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Abstract: Different probabilities of events attract different attention in many scenarios such as
anomaly detection and security systems. To characterize the events’ importance from a probabilistic
perspective, the message importance measure (MIM) is proposed as a kind of semantics analysis
tool. Similar to Shannon entropy, the MIM has its special function in information representation,
in which the parameter of MIM plays a vital role. Actually, the parameter dominates the properties
of MIM, based on which the MIM has three work regions where this measure can be used flexibly for
different goals. When the parameter is positive but not large enough, the MIM not only provides
a new viewpoint for information processing but also has some similarities with Shannon entropy in
the information compression and transmission. In this regard, this paper first constructs a system
model with message importance measure and proposes the message importance loss to enrich the
information processing strategies. Moreover, the message importance loss capacity is proposed to
measure the information importance harvest in a transmission. Furthermore, the message importance
distortion function is discussed to give an upper bound of information compression based on the MIM.
Additionally, the bitrate transmission constrained by the message importance loss is investigated to
broaden the scope for Shannon information theory.

Keywords: message importance measure; information theory; probabilistic events processing;
message transmission and compression

1. Introduction

In recent years, massive data has attracted much attention in various realistic scenarios. Actually,
there exist many challenges for data processing such as distributed data acquisition, huge-scale
data storage and transmission, as well as correlation or causality representation [1–5]. Facing these
obstacles, it is a promising way to make good use of information theory and statistics to deal with mass
information. For example, a method based on Max Entropy in Metric Space (MEMS) is utilized for
local features extraction and mechanical system analysis [6]; as an information measure different from
Shannon entropy, Voronoi entropy is discussed to characterize the random 2D patterns [7]; Category
theory, which can characterize the Kolmogorov–Sinai and Shannon entropy as the unique functors,
is used in autonomous and networked dynamical systems [8].

To some degree, probabilistic events attract different interests according to their probability.
For example, considering that small probability events hidden in massive data contain more semantic
importance [9–13], people usually pay more attention to the rare events (rather than the common
events) and design the corresponding strategies of their information representation and processing
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in many applications including outliers detection in the Internet of Things (IoT), smart cities and
autonomous driving [14–22]. Therefore, the probabilistic events processing has special values in the
information technology based on semantics analysis of message importance.

In order to characterize the importance of probabilistic events, a new information measure named
MIM is presented to generalize Shannon information theory [23–25]. Here, we shall investigate the
information processing including compression (or storage) and transmission based on MIM to bring
some new viewpoints in the information theory. Now, we first give a short review on MIM.

1.1. Review of Message Importance Measure

Essentially, the message importance measure (MIM) is proposed to focus on the probabilistic
events importance [23]. In particular, the core idea of this information measure is that the weights
of importance are allocated to different events according to the corresponding events’ probability.
In this regard, as an information measure, MIM may provide an applicable criterion to characterize the
message importance from the viewpoint of inherent property of events without the human subjective
factors. For convenience of calculation, an exponential expression of MIM is defined as follows.

Definition 1. For a discrete distribution P(X) = {p(x1), p(x2), ...,p(xn)}, the exponential expression of
message importance measure (MIM) is given by

L(v, X) = ∑
xi

p(xi)ev{1−p(xi)}, (1)

where the adjustable parameter v is nonnegative and p(xi)ev{1−p(xi)} is viewed as the self-scoring value of
event i to measure its message importance.

Actually, from the perspective of generalized Fadeev’s postulates, the MIM is viewed as a rational
information measure similar to Shannon entropy and Renyi entropy which are respectively defined by

H(X) = −∑
xi

p(xi) log p(xi), (2a)

Hα(X) =
1

1− α
log ∑

xi

{p(xi)}α, (0 < α < ∞, α 6= 1), (2b)

where the condition of variable X is the same as that described in Definition 1. In particular, a postulate
for the MIM weaker than that for Shannon entropy and Renyi entropy is given by

F(PQ) ≤ F(P) + F(Q), (3)

while F(PQ) = F(P) + F(Q) is satisfied for Shannon entropy and Renyi entropy [26], where P and Q
are two independent random distributions and F(·) denotes a kind of information measure.

Moreover, the crucial operator of MIM to handle probability elements is exponential function
while the corresponding operators of Shannon and Renyi entropy are logarithmic function and
polynomial function respectively. In this case, MIM can be viewed as a map for the assignments of
events’ importance weights or the achievement for the self-scoring values of events different from
conventional information measures.

As far as the application of MIM is concerned, it may be a better method by using this
information measure to detect unbalanced events in signal processing. Ref. [27] has investigated
the minor probability event detection by combining MIM and Bayes detection. Moreover, it is
worth noting that the physical meaning of the components of MIM corresponds to the normalized
optimal data recommendation distribution, which makes a trade-off between the users’ preference and
system revenue [28]. In this respect, MIM plays a fundamental role in the recommendation system
(a popular applications of big data) from the theoretic viewpoint. Therefore, MIM does not come
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from the imagination directly, whereas it is a meaningful information measure originated from the
practical scenario.

