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Abstract: A new canonical divergence is put forward for generalizing an information-geometric
measure of complexity for both classical and quantum systems. On the simplex of probability
measures, it is proved that the new divergence coincides with the Kullback–Leibler divergence, which
is used to quantify how much a probability measure deviates from the non-interacting states that are
modeled by exponential families of probabilities. On the space of positive density operators, we prove
that the same divergence reduces to the quantum relative entropy, which quantifies many-party
correlations of a quantum state from a Gibbs family.
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1. Introduction

The many fields of applicability of methods of information geometry to the science of complexity
encompass both classical and quantum systems [1]. Among them, an information-geometric approach
to the complexity as the extent to which an object, as a whole, is more than its parts was established
in [2] and then developed to relate various known measures of complexity to a general class of
information-geometric complexity measures (see [3] for a comprehensive overview on this topic).
The general idea for quantifying the extent to which the system is more than the sum of its parts is
the following. Let S be a set of systems; for any system S ∈ S , we assign the collection of system
parts which may be an element of a set S0 that formally differs from S . The corresponding assignment
Π : S → S0 can be interpreted as a reduced description of the system S in terms of its parts. Having the
parts Π(S), we have to reconstruct S by taking the sum of the parts in order to obtain a system that can
be compared with the original system. The corresponding construction map is denoted by Σ : S0 → S .
The composition

P(S) := (Σ ◦Π)(S)

then corresponds to the sum of parts of the system S, and we can compare S with P(S). It turns
out that P, under natural conditions, is the projection P : S → N to the set of non-complex systems
N := {S ∈ S |P(S) = S} [4]. Therefore, the quantification of how much the system S differs from
P(S) is established by a divergence function D : S × S → R such that

D(S, S′) ≥ 0, D(S, S′) = 0 iff S = S′ . (1)
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Finally, the complexity of a system S is defined by

C(S) := D(S, P(S)) . (2)

Clearly, there are many choices for the divergence D, thus such a complexity measure is far from
being unique. However, to ensure compatibility with P, one has to further assume that D satisfies

C(S) = D(S, P(S)) = inf
S′∈N

D(S, S′) . (3)

Here comes the role of a canonical divergence for providing an information-geometric measure of
complexity which can be interpreted as unique.

In the framework of information geometry, a dual structure (g,∇,∇∗) on a smooth manifold M is
given in terms of a metric tensor and two affine connections, which are dual in the following sense [5]:

X g (Y, Z) = g (∇XY, Z) + g (Y,∇∗XZ) , ∀X, Y, Z ∈ T (M) ,

where T (M) denotes the space of sections on M. Eguchi named a function D : M×M→ R satisfying
the property in Equation (1) as a contrast (or divergence) function whenever D allows recovering the
dual structure (g,∇,∇∗) on M in the following way [6]:

gij(p) = − ∂i∂
′
jD(ξp, ξq)

∣∣∣
p=q

= ∂′i∂
′
jD(ξp, ξq)

∣∣∣
p=q

(4)

Γijk(p) = − ∂i∂j∂
′
kD(ξp, ξq)

∣∣∣
p=q

, Γ∗ijk(p) = − ∂′i∂
′
j∂kD(ξp, ξq)

∣∣∣
p=q

, (5)

where
∂i =

∂

∂ξ i
p

and ∂′i =
∂

∂ξ i
q

and {ξp := (ξ1
p, . . . , ξn

p)} and {ξq := (ξ1
q , . . . , ξn

q )} are local coordinate systems of p and q, respectively.

Here, Γijk = g
(
∇∂i

∂j, ∂k
)

and Γ∗ijk = g
(
∇∗∂i

∂j, ∂k

)
are the connection symbols of∇ and∇∗, respectively.

The investigation on a divergence function allowing to recover the dualistic structure on a smooth
manifold is usually referred to as the inverse problem in information geometry. Matumoto [7] showed
that such divergence exists for any statistical manifold. However, it is not unique and there are
infinitely many divergences that give the same dual structure. Hence, the search for a divergence that
can be somehow considered as the most natural is of upmost importance. When a manifold is dually flat,
Amari and Nagaoka [5] introduced a Bregman type divergence to this end, with relevant properties
concerning the generalized Pythagorean theorem and the geodesic projection theorem. This is referred
to as canonical divergence and it is commonly assessed as the natural solution of the inverse problem in
information geometry for dually flat manifolds. However, the need for a general canonical divergence,
which applies to any dualistic structure, is a very crucial issue, as pointed out in [8]. In any case,
such a divergence should recover the canonical divergence of Bregman type if applied to a dually flat
structure. In addition, in the self-dual case where ∇ = ∇∗ coincides with the Levi–Civita connection

