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Abstract: The principle of maximum entropy (POME) has been used for a variety of applications in
hydrology, however it has not been used in confidence interval estimation. Therefore, the POME was
employed for confidence interval estimation for precipitation quantiles in this study. The gamma,
Pearson type 3 (P3), and extreme value type 1 (EV1) distributions were used to fit the observation
series. The asymptotic variances and confidence intervals of gamma, P3, and EV1 quantiles were
then calculated based on POME. Monte Carlo simulation experiments were performed to evaluate
the performance of the POME method and to compare with widely used methods of moments
(MOM) and the maximum likelihood (ML) method. Finally, the confidence intervals T-year design
precipitations were calculated using the POME for the three distributions and compared with those of
MOM and ML. Results show that the POME is superior to MOM and ML in reducing the uncertainty
of quantile estimators.

Keywords: principle of maximum entropy; quantile estimation; confidence interval; Monte Carlo
simulation; precipitation frequency analysis

1. Introduction

One of the objectives of hydrological frequency analysis is to estimate the magnitude of
a hydrologic event with a given return period [1]. Due to limited data records, inappropriate
assumption regarding the parent distribution, and errors associated with parameters estimation,
there are inevitably uncertainties in this estimation [2,3]. Hence, a point estimate of quantile
corresponding to a desired return period is usually not enough because it cannot adequately describe
the reliability of the estimation. Confidence interval is a convenient approach to quantifying the
uncertainty of the estimates and provides more information than just a point estimate or its standard
error [4].

The calculation of confidence interval requires a standard error of quantile estimator, and several
methods have been proposed for determining such standard error. Hoshi and Barges derived
the expressions for calculating the sampling variances and covariances of log-Pearson type 3 (P3)
distribution parameters as well as the sampling variance of T-year flood event using the method
of moments (MOM) [5]. Condie gave the maximum likelihood estimators for the parameters of
a log-Pearson type 3 distribution, derived the expressions for asymptotic standard error of a T-year
event, and concluded that the maximum likelihood (ML) method is markedly superior to MOM in
the estimation of asymptotic standard error of T-year event [6]. Lu and Stedinger derived the simple
formulas for estimating the asymptotic variance of probability weighted moments (PWM) quantile
estimators for generalized extreme value (GEV) distribution when the location and scale parameters
were estimated with a fixed regional shape parameter or all three parameters were estimated [4].
Phien derived the explicit formulas for the variances and covariances of the parameter estimates of
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log-Pearson type 3 distribution when the method of direct and mixed moments was used for parameter
estimation [7]. The confidence intervals of MOM and ML quantile estimators for log-Gumbel, Weibull,
and generalized logistic distribution distributions have also been investigated [8–10].

Shannon defined the concept of entropy as a measure of uncertainty of a random variable or
its probability distribution [11]. Jaynes later formulated the principle of maximum entropy (POME),
which provides a rational approach to choosing the most unbiased probability distribution for
hydrologic frequency analysis [12]. Sonuga developed a minimally biased probability distribution
appropriate for hydrologic frequency analysis in the absence of a large amount of data [13].
Singh developed a procedure for derivation of a number of frequency distributions used in hydrology
using POME [14]. Lu derived the generalized distribution for flood and extreme rainfall frequency
analysis, and she concluded that the entropy-based generalized distributions are superior or
comparable to other traditional distributions [15,16]. POME also provides a way to estimate parameters
of a given distribution from the specified constraints. Singh summarized the entropy method for
parameter estimation for the commonly used distributions and indicated that the entropy method is
reasonable and efficient for parameter estimation [17]. The POME-based parameter estimations for
some other distributions have also been derived [18–20]. In recent years, an integration of entropy
and copula has been developed to construct joint distribution function capable of bivariate flood and
drought analysis as well as streamflow simulation [21–23].

For the estimation of the POME-based variance, Phien provided the formulas for calculating the
approximate variances of the parameter estimators and T-year event for the extreme value type-1
(EV1) distribution and P3 distributions [24,25]. Through applications of the formulas to simulated
data, he concluded that the approximate variance of estimates of the T-year event are of sufficient
accuracy. However, there are no follow-up studies on the POME-based confidence interval estimation
of quantile estimators.

The objective of this study is therefore to apply POME further in the estimation of confidence
intervals of quantile estimators. The Monte Carlo simulation was carried out to evaluate the
performance of POME in the calculation of confidence intervals based on simulated data sets.
Then, the hamma, P3, and EV1 distributions were used to fit the observed annual precipitation
series. The distribution parameters and confidence intervals of annual precipitation quantiles for
different return periods were estimated using POME, MOM, and ML. Finally, the confidence intervals
based on different methods were compared.

2. Confidence Interval Estimation of the Quantile

2.1. Estimation of Quantile

A general form for calculating x̂T of a given distribution can be written in terms of the distribution
moments and the frequency factor KT [26]:

x̂T = µ̂′1 + KT
√

µ̂2 (1)

where µ̂′1 and µ̂2 are the mean and the standard error of the population, respectively, and they equal
the sample moments only when the MOM is used for parameter estimation; KT is the frequency factor
specific to the chosen distribution, which can be derived from the distribution parameters, sample size,
and return period T or cumulative probability of exceedance of the design event. Expressions of KT for
different distributions are commonly given in statistics texts [1].
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2.2. Calculation of Confidence Interval

The standard error and confidence interval are two measures to describe the precision of
a statistical quantity, such as the T-year quantile estimator x̂T . The (1− α) confidence interval for x̂T is
approximated by [27]:

x̂L = x̂T ± u1− α
2
sT (2)

where x̂L is the confidence interval; u1− α
2

is the quantile of the standard normal distribution for
confidence levels equal to 1− α

2 ; x̂T is the design value for the return period T; sT is the standard error
of x̂T , which can be expressed as [27]:

s2
T = var(x̂T) =

(
∂xT
∂θ1

)2
var
(
θ̂1
)
+
(

∂xT
∂θ2

)2
var
(
θ̂2
)
+
(

∂xT
∂θ3

)2
var
(
θ̂3
)

+2 ∂xT
∂θ1

∂xT
∂θ2

cov
(
θ̂1, θ̂2

)
+ 2 ∂xT

∂θ2

∂xT
∂θ3

cov
(
θ̂2, θ̂3

)
+ 2 ∂xT

∂θ1

∂xT
∂θ3

cov
(
θ̂1, θ̂3

) (3)

where θ̂i, i = 1, 2, 3 denotes the estimators of either moments or distribution parameters; var
(
θ̂i
)

is the
variance of θi; cov

(
θ̂i, θ̂j

)
is the covariance of θ̂i and θ̂j; i, j = 1, 2, 3.