1.2. The Importance Coefficient v in MIM

In general, the parameter v viewed as the importance coefficient has a great impact on the MIM.
Actually, different parameter v can lead to different properties and performances for this information
measure. In particular, to measure a distribution P(X) = {p(x1), p(x2), ..., p(xn)}, there are three
kinds of work regions of MIM which can be classified by the parameters, whose details are discussed
as follows.

(i) If the parameter satisfies 0 ≤ v ≤ 2/ max{p(xi)}, the convexity of MIM is similar to Shannon
entropy and Renyi entropy. Actually, these three information measures all have maximum value
properties and allocate weights for probability elements of the distribution P(X). It is notable that
the MIM in this work region focuses on the typical sets rather than atypical sets, which implies
that the uniform distribution reaches the maximum value. In brief, the MIM in this work region
can be regarded as the same class of message measure as Shannon entropy and Renyi entropy to
deal with the problems of information theory.

(ii) If we have v > 2/ max{p(xi)}, the small probability elements will be the dominant factor for
MIM to measure a distribution. That is, the small probability events can be highlighted more in this
work region of MIM than those in the first one. Moreover, in this work region, MIM can pay more
attention to atypical sets, which can be viewed as a magnifier for rare events. In fact, this property
corresponds to some common scenarios where anomalies catch more eyes such as anomalous
detection and alarm. In this case, some problems (including communication and probabilistic
events processing) can be rehandled from the perspective of rare events importance. Particularly,
the compression encoding and maximum entropy rate transmission are proposed based on the
non-parametric MIM (namely NMIM) [24]; in addition, the distribution goodness-of-fit approach
is also presented by use of the differential MIM (namely DMIM) [29].

(iii) If the MIM has the parameter v < 0, the large probability elements will be the main part
contributing to the value of this information measure. In other words, the normal events attract
more attention in this work region of MIM than rare events. In practice, this can be used in many
applications where regular events are popular such as filter systems and data cleaning.

As a matter of fact, by selecting the parameter v properly, we can exploit the MIM to solve
several problems in different scenarios. The importance coefficient facilitates more flexibility of MIM
in applications beyond Shannon entropy and Renyi entropy.

To focus on a concrete object, in this paper, we mainly investigate the first work region of MIM
(namely 0 ≤ v ≤ 2/ max{p(xi)}) and intend to dig out some novelties related to this metric for
information processing.

1.3. Similarities and Differences between Shannon Entropy and MIM

In fact, when the parameter v satisfies 0 ≤ v ≤ 2/ max{p(xi)}, MIM is similar to Shannon
entropy in regard to the expression and properties. The exponential operator of MIM is a substitute
for the logarithm operator of Shannon entropy. As a kind of tool based on probability distributions,
the MIM with parameter 0 ≤ v ≤ 2/ max{p(xi)} has the same concavity and monotonicity as
Shannon entropy, which can characterize the information otherness for different variables.

By resorting to the exponential operator of MIM, the weights for small probability elements are
amplified more in some degree than those for large probability ones, which is considered as message
importance allocation based on the self-scoring values. In this regard, the MIM may add fresh factors
to the information processing, which takes into account the effects of probabilistic events’ importance
from an objective viewpoint.
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In the conventional Shannon information theory, data transmission and compression both can
be viewed as the information transfer process from the variable X to Y. The capacity of information
transmission is achieved by maximizing the mutual information between the X and Y. Actually, there
exists distortion for probabilistic events during an information transfer process, which denotes the
difference between the source and its corresponding reconstruction. Due to this fact, it is possible
to compress data based on the allowable information loss in a certain extent [30–32]. In Shannon
information theory, rate-distortion theory is investigated for lossy data compression, whose essence is
mutual information minimization under the constraint of a certain distortion. However, in some cases
involved with distortion, small probability events containing more message importance require higher
reliability than those with large probability. In this sense, another aspect of information distortion
may be essential, in which message importance is considered as a reasonable metric. Particularly,
information transfer process is characterized by the MIM (rather than the entropy) with controlling
the distortion, which can be viewed as a new kind of information compression, compared to the
conventional scheme compressing redundancy to save resources. In fact, some information measures
with respect to message importance have been investigated to extend the range of Shannon information
theory [33–37]. In this regard, it is worthwhile exploring the information processing in the sense of
MIM. Furthermore, it is also promising to investigate the Shannon mutual information constrained by
the MIM in an information transfer process which may become a novel system invariant.