of g, the divergence D should be one half of the squared Riemannian distance: D(p, q) =
1
2

d(p, q)2 [3].
In the context of the information-geometric approach to complexity, a further requirement is needed to
ensure the compatibility in Equation (3). This is the geodesic projection property, which, in the present
context, states that every minimizer P(S) of D is achieved by the geodesic projection of S onto the set
of non-complex systems. In [9], Ay and Amari recently introduced a canonical divergence that satisfies
all these requirements. Such a divergence is defined in terms of geodesic integration of the inverse
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exponential map. More precisely, given p, q ∈ M and the ∇-geodesic σ̃(t) (0 ≤ t ≤ 1) connecting q
with p, the canonical divergence introduced in [9] is given by

D(p, q) :=
∫ 1

0

〈
Xt(p), ˙̃σ(t)

〉
σ̃(t) dt , Xt(p) := exp−1

σ̃(t)(p) . (6)

Here, exp : TM → M denotes the exponential map of ∇, which is defined by exp(X) = σX(1)
whenever the ∇-geodesic σX(t), satisfying σ̇X(0) = X, exists on an interval of t containing [0, 1].
Therefore, if σ(t) (0 ≤ t ≤ 1) is the ∇-geodesic such that σ(0) = p and σ(1) = q, then exp−1

p (q) :=
σ̇(0). According to this definition, we have that Xt(p) = Pσ(t) Xp(σ(t)) = t σ̇(t), where P is the
∇-parallel transport from p to σ(t). This implies that the divergence D(p, q) assumes the following
useful expression:

D(p, q) =
∫ 1

0
t ‖σ̇(t)‖2 dt . (7)

Analogously, the dual function of D(p, q) is defined as the ∇∗-geodesic integration of the inverse
of the ∇∗-exponential map [9]. Therefore, we have for the dual divergence D∗ a similar expression as
Equation (7) for the canonical divergence D:

D∗(p, q) =
∫ 1

0
t ‖σ̇∗(t)‖2 dt , (8)

where σ∗(t) (0 ≤ t ≤ 1) is the ∇∗-geodesic connecting p with q. Therefore, the compatibility in
Equation (3) of D with P suggests that the projection P(S) of a system S onto the space of non-complex
systems can be achieved along the geodesic connection S with P(S). Actually, it has recently been
proved that the ∇-geodesic minimizes the action integral of a suitably chosen kinetic energy [10].
An analogous result holds about the ∇∗-geodesic. In this way, both divergences, D(p, q) and D∗(p, q),
turn out to solve the Hamilton–Jacobi problem in information geometry, as put forward in [11].

The search for a general canonical divergence is still an open problem and it turns out to be of
upmost importance in the context of the information-geometric approach to complexity (see progresses
along this avenue put forward in [9,12]).

In this article, we aim to propose the canonical divergence in Equation (7) as an efficient tool for
providing a unified definition of complexity measures. For this reason, we firstly consider D on the
simplex of probability distributions where a measure of complexity as one instance of Equation (2) is
supplied in terms of the Kullback–Leibler (KL)-divergence [4].

The general methods described for defining the complexity measure in Equation (2) can be
particularized to the systems consisting of a finite node set V and each node v ∈ V can be in finitely
many states Iv. Then, we model the whole system as a probability measure p on the corresponding
product configuration set IV = ∏

v∈V
Iv. The parts are given by marginals pA where A is taken from

a set of subsets of V, denoted by S. Therefore, the decomposition map Π reads in this case as
Π(p) = (pA)A∈S, whereas the reconstruction map Σ is defined by the maximum entropy estimate p̂ of
p, leading to the projection πS : p 7→ p̂. The image of πS turns out to be the closure of an exponential
family ES, which plays the role of the set N of non-complex systems. A deviation measure, which is
compatible with the maximum entropy projection πS is then the (KL)-divergence, which is defined by