In this paper, the MOM, ML, and POME were considered, and the asymptotic variances estimated
by these methods are described below.

2.2.1. Method of Moments (MOM)

The MOM asymptotic variance of x̂T for a three-parameter distribution is given by [27]:

s2
T = µ2

n

{
1 + γ1KT +

K2
T

4 (γ2 − 1) + ∂KT
∂γ1

[
2γ2 − 3γ2

1 − 6 + KT
(
γ3 − 3

2 γ1γ2 − 5
2 γ1
)]

+
(

∂KT
∂γ1

)2(
γ4 − 3γ1γ3 − 6γ2 +

9
4 γ2

1γ2 +
35
4 γ2

1 + 9
)} (4)

where γj, j = 1, 2, 3, 4 are the cumulants.
For a two-parameter distribution, the frequency factor KT does not depend on γ1,

then ∂KT/∂γ1 = 0 in the above equation and the expression simplifies to:

s2
T =

µ2

n

[
1 + γ1KT +

K2
T

4
(γ2 − 1)

]
(5)

2.2.2. Maximum Likelihood (ML) Method

ML is a probability distribution-related method that requires the log-likelihood function of the
probability density function (pdf) of a specific distribution. The ML parameters estimators of the
commonly used distributions in hydrology are available in the literature [1].

The asymptotic variance and covariance terms for the ML parameter estimators are the elements
of the inverse of the information matrix I [28]: var

(
θ̂1
)

cov
(
θ̂1, θ̂2

)
cov
(
θ̂1, θ̂3

)
var
(
θ̂2
)

cov
(
θ̂2, θ̂3

)
var
(
θ̂3
)



=


E
(
− ∂2 log L

∂θ2
1

)
E
(
− ∂2 log L

∂θ1∂θ2

)
E
(
− ∂2 log L

∂θ1∂θ3

)
E
(
− ∂2 log L

∂θ2
2

)
E
(
− ∂2 log L

∂θ2∂θ3

)
E
(
− ∂2 log L

∂θ2
3

)



−1

= I−1

(6)
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Differentiating Equation (1) with parameters θ1, θ2, and θ3, one obtains the derivatives of xT
with respect to θ1, θ2, and θ3. Substituting the derivative terms and the asymptotic variances and
covariances in Equation (6) into Equation (3) yields the asymptotic variance of the ML quantile estimators.
Finally, the confidence interval of quantile estimators can be calculated by using Equation (2).

2.2.3. Principle of Maximum Entropy (POME) Method

POME involves essentially five steps in the estimation of the distribution parameters:
(1) specification of constraints from the given information; (2) derivation of the probability density
function of the maximum entropy distribution; (3) derivation of the relationship between Lagrange
multipliers and constraints; (4) derivation of the relationship between Lagrange multipliers and
distribution parameters; and (5) derivation of the relationship between distribution parameters and
constraints [17,19].

The constraints in POME can be expressed in terms of moments, therefore, the variance and
covariances of the parameters can be obtained from the relationship between the variance and
covariances of the moments and that of the parameter estimates. Let P, Q, and R denote the three
moments, thus one can approximately write the vector of variance and covariances of P, Q, and R of
a three-parameter distribution as [24]:

VM = DVP (7)

where VM and VP are the vectors of variance and covariances of the moments and parameter
estimators, respectively:

VM =



var(P)
var(Q)

var(R)
cov(P, Q)

cov(Q, R)
cov(P, R)


, VP =



var
(
θ̂1
)

var
(
θ̂2
)

var
(
θ̂3
)

cov
(
θ̂1, θ̂2

)
cov
(
θ̂2, θ̂3

)
cov
(
θ̂1, θ̂3

)


(8)

and θ1, θ2, and θ3 are the distribution parameters; D is the matrix with elements dij (1 ≤ i, j ≤ 6),
which are the partial derivatives of the moments with respect to the distribution parameters.
For example:

d11 = (∂P/∂θ1)
2, d12 = (∂P/∂θ2)

2, d13 = (∂P/θ3)
2,

d14 = 2(∂P/∂θ1)(∂P/∂θ2), d15 = (∂P/∂θ2)(∂P/θ3), d16 = 2(∂P/∂θ1)(∂P/∂θ3), . . . . . .
(9)

Consequently, the Vp can be calculated using Equation (10) as long as the elements of D and the
VM have been calculated.

Vp = D−1VM (10)

where D−1 is the inverse matrix of D.
Substituting the elements of Vp and the partial derivatives of xT with respect to distribution

parameters into Equation (3), one can obtain the variances of quantile estimators. The confidence
interval of quantile estimators can then be calculated by using Equation (2).

The variances and covariances of MOM parameter estimates are calculated by using the
relationship between the parameters and the population moments, which is relatively simple
and understandable. However, the calculation of the second and higher order sample moments
introduces sampling errors, which affects the accuracy of the estimation. The ML method is
frequently applied owing to its large sample properties of yielding consistent estimates with minimum
variance. Estimates for small samples have found general acceptance in practice as well [28].
However, this method involves some complicated calculations and approximations, which makes
it inconvenient. The POME requires less artificial assumption due to insufficient data. Though it
is comparable to the ML in parameter estimation, POME has the advantages of simple and fast
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calculation [17]. The calculation POME-based confidence interval also requires some approximations.
Therefore, it is necessary to compare the performance of different methods to choose the most
efficient one.