In addition, similar to Shannon conditional entropy, a conditional message importance measure
for two distributions is proposed to process conditional probability.

Definition 2. For the two discrete probability P(X) = {p(x1), p(x2), ..., p(xn)} and P(Y) = {p(y1), p(y2),
..., p(yn)}, the conditional message importance measure (CMIM) is given by

L(v, X|Y) = ∑
yj

p(yj)∑
xi

p(xi|yj)e
v{1−p(xi |yj)}, (4)

where p(xi|yj) denotes the conditional probability between yj and xi. The component p(xi|yj)e
v{1−p(xi |yj)} is

similar to self-scoring value. Therefore, the CMIM can be considered as a system invariant which indicates the
average total self-scoring value for an information transfer process.

Actually, the MIM is a metric with different mathematical and physical meaning from Shannon
entropy and Renyi entropy, which provides its own perspective to process probabilistic events.
However, due to the similarity between the MIM and Shannon entropy, they may have analogous
performance in some aspects. To this end, the information processing based on the MIM is discussed
in this paper.

1.4. Motivation and Contributions

The purpose of this paper is to characterize the probabilistic events processing including
compression and transmission by means of MIM. Particularly, in terms of the information processing
system model shown in Figure 1, the message source ϕ (regarded as a random variable whose support
set corresponds to the set of events’ types) can be measured by the amount of information H(·) and
the message importance L(·) according to the probability distribution. Then, the information transfer
process whose details are presented in Section 2 can be characterized based on these two metrics.
Different from the mathematically probabilistic characterization of traditional telecommunication
system, this paper mainly discusses the information processing from the perspectives of message
importance. In this regard, the information importance harvest in a transmission is characterized by the
proposed message importance loss capacity. Moreover, the upper bound of information compression
based on the MIM is described by the message importance distortion function. In addition, we also
investigate the trade-off between bitrate transmission and message importance loss to bring some
inspiration to the conventional information theory.
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Figure 1. Information processing system model.

1.5. Organization

The rest of this paper is discussed as follows. In Section 2, a system model involved with
message importance is constructed to help analyze the data compression and transmission in big data.
In Section 3, we propose a kind of message transfer capacity to investigate the message importance
loss in the transmission. In Section 4, message importance distortion function is introduced and its
properties are also presented to give some details. In Section 5, we discuss the bitrate transmission
constrained by message importance to widen the horizon for the Shannon theory. In Section 6, some
numerical results are presented to validate propositions and the analysis in theory. Finally, we conclude
this paper in Section 7. Additionally, the fundamental notations in this paper are summarized in
Table 1.

Table 1. Notations.

Notation Description

P(X) = {p(x1), p(x2), ..., p(xn)} The discrete probability distribution with respect to the variable X

ϕ The message source in the information processing system model

ϕ̃ The mapped or compressed message with respect to the ϕ

Ω̃ The received message transferred from the ϕ̃

Ω The recovered message with respect to the ϕ by the decoding process

v The importance coefficient

L(·) The message importance measure (MIM) described as Definition 1

H(·) The Shannon entropy, H(X) = −∑xi
p(xi) log p(xi)

or H(p) = −p log p− (1− p) log(1− p), (0 ≤ p ≤ 1)

Hα(·) The Renyi entropy with the parameter α Hα(X) = 1
1−α log ∑xi

{p(xi)}α

L(·|·) The CMIM described as Definition 2

H(·|·) The conditional Shannon entropy, H(X|Y) = ∑xi ∑yj
p(xi, yj) log 1

p(xi |yj)

Φv(·||·) The message importance loss described as Definition 3

C the message importance loss capacity (MILC) described as Definition 4

p(y|x) An information transfer matrix from the variable X to Y

{X, p(y|x), Y} An information transfer process from the variable X to Y

βs,βe, The parameters in the binary symmetric matrix, binary eraser matrix and
βk k-ary symmetric matrix respectively

d(x, y) The distortion function, d(x, y) ≥ 0

D The allowable distortion (Dmin ≤ D ≤ Dmax)

D̄ The average distortion, D̄ = ∑xi ∑yj
p(xi)p(yj|xi)d(xi, yj)

BD The the allowable information transfer matrix set BD = {q(y|x) : D̄ ≤ D}

Rv(D) The message importance distortion function described as Definition 5

I(X||Y) Mutual information, I(X||Y) = ∑xi ∑yj
p(xi, yj) log p(xi ,yj)

p(xi)p(yj)
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2. System Model with Message Importance