KL(p, q) :=
n+1

∑
i=1

pi log
(

pi
qi

)
(9)

on the n-simplex Pn = {p = (p1, . . . , pn) | pi > 0 , ∑
i

pi = 1} [6]. Finally, the measure of complexity as

one instance of Equation (2) is obtained by

KL (p, ES) := inf
q∈ES

KL(p, q) = KL(p, p̂) . (10)
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We may notice that, if S consists of all subsets of V of cardinality 1, elements of the set ES
of non-complex systems are totally uncorrelated in the sense that q ∈ ES has the product form
q = q1 ⊗ . . .⊗ qn [2]. Consider random variables X1, . . . , Xn with joint probability distribution p and
marginal probability distributions p1, . . . , pn. Then, we have

KL (p, ES) = KL (p, p1 ⊗ . . .⊗ pn) = ∑
i

H(Xi)− H(X1, . . . , Xn) ,

where H is the Shannon entropy. This quantity is referred to as multi information and denoted by
I(X1, . . . , Xn). In particular, when n = 2, this is nothing but the mutual information. Very remarkably,
the minimizer p̂ in the closure of ES of the (KL)-divergence, namely KL(p, p̂) = inf

q∈ES
KL(p, q),

is obtained by projecting p onto the closure of ES along a mixture (m)-geodesic [13]. This is usually
referred to as the geodesic projection property of the (KL)-divergence. The geometric structure given
by the Fisher metric, the mixture (m) and exponential (e) affine connections was introduced by Amari
and Nagaoka on the space of probability densities for studying statistical estimation problems [5].

In this article, we then consider both divergences, D and D∗, on Pn with the endowed dualistic
structure given by the classic Fisher metric and the mixture (m) and the exponential (e) connections.
Here, we show that D(q, p) = KL(q, p) = D∗(p, q). Actually, this result has already been shown
in [9]. However, we prove it differently by relying on the nice representations of D and D∗ given by
Equations (7) and (8), respectively. This proves that D can be interpreted as a generalization of the
(KL)-divergence.

A further step for proving the effectiveness of D is to consider it (and its dual function) on
the manifold of quantum states where the general idea for defining a complexity measure of a
classic system expressed by Equation (2) has been extended to the quantum setting in terms of the
quantum relative entropy [14]. More precisely, by considering a composite set of n ∈ N units
(or parties, or particles), [n] := {1, . . . , n}, the composite system is described by the product algebra
A[n] := A1 ⊗ . . . ⊗ An. Here, Ai ⊂ Mni is the C∗-subalgebra of complex ni × ni matrices such
that the identity Ini ∈ Ai. The many-party correlations are quantified in the state of a composite
quantum system which can not be observed in subsystems composed of less than a given number
of parties. In this context, the exponential families, which amount to the non-complex system in the
classical case, are replaced by states that are fully described by their restriction to selected subsystems.
These correspond to the family of Gibbs states Ek := {eHk /TreHk} of the k-local Hamiltonians Hk.
Here, a k-local Hamiltonian is defined as a sum of product terms a1⊗ . . .⊗ an with at most k-non-scalar
factors ai, where ai denotes a real self-adjoint operator. Therefore, the many-party correlations of a
composite quantum state ρ ∈ A[n] which captures all correlations in ρ that cannot be observed in any
k-party subsystem is the divergence

Q(ρ, Ek) := inf
σ∈Ek

Q(ρ, σ) (11)

from the Gibbs family Ek [14]. Here, the divergence Q(ρ, σ) is the quantum relative entropy defined by

Q(ρ, σ) = Tr ρ (log ρ− log σ) , (12)

where Tr denotes the trace operator on the finite-dimensional Hilbert space of density matrices.
Similar to the classical case, we can consider the family E1 of Gibbs states whose closure corresponds
to the set of product states σ1 ⊗ . . .⊗ σn. Consider then a composite quantum state ρ ∈ A[n] such that

Tr (σi a) = Tr
(

ρ (a⊗ I[n]\{i})
)

,
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where a ∈ A{i} = Ai and I[n]\{i} is the identity operator on the product A1 ⊗ . . . Âi . . .⊗An where Ai
is missing. In this case, the many-party correlations of ρ is the quantum multi information:

Q(ρ, E1) = ∑
i

H̃(σi)− H̃(ρ) ,

where H̃(ρ) = −Tr(ρ log ρ) is the von Neumann entropy of ρ. In particular, when n = 2,
this corresponds to the quantum mutual information. Algorithms for the evaluation of Q(ρ, Ek) as a
complexity measure for quantum states are studied in [15]. In that context, the many-party correlations
is related to the entanglement of quantum systems as defined in [16].