3. Asymptotic Variances of Quantile Estimators for Different Distributions

Three commonly used distributions—gamma distribution, P3 distribution, and EV1 were
considered in this study.

3.1. Gamma Distribution

The pdf of the gamma distribution is given by:

f (x) =
1

αβΓ(β)
xβ−1 exp(−x/α) (11)

where α and β are the scale and shape parameters, and Γ(·) is the gamma function, and 0 < x < ∞.
For the gamma distribution, the T-year quantile is given by:

x̂T = α̂β̂ + KT

√
α̂2 β̂ (12)

Differentiation of Equation (12) with respect to α and β yields:

∂xT
∂α

= β + KT
√

β
α

|α| (13)

∂xT
∂β

= α +
KT
2

√
α2/β−

√
α2

β

∂KT
∂CS

(14)

where ∂KT/∂CS can be calculated by using Wilson–Hilferty transformation [1].

3.1.1. Estimation of Asymptotic Variances by MOM and ML

Based on MOM, the standard error of x̂T for the gamma distribution can be calculated directly
by [29]:

s2
T =

µ2

n

[
(1 + KTCv)

2 +
1
2

(
KT + 2Cv

∂KT
∂γ1

)2(
1 + C2

v

)]
(15)

where Cv is the coefficient of variation, and Cv = µ1/2
2 /µ′1; γ1 = Cs is the coefficient of skewness.

The asymptotic variance and covariances of ML parameter estimators are derived as [1]:[
var(α) cov(α, β)

var(β)

]
=

[
α2ψ′D −αD

βD

]
(16)

where ψ′ = ψ′(β) =
d2 log Γ(β)

dβ2 is the tri-gamma function; D = 1
βψ′−1 .

Substituting Equations (13) and (14) and the variances and covariances terms in Equation (16)
into Equation (3) yields the variance of the ML quantile estimator.

3.1.2. Estimation of Asymptotic Variances by POME

For the gamma distribution, the relation between parameters and constraints can be expressed
as [17]: {

E(x) = αβ

E[ln(x)] = ln(α) + ψ
(17)
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where ψ = ψ(β) =
d log Γ(β)

dβ is digamma function. The parameter estimators α̂ and β̂ can be obtained
by solving the following equations: {

αβ = X
ln(α) + ψ(β) = W

(18)

where X is the sample mean of x, and W is the sample mean of the random variable W = ln(x).
Then, VM and Vp are written by:

VM =

 var
(
X
)

var
(
W
)

cov
(
X, W

)
, Vp =

 var(α̂)
var
(

β̂
)

cov
(
α̂, β̂
)
 (19)

For the gamma distribution,

var
(
X
)
= var(x)/n = α2β/n (20)

Exact formulas for computing var
(
W
)

and cov
(
X, W

)
of VM are derived in

Appendix A. Accordingly,
var
(
W
)
= var(W)/n = ψ′/n (21)

cov
(
X, W

)
= α/n (22)

Consequently, one obtains:

VM =
1
n

 α2β

ψ′

α

 (23)

Additionally, taking the partial derivates of X and W with respect to α and β, one can obtain the
matrix D:

D =

 β2 α2 2αβ

1/α2 ψ′2 2ψ′/α

β/α αψ′ 1 + βψ′

 (24)

Thus, all the components of VM and D are obtained. Substituting VM and D [Equations (23) and
(24)] into Equation (10) yields VP. The variance of the quantile estimator can then be obtained by
substituting the terms of VP and Equations (13) and (14) into Equation (3).

3.2. Pearson Type 3 (P3) Distribution

The pdf of P3 distribution is given by:

f (x|α, β, γ) =
1

αΓ(β)

(
x− γ

α

)β−1
e−

x−γ
α , γ < x < ∞ (25)

where α, βandγ are the scale, shape, and location parameters, respectively, and γ < x < ∞.
The T-year quantile of P3 distribution is given by:

x̂T = α̂β̂ + γ̂ + KT

√
α̂2 β̂ (26)

Taking partial derivatives of Equation (34) with respect to α, β, γ yields:

∂xT
∂α

= β + KT
√

β
α

|α| (27)
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∂xT
∂β

= α +
KT
2

√
α2

β
−
√

α2

β

∂KT
∂CS

(28)

∂xT
∂γ

= 1 (29)

3.2.1. Estimation of Asymptotic Variances by MOM and ML

For the P3 distribution, the asymptotic variance of MOM quantile estimator is given by:

s2
T =

µ2

n

[
1 + γ1KT +

K2
T

2

(
3
4

γ2
1 + 1

)
+ 3KT

∂KT
∂γ1

(
γ1 +

γ3
1

4

)
+ 3
(

∂KT
∂γ1

)2
(

2 + 3γ2
1 +

5γ4
1

8

)]
(30)

The asymptotic variance and covariances of ML parameter estimators are given by [1]: var(α) cov(α, β) cov(α, γ)

var(β) cov(β, γ)

var(γ)



=


1

nα2G

[
ψ′(β)
(β−2) −

1
(β−1)2

]
− 1

nα3G

(
1

β−2 −
1

β−1

)
1

nα2G

[
1

β−1 − ψ′(β)
]

2
α2(β−2) − 1

nα3G

[
β

(β−1) − 1
]

1
nα2G [βψ′(β)− 1]


(31)

where G = 1
(β−2)α4

[
2ψ′ − 2β−3

(β−1)2

]
.

Substituting Equations (27)–(29) and the variance and covariance terms in Equation (31) into
Equation (3) yields the asymptotic variance of the quantile estimator.

3.2.2. Estimation of Asymptotic Variances by POME

On the basis of POME, the relation between parameters and constraints for P3 distribution is
given by [17]: 

E(x) = αβ + γ

E[ln(x− γ)] = ln(α) + ψ

var(x) = α2β

(32)

where ψ = ψ(β) is digamma function. The parameter estimators α̂, β̂, and γ̂ can be obtained by solving
the following equations: 

αβ + γ = X
ln(α) + ψ(β) = W1

α2β = S2
(33)

where X and S2 are the sample mean and variance of x, and W1 is the sample mean of the random
variable W1 defined as W1 = ln(x− γ).