Considering an information processing system model shown in Figure 1, the information
transfer process is discussed as follows. At first, a message source ϕ follows a distribution
Pϕ = {p(ϕ1), p(ϕ2), ..., p(ϕn)} whose support set is {ϕ1, ϕ2, ..., ϕn} corresponding to the events
types. Then, the message ϕ is encoded or compressed into the variable ϕ̃ following the distribution
Pϕ̃ = {p(ϕ̃1), p(ϕ̃2), ..., p(ϕ̃n)} whose alphabet is {ϕ1, ϕ2, ..., ϕn}. After the information transfer
process denoted by matrix p(Ω̃j|ϕ̃i), the received message Ω̃ originating from ϕ̃ is observed as
a random variable, where the distribution of Ω̃ is PΩ̃ = {p(Ω̃1), p(Ω̃2), ..., p(Ω̃n)} whose alphabet is
{Ω̃1, Ω̃2, ..., Ω̃n}. Finally, the receiver recovers the original message ϕ by decoding Ω = g(Ω̃) where
g(·) denotes the decoding function and Ω is the recovered message with the alphabet {Ω1, Ω2, ..., Ωn}.

From the viewpoint of generalized information theory, a two-layer framework is considered to
understand this model, where the first layer is based on the amount of information characterized by
Shannon entropy denoted by H(·), while the second layer reposes on message importance measure
of events denoted by L(·). Due to the fact that the former is discussed pretty entirely, we mainly
investigate the latter in the paper.

Considering the source-channel separation theorem [38], the above information processing model
consists of two problems, namely data compression and data transmission. On one hand, the data
compression of the system can be achieved by using classical source coding strategies to reduce more
redundancy, in which the information loss is described by H(ϕ)− H(ϕ|ϕ̃) under the information
transfer matrix p(ϕ̃|ϕ). Similarly, from the perspective of message importance, the data can be
further compressed by discarding worthless messages, where the message importance loss can be
characterized by L(ϕ)− L(ϕ|ϕ̃). On the other hand, the data transmission is discussed to obtain the
upper bound of the mutual information H(ϕ̃)− H(ϕ̃|Ω̃), namely the information capacity. In a similar
way, L(ϕ̃)− L(ϕ̃|Ω̃) means the income of message importance in the transmission.

In essence, it is apparent that the data compression and transmission are both considered as an
information transfer processes {X, p(y|x), Y}, and they can be characterized by the difference between
{X} and {X|Y}. In order to facilitate the analysis of the above model, the message importance loss is
introduced as follows.

Definition 3. For two discrete probability P(X) = {p(x1), p(x2), ...,p(xn)} and P(Y) = {p(y1), p(y2),
...,p(yn)}, the message importance loss based on MIM and CMIM is given by

Φv(X||Y) = L(v, X)− L(v, X|Y), (5)

where L(v, X) and L(v, X|Y) are given by the Definitions 1 and 2.

In fact, according to the intrinsic relationship between L(v, X) and L(v, X|Y), it is readily seen that

Φv(X||Y) ≥ 0, (6)

where 0 < v ≤ 2 ≤ 2/ max{p(xi|yj)}.

Proof. Considering a function f (x) = xev(1−x) (0 ≤ x ≤ 1 and 0 < v), it is easy to have
∂2 f (x)

∂x = −vev(1−x)(2−vx), which implies if v ≤ 2 ≤ 2/x, the function f (x) is concave.
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In the light of Jensen’s inequality, if 0 < v ≤ 2 ≤ 2/ max{p(xi|yj)} is satisfied, it is not difficult
to see

L(v, X) = ∑
xi

p(xi)ev(1−p(xi))

= ∑
xi

{∑
yj

p(yj)p(xi|yj)}e
v(1−{∑yj

p(yj)p(xi |yj)})

≥∑
yj

p(yj)∑
xi

{p(xi|yj)e
v(1−p(xi |yj))} = L(v, X|Y).

(7)

3. Message Importance Loss in Transmission

In this section, we will introduce the CMIM to characterize the information transfer processing.
To do so, we define a kind of message transfer capacity measured by the CMIM as follows.

Definition 4. Assume that there exists an information transfer process as

{X, p(y|x), Y}, (8)

where the p(y|x) denotes a probability distribution matrix describing the information transfer from the variable
X to Y. We define the message importance loss capacity (MILC) as

C = max
p(x)
{Φv(X||Y)}

= max
p(x)
{L(v, X)− L(v, X|Y)},

(9)

where L(v, X) = ∑xi
p(xi)ev{1−p(xi)}, p(yj) = ∑xi

p(xi)p(yj|xi), p(xi|yj) =
p(xi)p(yj |xi)

p(yj)
, L(v, X|Y) is

defined by Equation (4), and v < 2 ≤ 2/ max {p(xi)}.

In order to have an insight into the applications of MILC, some specific information transfer
scenarios are discussed as follows.

3.1. Binary Symmetric Matrix

Consider the binary symmetric information transfer matrix, where the original variables are
complemented with the transfer probability which can be seen in the following proposition.