The scope of the present article is mainly to present the canonical divergence D defined in
Equation (7) as an important tool for generalizing the concept of complexity measure claimed
by Equation (10) for classical systems as well as the concept of many-party correlation given by
Equation (11) for quantum systems. To this end, we consider the space of density matrices endowed
with the quantum analog of the Fisher metric and the mixture (m) and exponential (e) affine
connections. This structure turns out to be induced on the manifold of positive density operators
by the Bogoliubov inner product [17]. In this setting, we prove that the divergence introduced in [9]
reduces to the quantum relative entropy. In addition, we also show that D(σ, ρ) = Q(σ, ρ) = D∗(ρ, σ).

The layout of the paper is as follows. Section 2 is devoted to the calculation of the canonical
divergence and its dual function on the simplex of probability distributions. In Section 3, we describe
the differential geometrical framework for finite quantum systems induced by the Bogoliubov inner
product. In this particular framework, we then prove that the divergence given by Equation (7) reduces
to the quantum relative entropy. Finally, we draw some conclusions in Section 4 by outlining the
results obtained in this work and discussing possible extensions.

2. Canonical Divergence on the Simplex of Probability Measures

A dualistic structure on the simplex of probability measures was introduced by Amari in terms of
the Fisher metric, the mixture (m) and exponential (e) connections [18]. Given a finite set I = {1, . . . , n},
we can represent probability measures on the set I as elements of Rn. In this representation, the Dirac
measures δi, i = 1, . . . , n form the canonical basis of Rn. Then, the (n− 1)-dimensional simplex of
probability measure is given by

Sn :=

{
p = ∑

i
piδ

i ∈ Rn | pi > 0 for all i, and ∑
i

pi = 1

}
. (13)

In this section, we show that the canonical divergenceD(p, q) coincides with the Kullback–Leibler
divergence whenever p, q ∈ Sn. In addition, we prove that, for the dual canonical divergence,
the following relation D∗(p, q) = KL(q, p) holds true. According to Equations (7) and (8), we need
the Fisher metric defined on the tangent bundle TSn, the mixture (m)-geodesic and the exponential
(e)-geodesic both connecting p with q. On the tangent space TpSn, the Fisher metric results in

gp(X, Y) := ∑
i

1
pi

Xi Yi, X, Y ∈ TpSn . (14)

The dualistic structure (g,∇,∇∗) on Sn, given by the Fisher metric, the (m)-connection ∇ and
the (e)-connection ∇∗, is dually flat, and the (m)- and (e)-geodesics connecting p with q are [3]:

γm(t) = p + t(q− p), t ∈ [0, 1] (15)

γe(t) = ∑
i

pi

(
qi
pi

)t

∑j pj

( qj
pj

)t δi, t ∈ [0, 1] . (16)
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We are now ready to compute the canonical divergence D(p, q) for arbitrary p, q ∈ Sn.
From Equations (7), (14) and (15), we have that

D(p, q) =
∫ 1

0
t‖γ̇m(t)‖2

γm(t) dt

= ∑
i

∫ 1

0
t

1
pi + t(qi − pi)

(qi − pi)
2 dt

= ∑
i

(
qi − pi + pi log

pi
qi

)
= ∑

i
pi log

pi
qi

= KL(p, q) , (17)

where we use ∑
i
(qi − pi) = 0 because p, q ∈ Sn. Analogously, we can compute the dual

canonical divergence D∗(p, q) by means of Equation (8). Therefore, by using Equations (14) and (16),
we obtain that

D∗(p, q) =
∫ 1

0
t‖γ̇e(t)‖2

γe(t) dt

= ∑
i

∫ 1

0
tγ̇i

e(t)
γ̇i

e(t)
γi

e(t)
dt . (18)

To develop further the calculation, let us analyze the derivative γ̇i
e(t). Recall that

γi
e(t) =

pi

(
qi
pi

)t

∑j pj

( qj
pj

)t .

Therefore, by taking the derivative of γi
e(t) with respect to t, we obtain

γ̇i
e(t) =

pi

(
qi
pi

)t
log qi

pi

∑j pj

( qj
pj

)t − pi

(
qi
pi

)t ∑j pj

( qj
pj

)t
log

qj
pj(

∑j pj

( qj
pj

)t
)2

= γi
e(t)

log
qi
pi
−

∑j pj

( qj
pj

)t
log

qj
pj

∑j pj

( qj
pj

)t



= γi
e(t)

log
qi
pi
− d

dt
log ∑

j
pj

(
qj

pj

)t
 .