Therefore, VM and Vp can be written by:

VM =



var
(
X
)

var
(
S2)

var
(
W1
)

cov
(
X, S2)

cov
(
S2, W1

)
cov
(
X, W1

)


, Vp =



var(α̂)
var
(

β̂
)

var(γ̂)
cov
(
α̂, β̂
)

cov
(

β̂, γ̂
)

cov(α̂, γ̂)


(34)
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Following Phine [24], the VM is given by:

VM =
1
n



α2β

2α4β(β + 3)
ψ′(β)

2α3β

α2

α


(35)

Taking partial derivatives of X, WandS2 with respect to α, β, and γ yields the matrix D:

D =



β2 α2 1 2αβ 2α 2β

4α2β2 α4 0 4α3β2 0 0
1/α2 ψ′2 0 2ψ′/α 0 0
2αβ α3 0 3α2β α2 2αβ

2β α2ψ′ 0 α(1 + 2βψ′) 0 0
β/α αψ′ 0 1 + βψ′ ψ′ 1/α


(36)

where ψ′ = ψ′(β) =
d2 log Γ(β)

dβ2 is the tri-gamma function.
Substituting VM and D [Equations (35) and (36)] into Equation (10) yields VP.

Accordingly, the asymptotic variance of the quantile estimator can then be obtained by substituting
the terms of VP and Equations (27)–(29) into Equation (3).

3.3. Extreme Value Type 1 (EV1) Distribution

The pdf and the cumulative distribution function of EV1 distribution can be expressed
respectively as:

f (x) =
1
α

exp
[
− x− u

α
− exp

(
− x− u

α

)]
(37)

F(x) = exp
[
− exp

(
− x− u

α

)]
(38)

where α and u are the scale and shape parameters, respectively, and −∞ < x < ∞.
The T-year quantile of EV1 distribution can be obtained from Equation (38) by substituting

F(x) = 1− 1/T and solving for x:

x̂T = û− α̂ log(− log(1− 1/T)) (39)

Differentiating Equation (39) with α and u yields the derivatives of xT with respect to α and u:

∂xT
∂α

= − log(− log(1− 1/T)) (40)

∂xT
∂u

= 1 (41)

3.3.1. Estimation of asymptotic variance by MOM and ML

The asymptotic variance of MOM quantile estimator is given by:

s2
T =

µ2

n

(
1 + 1.1396KT + 1.1K2

T

)
(42)
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where KT is given by:

KT = −
√

6
π

[
log
(
− log

(
1− 1

T

))
+ ε

]
(43)

where ε is Euler constant, ε = 0.5772157.
The variance and covariances for the ML parameter estimators are given by [1]:[

var(α) cov(α, u)
var(u)

]
=

α2

n

[
0.8046 0.2287

1.1128

]
(44)

Substituting Equations (40) and (41) and the variance and covariance terms in Equation (44) into
Equation (3) yields the asymptotic variance of the quantile estimator.

3.3.2. Estimation of Asymptotic Variances by POME

The relation between parameters and constraints for EV1 distribution can be expressed as [17]:{
E
[
(x−u)

α

]
= ε

E
[
exp

(
− x−u

α

)]
= 1

(45)

The estimators α̂ and û of the parameters can be obtained by solving the following equations:{
Y = ε

V = 1
(46)

where Y and V are the sample mean of variables defined by y = (x− u)/α and
V = exp(−y), respectively.

The variances and covariances of the moments and parameter estimators are written respectively as:

VM =

 var
(
Y
)

var
(
V
)

cov
(
Y, V

)
, Vp =

 var(α̂)
var(û)

cov(α̂, û)

 (47)

According the derivations in [17], the VM is given by:

VM =
1
n

 π2/6
1
−1

 (48)

Taking partial derivatives of Y and V with respect to α and u yields:

D = α−2

 ε2 1 2ε

W2 1 2W
−εW −1 −

(
ε + W

)
 (49)

where W = y exp(−y).
Substituting VM and D [Equations (48) and (49)] into Equation (10) yields VP. The asymptotic

variance of quantile estimator can then be obtained by substituting the terms of VP and Equations (40)
and (41) into Equation (3).

4. Simulation Experiments

In this section, the Monte Carlo simulation experiments were performed to evaluate the
performance of POME in calculation of the asymptotic variances and confidence intervals of quantiles
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and to compare it with the MOM and ML methods. In this study, four kinds of data sets were generated
from the Wakeby distribution with parameters as shown in Table 1 [16,30]. The quantile function of
the Wakeby distribution is given by [31]:

x(F) = ξ +
α

β

[
1− (1− F)β

]
− γ

δ

[
1− (1− F)−δ

]
(50)

where F is the uniform (0,1) variate, and ξ, α, β, γ, δ are the parameters.

Table 1. The Monte Carlo simulation data sets generated from the Wakeby distribution.

Case ξ α β γ δ Cv Cs

I 0 16 16 0.4 0.04 0.38 1.10
I 15.4 308.8 10.25 38.5 −0.30 0.36 0.48

III 273.69 521.10 1.25 4.77 −0.21 0.24 0.64

Ns = 1000 samples with size n (n = 20, 50, 100, 1000) were generated from each Wakeby distribution.
Then, the quantiles x̂T corresponding to different return periods (T = 10, 100, and 200) and their
asymptotic variances and confidence intervals were calculated for EV1. Table 2 lists the median values
of the estimated quantiles (x̂T), standard errors (St), and confidence interval width (CI width).

From Table 2, generally for all methods and for all cases, it was observed that the standard errors
and confidence interval widths of the quantiles increased with the return period T and decreased
with the sample size. For all cases, the selected three methods exhibited very similar behaviors.
Thus, we would take case III as an example in the latter discussion.

