 0.22 0.35 0.21 79.05% 93.97% F S
Y10 0.44 0.32 0.37 0.26 84.07% 81.90% S S
E1 0.36 0.32 0.31 0.21 85.92% 65.40% S U
E2 0.35 0.30 0.29 0.27 82.42% 89.88% S S
E3 0.24 0.35 0.17 0.18 70.93% 51.53% F U
E4 0.28 0.43 0.24 0.34 84.16% 80.47% S S
E5 0.27 0.33 0.24 0.29 90.19% 89.20% S S
E6 0.26 0.37 0.23 0.29 88.71% 76.25% S F
E7 0.38 0.31 0.16 0.12 41.20% 39.34% D D
E8 0.29 0.30 0.25 0.25 85.35% 82.50% S S
E9 0.32 0.29 0.26 0.22 79.38% 77.60% F F
E10 0.32 0.33 0.28 0.27 87.47% 83.05% S S

Category = stability category, S = stable, F = fairly stable, U = unstable, D = danger, Y = young adults, E = older adults.
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As shown in Table 8, changes occurred in the postural stability within 60 s of walking for all
subjects. For example, the general stability state for the subject, Y3, was unstable. However, based on
the segmented stability states, the movement was not always unstable. The first 10 s was stable and,
subsequently, the stability state dropped to one in the dangerous category. Fortunately, the stability
state improved to unstable then alternated back and forth between the danger and unstable category.
The segmented stability state indicated that the subject, Y3, evidently attempted to maintain stability
to avoid falling.

Table 8. Segmented walking stability determination.

Time Interval
Y3 Y5 E1 E3 E7

Norm Cat Norm Cat Norm Cat Norm Cat Norm Cat

0–10s 84.92% S 94.64% S 85.21% S 12.00% D 55.50% U
10–20 s 36.78% D 56.15% U 83.43% S 44.00% D 44.22% D
20–30 s 46.30% U 90.36% S 85.90% S 37.35% D 54.63% U
30–40 s 36.08% D 71.90% F 36.28% D 80.34% S 11.25% D
40–50 s 66.52% U 70.51% F 78.99% F 33.22% D 13.77% D
50–60 s 42.01% D 44.28% D 46.21% U 68.95% U 23.84% D

Norm = normalization, Cat = stability category, S = stable, F = fairly stable, U = unstable, D = danger, Y3 = young
subject#3, Y5 = young subject#5, E1 = older adult#1, E3 = older adult#3, E7 = older adult#7.

The PSI was able to evaluate the postural stability states of movement. However, given the
individual differences in human movement, it was only relevant to individually evaluate the movement.
The approach represented the characteristics of the stability of a particular subject. However, it was
not possible to use the PSI to immediately analyze the movement. Stable state data are required to
categorize the movement stability of the subject in question.

5. Conclusions

Quantification of human stability is required to understand the mechanism underlying balance
control. The contribution of this study involves providing a novel measure of the postural stability
index (PSI) to distinguish between different postural stability states in healthy individuals. The PSI
discriminated between normal walking and walking with obstacles in healthy subjects while SSI and
dynamic stability did not. A previous study indicated that the SSI differentiates non-fallers from fallers.
However, the SSI did not capture the differences between two walking tasks in healthy subjects. This
potentially occurred because the differences were excessively small, and the SSI algorithm only used
vertical acceleration data in the evaluation. Conversely, the PSI used the resultant of the three-axes
acceleration data by assuming that postural sway can occur in any axis.

The present study involved several limitations as follows: (1) The present study used normal
walking data to determine the upper postural stability limit. Therefore, the PSI cannot be used
to quantify stability without existing normal walking data; (2) the present study used six IMFs to
develop the PSI, and thus future studies are required to examine the applicability of the PSI for other
decompositions with a different number of IMFs; (3) the present study used wearable accelerometers,
and thus future studies are necessary to investigate the effect of the sensitivity of the accelerometers on
the PSI; and (4) with respect to older adults who did not perform free-falls due to safety concerns, a past
study compared the intentional and unintentional falls and indicated that the difference between the
fall-like motions and falling only corresponds to the inclination angles [30]. Therefore, if the evaluation
does not include such angles, the fall-like motions can be used to represent the falls in general.

In conclusion, the results of the present study suggest that the EEMD and MSE algorithm can
be utilized to quantify postural stability in healthy subjects. The PSI method adequately measures
different postural stability states in healthy subjects.
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