By stepping back to Equation (18), we start by performing an integration by parts:

D∗(p, q) = ∑
i

[γi
e(t)

(
t
γ̇i

e(t)
γi

e(t)

)]1

0
−
∫ 1

0
γi

e(t)
γ̇i

e(t)
γi

e(t)
dt +

∫ 1

0
t

d2

dt2 log ∑
j

pj

(
qj

pj

)t

dt

 , (19)

where the last term is obtained by noticing that

γ̇i
e(t)

γi
e(t)

=

log
qi
pi
− d

dt
log ∑

j
pj

(
qj

pj

)t
 .
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Since we know that

d
dt

log ∑
j

pj

(
qj

pj

)t

=
∑j pj

( qj
pj

)t
log

qj
pj

∑j pj

( qj
pj

)t ,

we can observe that
γ̇i

e(1)
γi

e(1)
=

(
log

qi
pi
−∑

j
qj log

qj

pj

)
. Hence, we obtain from Equation (19)

D∗(p, q) = ∑
i

(
qi

(
log

qi
pi
−∑

j
qj log

qj

pj

)
−
[
γi

e(t)
]1

0
+

t
d
dt

log ∑
j

pj

(
qj

pj

)t
1

0

−
∫ 1

0

d
dt

log ∑
j

pj

(
qj

pj

)t

dt

)

= ∑
i

qi log
qi
pi
− qi ∑

j
qj log

qj

pj
− qi + pi + ∑

j
qj log

qj

pj
−

log ∑
j

pj

(
qj

pj

)t
1

0


= ∑

i
qi log

qi
pi
−∑

i
qi ∑

j
qj log

qj

pj
−∑

i
qi + ∑

i
pi + ∑

j
qj log

qj

pj
− log ∑

j
qj + log ∑

j
pj

= ∑
i

qi log
qi
pi

,

because p, q ∈ Sn. This proves that

D∗(p, q) = KL(q, p) = D(q, p) .

3. Geometric Structure of a Manifold of Quantum States

We start this section by showing that natural analogs of the Fisher metric and the exponential and
mixture connections are defined on a manifold of quantum states [17]. To this end, we need to specify
an inner product on the space of density operators. Since the divergence D of Equation (7) is defined
on a statistical manifold (M, g,∇,∇∗) with symmetric connections, we choose the Bogoliubov inner
product. This is because of a well-known result that claims the (e)-connection induced by a generalized
covariance is symmetric if and only if such a covariance is the Bogoliubov inner product [5]. At the
end of this section, we motivate this choice in more detail.

LetH be a finite-dimensional Hilbert space, A = {A | A = A∗} be the space of all the Hermitian
operators on H and S = {ρ | ρ = ρ∗ > 0, Trρ = 1} be the space of positive density operators on H.
Since S is an open subset of A1 := {A | A = A∗, TrA = 1}, then it can be naturally seen as a smooth
manifold of dimension n = (dimH)2 − 1 [17]. Let D ∈ TρS be a tangent vector at ρ to S ; we call
D(m) ∈ A0 := {A | A ∈ A, TrA = 0} its (m)-representation and symbolically write

D(m) = Dρ . (20)

It is worth noticing that, as an element of the tangent space, D can be naturally interpreted
as a derivative. As an example, when a coordinate system {θi} is given on S so that each state is
parameterized as ρ ≡ ρθ , the (m)-representation of the natural basis vector is written as (∂i)

(m) = ∂iρθ ,
where D = ∂i = ∂/∂θi. This allows us to introduce the (m)-connection on the manifold S of the
quantum states in terms of the covariant derivative ∇(m) : T (S)× T (S)→ T (S), which is defined
by the following relation: (

∇(m)
X Y

)(m)
= X

(
Y(m)

)
, ∀X, Y ∈ T (S) , (21)
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where the right hand side means the derivative by X of Y(m) : S → A0 and T (S) denotes the space of
sections on S .