From case III, it was observed that the POME generally gave the smallest median of both standard
errors and confidence interval widths of quantiles regardless of the sample size and return period.
MOM was always the worst of the three competing methods and gave the largest results. The results
of ML fell between MOM and POME. For example, when the sample size equaled 50, the median
standard errors of MOM, ML, and POME quantile estimator for return period T = 100 were 69.2, 66.2,
and 63.5, respectively. Correspondingly, the confidence interval widths were 271.4, 259.4, and 248.8,
respectively, which indicated that the uncertainty of the POME estimator was less than that of the
MOM and the ML estimators. Therefore, the performance of the POME was found to be superior to
the MOM and the ML.

In addition, for each method considered, the median of both standard errors and confidence
interval widths of quantiles decreased significantly when the sample size increased from 20 to 1000.
For T = 100, when the sample size increased from 20 to 1000, the median of standard errors of MOM
quantile estimators decreased from 109.5 to 8.2, the median of standard errors of ML quantile estimators
decreased from 99.9 to 8.7, and the median of standard errors of POME quantile estimators decreased
from 99 to 8.3. The median of confidence interval widths decreased from 429.3 to 32.2 for MOM
quantile estimators, 391.8 to 34.2 for ML quantile estimators, and 388 to 32.6 for POME quantile
estimators. This was an indication of the influence sample size had on the estimation accuracy.
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Table 2. Median of estimated quantiles (x̂T), standard error (St), and 95% confidence interval (CI) width
from generated data; MOM = methods of moments, ML = maximum likelihood, POME = principle of
maximum entropy.

Case Sample
Size n

Return
Period T

MOM ML POME

x̂T St CI
Width x̂T St CI Width x̂T St CI Width

I

20
10 1.97 0.22 0.85 2.08 0.22 0.85 2.02 0.20 0.80
100 2.83 0.41 1.60 3.06 0.38 1.49 2.97 0.35 1.37
200 3.09 0.47 1.83 3.36 0.43 1.69 3.26 0.40 1.55

50
10 2.00 0.14 0.56 2.13 0.15 0.58 2.06 0.13 0.52
100 2.89 0.27 1.05 3.20 0.26 1.01 3.05 0.23 0.89
200 3.14 0.31 1.20 3.52 0.29 1.14 3.35 0.26 1.00

100
10 2.01 0.10 0.40 2.16 0.11 0.42 2.08 0.10 0.37
100 2.93 0.19 0.76 3.24 0.19 0.73 3.09 0.16 0.64
200 3.20 0.22 0.87 3.56 0.21 0.82 3.39 0.18 0.72

1000
10 2.02 0.03 0.13 2.17 0.03 0.13 2.09 0.03 0.12
100 2.95 0.06 0.24 3.27 0.06 0.23 3.12 0.05 0.20
200 3.23 0.07 0.28 3.60 0.07 0.27 3.42 0.06 0.23

II

20
10 106.9 12.1 47.3 111.1 11.9 46.5 109.7 11.4 44.7
100 155.3 22.8 89.3 164.7 20.7 81.3 161.3 19.7 77.2
200 169.8 26.0 102.1 180.4 23.4 91.9 176.8 22.2 87.1

50
10 106.9 12.1 47.3 112.3 7.7 30.2 110.3 7.4 28.9
100 155.3 22.8 89.3 167.8 13.5 52.8 163.7 12.8 50.0
200 169.8 26.0 102.1 184.4 15.2 59.7 179.4 14.4 56.5

100
10 107.1 5.5 21.5 113.0 5.5 21.6 110.8 5.3 20.6
100 156.3 10.3 40.5 169.0 9.6 37.7 164.8 9.1 35.7
200 170.9 11.8 46.4 185.6 10.9 42.6 180.8 10.3 40.3

1000
10 107.5 1.7 6.8 113.5 1.8 6.9 111.2 1.7 6.6
100 156.7 3.3 12.9 169.9 3.1 12.0 165.5 2.9 11.3
200 171.3 3.8 14.7 186.6 3.5 13.6 181.6 3.3 12.8

III

20
10 676.4 58.1 227.6 685.7 57.2 224.1 698.5 57.2 224.4
100 905.4 109.5 429.3 944.9 99.9 391.8 958.1 99.0 388.0
200 974.0 125.2 490.9 1023.0 113.0 442.9 1036.1 111.6 437.6

50
10 675.0 36.7 143.9 700.5 37.8 148.4 700.2 36.8 144.3
100 905.5 69.2 271.4 971.7 66.2 259.4 965.6 63.5 248.8
200 974.3 79.2 310.3 1053.7 74.8 293.3 1044.3 71.7 280.9

100
10 1065.5 92.4 362.0 1160.3 86.3 338.2 1148.5 82.5 323.5
100 674.8 26.0 102.0 707.7 65.5 106.9 700.2 26.2 102.7
200 906.9 49.1 192.4 985.3 41.5 186.9 968.7 45.2 177.4

1000
10 975.7 56.1 220.0 1067.2 47.7 211.3 1048.4 51.1 200.2
100 674.7 8.2 32.2 713.6 8.7 34.2 701.4 8.3 32.6
200 906.9 15.5 60.8 994.1 15.3 59.8 971.3 14.4 56.3

5. Application

The annual precipitation data from four gauging stations at the Weihe River basin in China were
considered as the case study. All data were obtained from the National Climate of China Meteorological
Administration and were complete. The detailed information of these data is given in Table 3.

Table 3. Basic information on each of the monthly precipitation series used in this study.

Station Name Record Length
(Year) Mean (mm) Standard

Deviation
Coefficient of

Variation Skewness First-Order Serial
Correlation Coefficient

Changwu 51 580.6 131.8177 0.2270 0.5070 3.2153
Lintong 50 579.5 129.2014 0.2230 0.6299 3.7670
Meixian 50 578.0 129.7214 0.2245 0.5828 3.4614

Tongguan 52 605.5 143.4648 0.2369 0.5771 3.6438

The gamma, P3, and EV1 distributions were used to fit the data set, and the MOM, ML, and POME
were used to estimate the parameters of these distributions, as given in Table 4. It can be seen that the
parameters of the gamma distribution estimated by MOM, ML, and POME were very close, as were
the EV1 distribution, while those of the P3 distribution departed significantly.
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Table 4. Parameter values of each distribution estimated by the three methods; P3 = Pearson type 3,
EV1 = extreme value type 1.