Proposition 1. Assume that there exists an information transfer process {X, p(y|x), Y}, where the information
transfer matrix is

p(y|x) =
[

1− βs βs

βs 1− βs

]
, (10)

which indicates that X and Y both follow binary distributions. In that case, we have

C(v, βs) = e
v
2 − L(v, βs), (11)

where L(v, βs) = βsev(1−βs) + (1− βs)evβs (0 ≤ βs ≤ 1) and v < 2 ≤ 2/ max {p(xi)}.
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Proof of Proposition 1. Assume that the distribution of variable X is a binary distribution (p, 1− p).
According to Equation (10) and Bayes’ theorem (namely, p(x|y) = p(x)p(y|x)

p(y) ), it is not difficult to
see that

p(x|y) =

 p(1−βs)
p(1−βs)+(1−p)βs

(1−p)βs
p(1−βs)+(1−p)βs

pβs
pβs+(1−p)(1−βs)

(1−p)(1−βs)
pβs+(1−p)(1−βs)

 . (12)

Furthermore, in accordance with Equations (4) and (9), we have

C(v, βs)

= max
p
{C(p, v, βs)}

= max
p

{
L(v, p)−

{
p(1− βs)e

v(1−p)βs
p(1−βs)+(1−p)βs + (1− p)βse

vp(1−βs)
p(1−βs)+(1−p)βs + pβse

v(1−p)(1−βs)
pβs+(1−p)(1−βs)

+ (1− p)(1− βs)e
vpβs

pβs+(1−p)(1−βs)
}}

,

(13)

where L(v, p) = pev(1−p) + (1− p)evp (0 < p < 1). Then, it is readily seen that

∂C(p, v, βs)

∂p
=(1−vp)ev(1−p) + [(1− p)v− 1]evp

−
{
(1− βs)

{
1− vp(1− βs)βs

[p(1− βs) + (1− p)βs]2

}
e

v(1−p)β
p(1−β)+(1−p)β

+ (1− βs)
{ v(1− p)βs(1− βs)

[pβs + (1− p)(1− βs)]2
− 1
}

e
vpβs

pβs+(1−p)(1−βs)

+ βs

{ v(1− p)βs(1− βs)

[p(1− βs) + (1− p)βs]2
− 1
}

e
vp(1−βs)

p(1−βs)+(1−p)βs

+ βs

{
1− vp(1− βs)βs

[pβs + (1− p)(1− βs)]2

}
e

v(1−p)(1−βs)
pβs+(1−p)(1−βs)

}
.

(14)

In the light of the positivity for ∂C(p,βs)
∂p in {p|p ∈ (0, 1/2)} and the negativity in {p|p ∈ (1/2, 1)}

(if βs 6= 1/2), it is apparent that p = 1/2 is the only solution for ∂C(p,βs)
∂p = 0. That is, if βs 6= 1/2, the

extreme value is indeed the maximum value of C(p, v, βs) when p = 1/2. Similarly, if βs = 1/2, the
solution p = 1/2 also results in the same conclusion.

Remark 1. According to Proposition 1, on one hand, when βs = 1/2, that is, the information transfer process
is just random, we will gain the lower bound of the MILC namely C(βs) = 0. On the other hand, when βs = 0,
namely there is a certain information transfer process, we will have the maximum MILC. As for the distribution
selection for the variable X, the uniform distribution is preferred to gain the capacity.

3.2. Binary Erasure Matrix

The binary erasure information transfer matrix is similar to the binary symmetric one; however,
in the former, a part of information is lost rather than corrupted. The MILC of this kind of information
transfer matrix is discussed as follows.

Proposition 2. Consider an information transfer process {X, p(y|x), Y}, in which the information transfer
matrix is described as

p(y|x) =
[

1− βe 0 βe

0 1− βe βe

]
, (15)
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which indicates that X follows the binary distribution and Y follows the 3-ary distribution. Then, we have

C(v, βe) = (1− βe){e
v
2 − 1}, (16)

where 0 ≤ βe ≤ 1 and 0 < v < 2 ≤ 2/ max {p(xi)}.

Proof of Proposition 2. Assume the distribution of variable X is (p, 1− p). Furthermore, according to
the binary erasure matrix and Bayes theorem, we have that the transmission matrix conditioned by the
variable Y as follows:

p(x|y) =

1 0
0 1
p 1− p

 . (17)

Then, it is not difficult to have

L(v, X|Y) = βe pev(1−p) + βe(1− p)evp + 1− βe. (18)

Furthermore, it is readily seen that

C(p, v, βe) = max
p

{
L(v, p)−

{
βe pev(1−p) + βe(1− p)evp + 1− βe

}}
= (1− βe)

{
max

p
{L(v, p)} − 1

}
,

(19)

where L(v, p) = pev(1−p) + (1− p)evp. Moreover, we have the solution p = 1/2 leads to ∂L(v,p)
∂p = 0

and the corresponding second derivative is

∂2L(v, p)
∂p2 = ev(1−p)(vp− 2)v + evp[(1− p)v− 2]v < 0, (20)

which results from the condition 0 < v < 2 ≤ 2/ max {p(xi)}.
Therefore, it is readily seen that, in the case p = 1/2, the capacity C(p, v, βe) reaches the

maximum value.