To introduce the (e)-connection on S , we need to specify a family {〈·, ·〉ρ | ρ ∈ S} of inner
products on A usually named as generalized covariance. For the reason mentioned above, we consider
the Bogoliubov inner product, which is given by

〈A, B〉ρ :=
∫ 1

0
Tr
(

ρλ Aρ1−λB
)

dλ , ∀ A, B ∈ A . (22)

Given D ∈ TρS , we then define the (e)-representation of D as the Hermitian operator D(e) ∈ A
satisfying the following relation:

Tr
(

D(m) A
)
=:
〈

D(e), A
〉

ρ
=
∫ 1

0
Tr
(

ρλD(e)ρ1−λ A
)

dλ , ∀ A ∈ A . (23)

For all A ∈ A, we assume 〈A, I〉ρ = 〈A〉ρ = Tr(ρA) (I denotes the identity operator). Thus, we can
see that the derivative of the function 〈A〉 : ρ→ 〈A〉ρ by D is written as

D〈A〉 = Tr(D(m)A) = 〈D(e), A〉ρ .

This implies that we can consider the (e)-representation D(e) ∈ A of a given D ∈ TρS as

Dρ =
∫ 1

0
ρλ D(e) ρ1−λ dλ . (24)

Therefore, it turns out that D(e) is the derivative of the map ρ 7→ log ρ from S to A, which may be
written as follows:

D(e) = D log ρ . (25)

By considering
〈

D(e), I
〉

ρ
=
〈

D(e)
〉

ρ
= Tr

(
ρ D(e)

)
, we can immediately observe that

〈
D(e)

〉
ρ
= D 〈I〉ρ = 0 .

This proves that, although the (e)-representation depends on the choice of the generalized
covariance, the space T(e)

ρ S := {D(e) |D ∈ TρS} can be simply written as follows

T(e)
ρ S = {A | A ∈ A, 〈A〉ρ = Tr (ρ A) = 0} . (26)

This fact supplies the manifold S of quantum states with the (e)-connection. To see this, let us
consider the linear isomorphism D 7→ D′ from TρS to Tρ′S defined by D′(e) = D(e) −

〈
D(e)

〉
ρ′

.

By writing this correspondence as D′ = [D]ρ′ , D =
[
D′
]

ρ
, the (e)-connection ∇(e) is then defined by

(
∇(e)

X Y
)

ρ
= Xρ [Y]ρ , ∀ ρ ∈ S , ∀X, Y ∈ T (S) , (27)

where the right hand side means the derivative by Xρ of [Y]ρ : S → TρS .
Finally, we define the inner product gρ on TρS by

gρ (X, Y) :=
〈

X(e), Y(e)
〉

ρ
= Tr

(
X(m) Y(e)

)
, (28)
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which is usually called the quantum Fisher metric. The procedure thus far described endows the
manifold S of quantum states with a geometric structure (g,∇(e),∇(m)) given by the quantum Fisher
metric, and two torsion-free connections, namely the (e)-connection∇(e) and the (m)-connection∇(m),
which are dual with respect to g in the following sense:

X g (Y, Z) = g
(
∇(m)

X Y, Z
)
+ g

(
Y,∇(e)

X Z
)

, ∀X, Y, Z ∈ T (S) . (29)

In addition, the dual structure (g,∇(m),∇(e)) is dually flat, meaning that the curvature tensors of
∇(e) and ∇(m) are both null.

Suppose that a coordinate system {ξi} is given and that each element ρ ∈ S is specified by the
coordinate ξ ∈ Rn as ρ ≡ ρξ . According to Equation (20), we have that the mixture representation

∂
(m)
i of ∂i = ∂/∂ξ i is given by ∂

(m)
i ρ = ∂iρξ , whereas, by Equation (23), we have that the exponential

representation ∂
(e)
i of ∂i is written as ∂

(e)
i ρ = ∂i log ρξ . Therefore, the dual structure (g,∇(e),∇(m)) with

respect to an arbitrary coordinate system {ξ i} reads as follows

gij = Tr
(
∂iρξ ∂j log ρξ

)
(30)

Γ(e)
ijk = Tr

(
∂i∂j log ρξ ∂kρξ

)
, Γ(m)

ijk = Tr
(
∂i∂jρξ ∂k log ρξ

)
. (31)

A generalized covariance is a family {〈·, ·〉ρ | ρ ∈ S} of inner products on the space of Hermitian
operators A on the Hilbert spaceH, where 〈A, B〉ρ depends smoothly on ρ for all A, B ∈ A and that
satisfies the following properties:

• For every U unitary matrix on the Hilbert spaceH, it is

〈UAU∗, UBU∗〉UρU∗ = 〈A, B〉ρ, ∀ A, B ∈ A, ρ ∈ S .

• If the Lie bracket [ρ, A] = 0, then
〈A, B〉ρ = Tr (ρAB) .