Station Name Method
Gamma P3 EV1

α β α β γ α u

Changwu
MOM 29.9282 19.3993 15.5623 33.4147 60.5782 102.7783 521.2619

ML 29.0510 19.9851 16.0097 32.5878 58.8660 114.9989 518.3959
POME 29.3458 19.7893 11.1017 39.5620 141.3794 111.0142 516.5091

Lintong
MOM 28.8063 20.1169 10.0804 40.6938 169.2817 100.7383 521.3449

ML 27.6873 20.9299 17.1488 30.6908 53.1797 113.0664 519.0634
POME 28.6849 20.2192 10.3139 40.2305 164.5577 108.5086 516.8608

Meixian
MOM 29.1161 19.8498 11.7762 37.8015 132.7913 101.1438 519.5689

ML 28.0875 20.5768 17.7271 30.3383 40.1383 113.7362 517.1681
POME 28.7575 20.1089 10.8002 39.4726 151.6378 109.1477 514.9499

Tongguan
MOM 33.9927 17.8122 12.0090 41.3991 108.3228 111.8595 540.9202

ML 32.9535 18.3740 15.0343 36.5741 55.6191 125.0433 537.9242
POME 33.7243 17.9653 10.3756 44.5388 143.3688 120.6552 535.8444

To evaluate and compare the performances of the three methods and the distributions, the ordinary
least square (OLS) criterion, Akaike information criterion (AIC), and quasi-optimal deterministic
coefficient test (QD) were employed and can be defined as:

OLS =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (51)

AIC = n ln

(
1
n

n

∑
i=1

(xi − x̂i)
2

)
+ 2m (52)

QD = 1−

n
∑

i=1
(xi − x̂i)

2

n
∑

i=1
(xi − x)2

(53)

where xi and x̂i are the observed data and the predicted values of a given (i-th) quantile, respectively,
x is the mean value of observed data, m is the number of parameters of a given model, and n is the
sample size.

The OLS criterion is recommended as a curve optimization rule for measuring the difference
between empirical and theoretical values in hydrological frequency analysis in China. The smaller OLS
values represent the better performance of the model. The AIC is more appropriate for the comparison
of models have different number of parameters. Given a set of candidate models for the data, the best
model is the one with the minimum AIC value. QD is used to describe the fitting degree of observed
values and theoretical values and the best fit model is the one that gets the QD value closest to 1.
The OLS, AIC, and QD were calculated as given in Table 5.
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Table 5. Ordinary least square (OLS), Akaike information criterion (AIC) and quasi-optimal
deterministic coefficient test (QD) values of three distributions calculated by MOM, ML, and POME.

Station Name Method
Gamma P3 EV1

OLS AIC QD OLS AIC QD OLS AIC QD

Changwu
MOM 16.6696 292.9861 0.9837 16.3741 291.1613 0.9843 19.3927 308.4197 0.9779

ML 17.5392 298.1729 0.9819 17.0194 295.1041 0.983 16.8854 294.2978 0.9833
POME 17.2128 296.2565 0.9826 16.0997 289.4375 0.9848 16.6415 292.8135 0.9837

Lintong
MOM 19.6949 304.0361 0.9763 18.516 297.8638 0.979 18.8765 299.792 0.9782

ML 20.6502 308.7725 0.9739 20.1246 306.1944 0.9752 16.3975 285.7129 0.9836
POME 19.7466 304.2982 0.9762 18.5442 298.0155 0.979 16.0775 283.742 0.9842

Meixian
MOM 17.9613 294.8219 0.9804 16.9804 289.2061 0.9825 17.8405 294.1469 0.9807

ML 18.9359 300.106 0.9783 18.5121 297.8426 0.9792 15.0757 277.3083 0.9862
POME 18.2446 296.3869 0.9798 16.8553 288.4664 0.9828 14.6984 274.7736 0.9869

Tongguan
MOM 20.419 319.7126 0.9793 20.0141 317.6294 0.9802 21.9677 327.3156 0.9761

ML 21.2629 323.9242 0.9776 20.8105 321.6875 0.9785 19.5845 315.373 0.981
POME 20.5825 320.542 0.979 19.9542 317.3178 0.9803 19.2731 313.7059 0.9816

Bold values indicate the smallest OLS and AIC values and the largest QD values.

It is seen from Table 5 that the selected best parameter estimation method for each distribution by
the three criterions is coincident and the result of the best fitted distribution for each station by the
three criterions is the same as well. Take the Changwu station in Table 5 for example. According to the
smallest OLS and AIC values and the largest QD values, the POME, MOM and POME are suggested
to be the best methods for parameter estimation for Gamma, P3 and EV1 distributions, respectively.
And the best fitted distribution for Changwu station recommended by the OLS, AIC and QD criteria is
P3 distribution. Additionally, according to the results given in Table 5, the best fitted distributions for
the gauging stations Meixian, Tongguan and Lintong recommended by the OLS, AIC and QD methods,
is EV1 distribution with the parameters estimated by POME. Thus the best estimation method for
each station is POME and this is coincident with the results of the simulation experiments in Section 4,
which shows that the performance of POME is better than MOM and ML. The bold values in the table
denote the smallest OLS and AIC values and the largest QD values.

The quantiles along with the standard errors and 95% confidence intervals for 10, 20, 50, 100,
200, and 500 years return periods of the best fitted distribution based on the parameters estimated
by POME are given in Table 5. For the sake of comparison, the quantiles, standard errors, and 95%
confidence interval widths based on MOM and ML are also given in Table 6. The results show that
the standard errors and confidence interval widths of quantile estimators obtained by POME were
smaller than those obtained by the MOM and the ML methods with the exception of the results of
T = 10 at Changwu station, which indicated that the POME yielded more precise parameters and
quantiles estimations.
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Table 6. Quantile estimators, standard error, and 95% confidence interval widths based on MOM, ML, and POME for the annual precipitation (mm).