Remark 2. Proposition 2 indicates that, in the case βe = 1, the lower bound of the capacity is obtained, that is
C(βe) = 0. However, if a certain information transfer process is satisfied (namely βe = 0), we will have the
maximum MILC. Similar to Proposition 1, the uniform distribution is selected to reach the capacity in practice.

3.3. Strongly Symmetric Backward Matrix

As for a strongly symmetric backward matrix, it is viewed as a special example of information
transmission. The discussion for the message transfer capacity in this case is similar to that in the
symmetric matrix, whose details are given as follows.

Proposition 3. For an information transmission from the source X to the sink Y, assume that there exists
a strongly symmetric backward matrix as follows:

p(x|y) =


1− βk

βk
K−1 ... βk

K−1
βk

K−1 1− βk ... βk
K−1

... ... ... ...
βk

K−1 ... βk
K−1 1− βk

 , (21)
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which indicates that X and Y both obey K-ary distribution. We have

C(v, βk) = e
v(K−1)

K − {(1− βk)evβk + βkev(1− βk
K−1 )}, (22)

where 0 ≤ βk ≤ 1, K ≥ 2 and 0 < v < 2 ≤ 2/ max {p(xi)}.

Proof of Proposition 3. For given K-ary variables X and Y whose distribution are
{p(x1), p(x2), ..., p(xK)} and {p(y1), p(y2), ..., p(yK)} respectively, we can use the strongly symmetric
backward matrix to obtain the relationship between the two variables as follows:

p(xi) = (1− βk)p(yi) +
βk

K− 1
[1− p(yi)] (i = 1, 2, ..., K), (23)

which implies p(xi) is a one-to-one onto function for p(yi).
In accordance with Definition 2, it is easy to see that

L(v, X|Y) = ∑
xi

∑
yj

p(yj)p(xi|yj)e
v(1−p(xi |yj))

= ∑
yj

p(yj)
{
(1− βk)evβk + βkev(1− βk

K−1 )
}

= (1− βk)evβk + βkev(1− βk
K−1 ).

(24)

Moreover, by virtue of the definition of MILC in Equation (9), it is readily seen that

C(v, βk) = max
p(x)
{L(v, X)} − [ (1− βk)evβk + βkev(1− βk

K−1 )], (25)

where L(v, X) = ∑xi
p(xi)ev{1−p(xi)}.

Then, by using Lagrange multiplier method, we have

G(p(xi), λ0) = ∑
xi

p(xi)ev(1−p(xi)) + λ0
[
∑
xi

p(xi)− 1
]
. (26)

By setting ∂G(p(xi),λ0)
∂p(xi)

= 0 and ∂G(p(xi),λ0)
∂λ0

= 0, it can be readily verified that the extreme value of

∑yj
p(yj)e

v(1−p(yj)) is achieved by the uniform distribution as a solution, that is p(x1) = p(x2) = ... =

p(xK) = 1/K. In the case that 0 < v < 2 ≤ 2/ max {p(xi)}, we have ∂2G(p(xi),λ0)
∂p2(xi)

< 0 with respect to

p(xi) ∈ [0, 1], which implies that the extreme value of ∑xi
p(xi)ev(1−p(xi)) is the maximum value.

In addition, according to the Equation (23), the uniform distribution of variable X is resulted from
the uniform distribution for variable Y.

Therefore, by substituting the uniform distribution for p(x) into Equation (25), we will obtain the
capacity C(v, βk).

Furthermore, in light of Equation (22), we have

∂C(v, βk)

∂βk
= {1−v(1− βk)}evβk +

{ vβk
K− 1

− 1
}

ev(1− βk
K−1 ). (27)
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By setting ∂C(v,βk)
∂βk

= 0, it is apparent that C(v, βk) reaches the extreme value in the case that βk =
K−1

K .
Additionally, when the parameter v satisfies 0 < v < 2 ≤ 2/ max {p(xi)}, we also have the second
derivative of the C(v, βk) as follows:

∂2C(v, βk)

∂β2
k

= v[2− (1− βk)v]evβk +
v

K− 1

{
2− vβk

K− 1

}
ev(1− βk

K−1 ) > 0, (28)

which indicates that the convex C(v, βk) reaches the minimum value 0 in the case βk =
K−1

K .