This can be viewed as a quantum version of the L2-product

〈A, B〉p = Ep[A, B]

of random variables A and B with respect to a probability measure p. Since Ep[A, B] is the covariance
of A and B when their expectations vanish, we can call the family {〈·, ·〉ρ | ρ ∈ S} satisfying the above
conditions a generalized covariance.

According to the theory by Eguchi, a divergence function D : M×M → R∗ induces a dual
structure (g,∇,∇∗) on M in the way expressed by Equations (4) and (5). It turns out that the
connections∇ and∇∗ obtained in such a way are torsion-free (or symmetric) [13]. To use the canonical
divergence in Equation (7) in the quantum setting, we are then forced to select the Bogoliubov inner
product for providing the quantum analog of the Fisher metric, the (m)-connection and (e)-connection
on the manifold of positive density operators. Indeed, while the (m)-connection is always torsion-free,
it turns out that the (e)-connection induced on S from a generalized covariance is symmetric if and
only if such a covariance is the Bogoliubov inner product.

Canonical Divergence on the Manifold of Quantum States

In this section we show that the divergence function of Equation (7) reduces to the quantum
relative entropy whenever the dual structure (g,∇(m),∇(e)) on S is given by the Fisher metric
(Equation (28)), the mixture connection (Equation (21)) and the exponential connection (Equation (27)).
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Let ρ1, ρ2 ∈ S be two density matrices. To implement the computation of the divergence
D(ρ1, ρ2) for quantum states, we consider the (m)-geodesic γm(t) = (1 − t) ρ1 + t ρ2 [19].
Then, the (m) and (e) representations of the tangent vector γ̇m(t) are easily computed by means of
Equations (20) and (25), respectively:

γ̇
(m)
m (t) = γ̇m(t) = ρ2 − ρ1, γ̇

(e)
m (t) =

d
dt

log γm(t) . (32)

From Equations (7) and (28), we have then

D(ρ1, ρ2) =
∫ 1

0
t Tr

(
γ̇m(t)

d
dt

log γm(t)
)

dt . (33)

Let us recall that γm(t) is a curve in the space of density matrices and the logarithm of a positive
matrix is a well-defined matrix. Therefore, the derivative with respect to t of log γm(t) is viewed as the
matrix of the derivatives of the entries of log γm(t) with respect to t. Moreover, the same holds for the
integration of a matrix: this is the matrix of the integration of the entries. Finally, since the trace is a
linear operator it commutes with the integration. Hence, with the abuse of notation where we keep γm

instead of the entry (γm)ij, the computation in Equation (33) is performed as follows by integration
by parts:

∫ 1

0
t γ̇m(t)

d
dt

log γm(t) = [t γ̇m(t) log γm(t)]
1
0 −

∫ 1

0
γ̇m(t) log γm(t) dt

= (ρ2 − ρ1) log ρ2 −
∫ ρ2

ρ1

log γm(t) dγm(t)

= (ρ2 − ρ1) log ρ2 − [γm log γm]
ρ2
ρ1

= ρ1(log ρ1 − log ρ2) .

This proves that D(ρ1, ρ2) = Tr (ρ1(log ρ1 − log ρ2)), which is the quantum relative entropy given
by Equation (12).

The dual divergence of D(ρ1, ρ2) is computed by considering the (e)-geodesic connecting ρ1 and
ρ2. Let ρ1 = eH , where H is a self-adjoint Hamiltonian. Then, the (e)-geodesic from ρ1 to ρ2 is given by

γe(t) =
eH+t A

Tr eH+t A , (t ∈ [0, 1]) , (34)

where A = log ρ2 − log ρ1 and eH+t A denotes the exponential matrix [19]. Since the trace operator
is linear in its argument, it commutes with the derivative operator. Therefore, according to
Equations (20) and (25), we obtain that the (m) and (e) representations of γ̇e(t) are given by

γ̇
(m)
e = γ̇e(t) =

A eH+t A

TreH+t A −
eH+t A TrAeH+t A

(TreH+t A)
2 (35)

γ̇
(e)
e =

d
dt

log γe(t) = A− TrAeH+t A

TreH+t A . (36)

The dual divergence of D(ρ1, ρ2) is written as follows:

D∗(ρ1, ρ2) =
∫ 1

0
t Tr

(
γ̇
(m)
e γ̇

(e)
e

)
dt . (37)
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To perform the computation in Equation (37), we use the expressions of γ̇
(m)
e and γ̇

(e)
e given by

Equations (35) and (36):

D∗(ρ1, ρ2) =
∫ 1

0
t Tr

(
A2eH+t A

TreH+t A − 2
A eH+t A TrAeH+t A

(TreH+t A)
2 +

eH+t A (TrAeH+t A)2

(TreH+t A)
3

)
.