Station Name Best fitted
Distribution

Return Period (Year)
MOM ML POME

Quantile Standard Error Confidence
Interval Width Quantile Standard Error Confidence

Interval width Quantile Standard Error Confidence
Interval Width

Changwu P3

10 755.0 31.2 122.1 753.1 30.5 119.6 755.7 31.7 124.3
20 814.7 40.7 159.7 811.9 38.9 152.3 817.5 38.4 150.7
50 885.6 56.1 220.0 881.9 51.7 202.5 891.6 47.3 185.6

100 935.3 69.1 270.7 930.8 62.2 243.8 943.8 54.0 211.6
200 982.3 82.8 324.5 977.1 73.3 287.2 993.5 60.6 237.5
500 1041.4 101.8 398.9 1035.3 88.5 347.0 1056.3 69.2 271.2

Lintong EV1

10 704.4 31.8 124.7 724.5 32.2 126.1 714.0 30.6 120.0
20 748.0 37.5 146.9 773.5 37.0 144.9 761.0 35.0 137.1
50 820.6 47.4 185.7 854.9 45.2 177.3 839.2 42.5 166.7

100 984.8 70.7 277.1 1039.2 64.6 253.3 1016.0 60.3 236.2
200 1054.8 80.8 316.9 1117.8 73.1 286.4 1091.5 68.0 266.5
500 1147.3 94.3 369.7 1221.6 84.3 330.3 1191.1 78.2 306.6

Meixian EV1

10 703.3 31.9 125.2 723.8 32.4 126.9 713.3 30.8 120.7
20 747.2 37.6 147.5 773.1 37.2 145.8 760.6 35.2 137.9
50 820.0 47.6 186.4 855.0 45.5 178.3 839.1 42.8 167.6

100 984.8 71.0 278.3 1040.4 65.0 254.8 1017.0 60.6 237.6
200 1055.2 81.2 318.2 1119.5 73.5 288.1 1093.0 68.4 268.0
500 1148.0 94.7 371.2 1223.9 84.8 332.3 1193.2 78.7 308.4

Tongguan EV1

10 744.2 34.6 135.7 765.1 34.9 136.8 755.1 33.5 131.5
20 792.6 40.8 160.0 819.3 40.1 157.1 807.4 38.4 150.4
50 873.2 51.6 202.2 909.3 49.0 192.2 894.2 46.7 183.1

100 1055.5 77.0 301.8 1113.1 70.1 274.7 1090.9 66.3 259.9
200 1133.3 88.0 345.1 1200.1 79.2 310.6 1174.8 74.8 293.3
500 1236.0 102.7 402.5 1314.9 91.4 358.2 1285.5 86.1 337.6
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To better understand the performance of the different methods, the differences in the uncertainty
reductions for the standard errors and 95% confidence interval widths of the quantile estimators
were given in terms of relative deviation, as shown in Table 7. For the relatively long return period
(T ≥ 50), there were significant reductions in the standard errors and 95% confidence interval widths
obtained by POME compared to MOM. For example, for a return period of T = 500, the reductions
in standard errors and the confidence interval widths were of about 32%, 17%, 17%, and 16% for
Changwu, Lintong, Meixian, and Tongguan, respectively.

Table 7. Change in the uncertainty in quantile estimators based on POME compared with the MOM
and ML methods (%).

Station Name Return
Period(Year)

POME to MOM POME to ML

Quantile Standard Error Confidence
Interval Width Quantile Standard Error Confidence

Interval Width

Changwu

10 0.09 1.74 1.74 0.34 3.78 3.78
20 0.34 −5.63 −5.63 0.68 −1.02 −1.02
50 0.67 −15.66 −15.66 1.10 −7.68 −7.68
100 0.91 −21.83 −21.83 1.39 −11.88 −11.88
200 1.14 −26.82 −26.82 1.67 −15.33 −15.33
500 1.43 −32.02 −32.02 2.02 −18.99 −18.99

Lintong

10 1.37 −3.74 −3.74 −1.49 −4.93 −4.93
20 1.74 −6.67 −6.67 −1.67 −5.29 −5.29
50 2.27 −10.23 −10.23 −1.92 −5.70 −5.70
100 3.17 −14.76 −14.76 −2.35 −6.18 −6.18
200 3.48 −15.92 −15.92 −2.50 −6.29 −6.29
500 3.82 −17.05 −17.05 −2.66 −6.41 −6.41

Meixian

10 1.41 −3.58 −3.58 −1.50 −4.95 −4.95
20 1.79 −6.51 −6.51 −1.68 −5.32 −5.32
50 2.34 −10.08 −10.08 −1.93 −5.73 −5.73
100 3.27 −14.62 −14.62 −2.37 −6.21 −6.21
200 3.58 −15.78 −15.78 −2.51 −6.33 −6.33
500 3.93 −16.92 −16.92 −2.68 −6.44 −6.44

Tongguan

10 1.47 −3.14 −3.14 −1.35 −3.92 −3.92
20 1.86 −5.98 −5.98 −1.51 −4.20 −4.20
50 2.41 −9.45 −9.45 −1.73 −4.53 −4.53
100 3.35 −13.88 −13.88 −2.11 −4.92 −4.92
200 3.66 −15.00 −15.00 −2.23 −5.02 −5.02
500 4.01 −16.12 −16.12 −2.37 −5.11 −5.11

It can also be seen from Table 6 that, for Changwu station, the reduction in standard errors and 95%
confidence interval widths obtained by POME were significant when compared to ML. For example,
the reductions in the standard errors and confidence interval widths of a 500-year quantile was about
19%. For Lintong, Meixian, and Tongguan stations, the reductions were relatively smaller—about 6%,
6%, and 5%, respectively. Overall, the POME provided more accurate quantile estimators.