Remark 3. According to Proposition 3, when βk =
K−1

K , namely, the channel is just random, we gain the lower
bound of the capacity namely C(v, βk) = 0. On the contrary, when βk = 0 (that is, there is a certain channel),
we will have the maximum capacity.

4. Distortion of Message Importance Transfer

In this section, we will focus on the information transfer distortion, a common problem of
information processing. In a real information system, there exists inevitable information distortion
caused by noises or other disturbances, though the devices and hardware of telecommunication
systems are updating and developing. Fortunately, there are still some bonuses from allowable
distortion in some scenarios. For example, in conventional information theory, rate distortion is
exploited to obtain source compression such as predictive encoding and hybrid encoding, which can
save a lot of hardware resources and communication traffic [39].

Similar to the rate distortion theory for Shannon entropy [38], a kind of information distortion
function based on MIM and CMIM is defined to characterize the effect of distortion on the message
importance loss. In particular, there are some details of discussion as follows.

Definition 5. Assume that there exists an information transfer process {X, p(y|x), Y} from the variable X
to Y, where the p(y|x) denotes a transfer matrix (distributions of X and Y are denoted by p(x) and p(y)
respectively). For a given distortion function d(x, y) (d(x, y) ≥ 0) and an allowable distortion D, the message
importance distortion function is defined as

Rv(D) = min
p(y|x)∈BD

Φv(X||Y)

= min
p(y|x)∈BD

{L(v, X)− L(v, X|Y)},
(29)

in which L(v, X) = ∑xi
p(xi)ev{1−p(xi)}, L(v, X|Y) is defined by Equation (4), 0 < v ≤ 2 minj {p(yj)}

maxi {p(xi)}
and

BD = {q(y|x) : D̄ ≤ D} denotes the allowable information transfer matrix set where

D̄ = ∑
xi

∑
yj

p(xi)p(yj|xi)d(xi, yj), (30)

which is the average distortion.

In this model, the information source X is given and our goal is to select an adaptive p(y|x)
to achieve the minimum allowable message importance loss under the distortion constraint. This
provides a new theoretical guidance for information source compression from the perspective of
message importance.

In contrast to the rate distortion of Shannon information theory, this new information distortion
function just depends on the message importance loss rather than entropy loss to choose an appropriate
information compression matrix. In practice, there are some similarities and differences between the
rate distortion theory and the message importance distortion in terms of the source compression.
On one hand, both two information distortion encodings can be regarded as special information
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transfer processes just with different optimization objectives. On the other hand, the new distortion
theory tries to keep the rare events as high as possible, while the conventional rate distortion focuses on
the amount of information itself. To some degree, by reducing more redundant common information,
the new source compression strategy based on rare events (viewed as message importance) may save
more computing and storage resources in big data.

4.1. Properties of Message Importance Distortion Function

In this subsection, we shall discuss some fundamental properties of rate distortion function based
on message importance in details.

4.1.1. Domain of Distortion

Here, we investigate the domain of allowable distortion, namely [Dmin, Dmax], and the
corresponding message importance distortion function values as follows.

(i) The lower bound Dmin: Due to the fact 0 ≤ d(xi, yj), it is easy to obtain the non-negative
average distortion, namely 0 ≤ D̄. Considering D̄ ≤ D, we readily have the minimum allowable
distortion, that is

Dmin = 0, (31)

which implies the distortionless case, namely Y is the same as X.
In addition, when the lower bound Dmin (namely the distortionless case) is satisfied, it is readily

seen that
L(v, X|Y) = L(v, X|X) = ∑

xi

p(xi)p(xi|xi)ev{1−p(xi |xi)} = 1, (32)

and according to the Equation (29) the message importance distortion function is

Rv(Dmin) = L(v, X)− L(v, X|X) = L(v, X)− 1, (33)

where L(v, X) = ∑xi
p(xi)ev{1−p(xi)} and 0 < v ≤ 2 minj {p(yj)}

maxi {p(xi)}
.

(ii) The upper bound Dmax: When the allowable distortion satisfies D ≥ Dmax, it is apparent that
the variables X and Y are independent, that is, p(y|x) = p(y). Furthermore, it is not difficult to see that

Dmax = min
p(y)

{
∑
xi

∑
yj

p(xi)p(yj)d(xi, yj)
}

= ∑
yj

p(yj)min
p(y)

{
∑
xi

p(xi)d(xi, yj)
}

≥ min
yj

{
∑
xi

p(xi)d(xi, yj)
}

,

(34)

which indicates that when the distribution of variable Y follows p(yj) = 1 and p(yl) = 0 (l 6= j), we
have the upper bound

Dmax = min
yj

{
∑
xi

p(xi)d(xi, yj)
}

. (35)

Additionally, on account of the independent X and Y, namely p(x|y) = p(x), it is readily seen that

Rv(Dmax) = L(v, X)−∑
yj

p(yj)L(v, X) = 0. (36)

4.1.2. The Convexity Property

For two allowable distortions Da and Db, whose optimal allowable information transfer matrixes
are pa(y|x) and pb(y|x) respectively, we have

Rv(δDa + (1− δ)Db) ≤ δRv(Da) + (1− δ)Rv(Db), (37)
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where 0 ≤ δ ≤ 1 and 0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.