At this point, we can use the linearity of the trace operator and then the latter expression reduces to:

D∗(ρ1, ρ2) =
∫ 1

0
t

(
TrA2eH+t A

TreH+t A −
(
TrAeH+t A)2

(TreH+t A)
2

)
dt =

∫ 1

0
t

d
dt

(
TrAeH+t A

TreH+t A

)
dt .

Carrying the integration by parts out, we obtain

D∗(ρ1, ρ2) =

[
t

TrAeH+t A

TreH+t A

]1

0
−
∫ 1

0

TrAeH+t A

TreH+t A dt

=
Trρ2(log ρ2 − log ρ1)

Trρ2
−
[
log TreH+t A

]1

0

= Trρ2(log ρ2 − log ρ1)− log Trρ1ρ2ρ−1
1 + log Trρ1

= Trρ2(log ρ2 − log ρ1) ,

where we use Trρ1 = Trρ2 = 1. This proves that

D∗(ρ1, ρ2) = Trρ2(log ρ2 − log ρ1) = D(ρ2, ρ1) .

4. Conclusions

As we have demonstrated, for a geometric definition of a general complexity measure, it is
important to have a canonical divergence. This paper is based on recent progresses in defining a
general canonical divergence within Information Geometry [9,12]. This divergence is defined in terms
of geodesic integration of the inverse exponential map and holds the geodesic projection property
when the structure (g,∇,∇∗) is dually flat [3]. Let p ∈ M and M̃ ⊂ M be a submanifold of M,
the search for p̂ ∈ M̃ that minimizes the divergence D(p, q), q ∈ M̃, supplies the solution for defining
an information-geometric complexity measure as in Equation (2). When every minimizer p̂ of the
divergence D is given by the geodesic projection of p onto M̃, we say that D holds the geodesic
projection property. In this regard, the canonical divergence in Equation (7) would provide a measure
of complexity as Equation (2) for a quite wide range of systems. A further step for defining Equation (2)
for general systems has been put forward in [12], where a new divergence is introduced that turns
out to be a generalization of the canonical divergence in Equation (7). As an example of Equation (2),
we have considered the measure of complexity given by Equation (10), which quantifies how much
a probability measure on the product configuration set of the finitely many states on a discrete set
{1, . . . , n} deviates from a family of exponential probabilities that amounts to the non-complex set of
system states, as it is given by non-interacting states [2]. In this case, the Kullback–Leibler divergence
turns out to be suitable for providing the measure of complexity in Equation (2) for classic states on
discrete sets [4]. To put the theory of Ay [2] in perspective and propose the canonical divergence in
Equation (7) as suitable for supplying the complexity in Equation (2) on general systems, we have then
proved that D coincides with the (KL)-divergence on the simplex of probability measures endowed
with the dual structure given by the Fisher metric and the mixture and exponential connections.

The quantum counterpart of the general theory yielding the measure of complexity in Equation (2)
does not yet exist. However, a quantum analog of Equation (10) has been established on the manifold
of positive density operators [14]. Here, the family of non-interacting states is replaced by states that
are fully described by their restriction to selected subsystems that turn out to be a family of Gibbs states.
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Therefore, many-party correlations are quantified in the state of composite quantum system, which
cannot be observed in subsystems composed of fewer than a given number of parties. The suitable tool
for providing such a quantification is established by the quantum relative entropy. This is because the
maximum-entropy principle solves the inverse problem to reconstruct a global state from subsystem
states and it also gives a natural scale of many-party correlation in terms of the gap to the maximal
entropy value. Hence, the many-party correlation of a quantum state is quantified by the divergence
from a family of Gibbs state. The many-party correlation in Equation (11) has been implemented
in algorithms [15] proving to be related to the entanglement of quantum systems as defined in [16].
To consider the canonical divergence in Equation (7) as an efficient tool for extending the general
theory leading to Equation (2), we have considered D on the manifold of positive density operators
with the quantum analog of the Fisher metric and (m), (e) connections induced by the Bogoliubov
inner product. We have finally proved that the canonical divergence coincides with the quantum
relative entropy.
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