6. Conclusions

In this study, the POME method was applied for the estimation of the asymptotic variances and
confidence intervals of quantiles, and the corresponding calculation formulas for gamma, P3, and EV1
distributions based on the POME method were deduced. The calculation procedures of the MOM and
the ML methods were also reviewed briefly for comparison. The Monte Carlo simulation experiments
were carried out to evaluate the performance of the POME method and to compare it with the MOM
and the ML methods. In addition, annual precipitation data from four stations at the Weihe River
basin in China were selected as the case study. The following conclusions were drawn from this study:

(1) The calculation formulas of the asymptotic variances and confidence intervals of quantiles for
three distributions based on POME are given. The results of simulation experiments and the case
study show that the POME method can provide an effective way for reducing the uncertainty of
quantile estimators.

(2) Results of the simulation experiments demonstrate that the POME method yields the smallest
standard errors and the narrowest confidence intervals of quantile estimators compared with
the results of MOM and ML. This may benefit from fewer sampling errors and approximation in
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derivation. Thus, the POME can give more accurate estimates. Furthermore, the standard errors
and confidence interval widths of the quantiles increased with the return period T and decreased
with the sample size.

(3) Results of the case study indicate that when using different criteria for distribution selection,
the results are coincidental, and the POME is the optimal method for parameter estimation.
Furthermore, the POME can give more reliable precipitation quantiles since the standard errors
and 95% confidence interval widths of precipitation quantiles obtained by POME are smaller
than those obtained by the MOM and the ML methods.

This study investigated the calculation of asymptotic variances and confidence intervals based
on POME for three commonly used distributions and compared the performance of POME with that
of MOM and ML. In addition, the POME-based asymptotic variances and confidence intervals of
quantiles for more distributions deserve more thorough investigation.
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Appendix A

The gamma distribution: Estimation of var
(
W
)
, cov

(
X, W

)
.

Estimation of var
(
W
)

For the gamma distribution, the mean and variance are given by:

E(x) = αβ (A1)

var(x) = α2β (A2)

E(W) = ln(α) + ψ (A3)

Since var
(
W
)
= var(W)/n =

(
E
(
W2)− [E(W)]2

)
/n, one needs to obtain the E

(
W2).

E
(
W2) = E

[
(ln x)2

]
=
∫ ∞

0 [ln x]2 1
αβΓ(β)

xβ−1 exp(−x/α)dx

= (ln α)2

Γ(β)

∫ ∞
0 yβ−1e(−y)dy + 2 ln α

Γ(β)

∫ ∞
0 (ln y)yβ−1e(−y)dy + 1

Γ(β)

∫ ∞
0 (ln y)2yβ−1e(−y)dy

(A4)

Let y = x/α, x = αy, dx = αdy. Substituting these quantities into Equation (A4) and changing the
integral limits, we obtain:

E
(

W2
)
=

(ln α)2

Γ(β)

∫ ∞

0
yβ−1e(−y)dy +

2 ln α

Γ(β)

∫ ∞

0
(ln y)yβ−1e(−y)dy +

1
Γ(β)

∫ ∞

0
(ln y)2yβ−1e(−y)dy (A5)

Using the property of the gamma function dkΓ(β)/dβk =
∫ ∞

0 (ln y)kyβ−1e−ydy, then Equation (A5)
can be expressed as:

E
(
W2) = (ln α)2

Γ(β)

∫ ∞
0 yβ−1e(−y)dy + 2 ln α

Γ(β)

∫ ∞
0 (ln y)yβ−1e(−y)dy + 1

Γ(β)

∫ ∞
0 (ln y)2yβ−1e(−y)dy

= (ln α)2 + 2 ln αψ + ψ′ + ψ2
(A6)
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Then, we obtain var
(
W
)
:

var
(
W
)
= ψ′/n (A7)

Estimation of cov
(
X, W

)
cov
(
X, W

)
= cov(X, W)/n = [E(xW)− E(x)E(W)]/n (A8)

E(xW) is written by:

E(xW) =
∫ ∞

0 x ln x 1
αβΓ(β)

xβ−1 exp(−x/α)dx

= α ln α
Γ(β)

∫ ∞
0 yβe(−y)dy + α

Γ(β)

∫ ∞
0 (ln y)yβe(−y)dy

= α + αβ[ln α + ψ(b)]

(A9)

Substitution of Equations (A1), (A3), and (A9) into Equation (A8) yields:

cov
(
X, W

)
= α/n (A10)
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30. Strupczewski, W.G.; Kochanek, K.; Singh, V.P.; Węglarczyk, S. Are parsimonious FF models more reliable than
true ones? II. Comparative assessment of the performance of simple models versus the parent distributions.
Acta Geophys. Pol. 2005, 53, 437–457.

31. Houghton, J.C. Birth of a Parent: The Wakeby Distribution for Modeling Flood Flows. Water Resour. Res.
1978, 14, 1105–1109. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01543891
http://dx.doi.org/10.1002/wrcr.20523
http://dx.doi.org/10.1007/s00477-014-0978-0
http://dx.doi.org/10.1175/JHM-D-13-0207.1
http://dx.doi.org/10.1139/l90-067
http://dx.doi.org/10.1016/0022-1694(86)90174-5
http://dx.doi.org/10.1029/TR032i002p00231
http://dx.doi.org/10.1029/WR011i001p00048
http://dx.doi.org/10.1029/2009WR008490
http://dx.doi.org/10.1029/WR009i005p01264
http://dx.doi.org/10.1029/WR014i006p01105
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Confidence Interval Estimation of the Quantile 
	Estimation of Quantile 
	Calculation of Confidence Interval 
	Method of Moments (MOM) 
	Maximum Likelihood (ML) Method 
	Principle of Maximum Entropy (POME) Method 


	Asymptotic Variances of Quantile Estimators for Different Distributions 
	Gamma Distribution 
	Estimation of Asymptotic Variances by MOM and ML 
	Estimation of Asymptotic Variances by POME 

	Pearson Type 3 (P3) Distribution 
	Estimation of Asymptotic Variances by MOM and ML 
	Estimation of Asymptotic Variances by POME 

	Extreme Value Type 1 (EV1) Distribution 
	Estimation of asymptotic variance by MOM and ML 
	Estimation of Asymptotic Variances by POME 


	Simulation Experiments 
	Application 
	Conclusions 
	
	References