Proof. Refer to the Appendix A.

4.1.3. The Monotonically Decreasing Property

For two given allowable distortions Da and Db, if 0 ≤ Da < Db < Dmax is satisfied, we have

Rv(Da) ≥ Rv(Db), where 0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.

Proof. Considering that 0 ≤ Da < Db < Dmax, we have Db = γDa + (1− γ)Dmax where γ = Dmax−Db
Dmax−Da

.
On account of the Equation (36) and the convexity property mentioned in Equation (37), it is not
difficult to see that

Rv(Db) ≤ γRv(Da) + (1− γ)Rv(Dmax) = γRv(Da) < Rv(Da), (38)

where 0 < γ < 1.

4.1.4. The Equivalent Expression

For an information transfer process {X, p(y|x), Y}, if we have a given distortion function d(x, y),
an allowable distortion D and a average distortion D̄ defined in Equation (30), the message importance
distortion function defined in Equation (29) can be rewritten as

Rv(D) = min
D̄=D
{L(v, X)− L(v, X|Y)}, (39)

where L(v, X) and L(v, X|Y) are defined by the Equations (1) and (4), as well as

0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.

Proof. For a given allowable distortion D, if there exists an allowable distortion D∗ (Dmin ≤ D∗ <
D < Dmax) and the corresponding optimal information transfer matrix p∗(y|x) leads to Rv(D), we
will have Rv(D) = Rv(D∗), which contradicts the monotonically decreasing property.

4.2. Analysis for Message Importance Distortion Function

In this subsection, we shall investigate the computation of message importance distortion function,
which has a great impact on the probabilistic events analysis in practice. Actually, the definition of
message importance distortion function in Equation (29) can be regarded as a special function, which
is the minimization of the message importance loss with the symbol error less than or equal to the
allowable distortion D. In particular, Definition 5 can also be expressed as the following optimization:

P1 : min
p(yj |xi)

{L(v, X)− L(v, X|Y)}

s.t. ∑
xi

∑
yj

p(xi)p(yj|xi)d(xi, yj) ≤ D,

∑
yj

p(yj|xi) = 1,

p(yj|xi) ≥ 0,

(40)

where L(v, X) and L(v, X|Y) are MIM and CMIM defined in Equations (1) and (4), as well as

0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.
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To take a computable optimization problem as an example, we consider Hamming distortion as
the distortion function d(x, y), namely

d(x, y) =


0 1 ... 1
1 0 ... 1
... ... ...
1 1 ... 0

 , (41)

which means d(xi, yi) = 0 and d(xi, yj) = 1 (i 6= j). In order to reveal some intrinsic meanings of
Rv(D), we investigate an information transfer of Bernoulli source as follows.

Proposition 4. For a Bernoulli(p) source denoted by a variable X and an information transfer process
{X, p(y|x), Y} with Hamming distortion, the message importance distortion function is given by

Rv(D) = {pev(1−p) + (1− p)evp} − {Dev(1−D) + (1− D)evD}, (42)

and the corresponding information transfer matrix is

p(y|x) =

 (1−D)(p−D)
p(1−2D)

(1−p−D)D
p(1−2D)

D(p−D)
(1−p)(1−2D)

(1−p−D)(1−D)
(1−p)(1−2D)

 , (43)

where 0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

and 0 ≤ D ≤ min{p, 1− p}.

Proof of Proposition 4. Refer to the Appendix B.

5. Bitrate Transmission Constrained by Message Importance

We investigate the information capacity in the case of a limited message importance loss in
this section. The objective is to achieve the maximum transmission bitrate under the constraint of
a certain message importance loss ε. The maximum transmission bitrate is one of system invariants
in a transmission process, which provides a upper bound of amount of information obtained by
the receiver.

In an information transmission process, the information capacity is the mutual information
between the encoded signal and the received signal with the dimension bit/symbol. In a real
transmission, there always exists an allowable distortion between the sending sequence X and the
received sequence Y, while the maximum allowable message importance loss is required to avoid too
much distortion of important events. From this perspective, message importance loss is considered
to be another constraint for the information transmission capacity beyond the information distortion.
Therefore, this might play a crucial role in the design of transmission in information processing systems.

In particular, we characterize the maximizing mutual information constrained by a controlled
message importance loss as follows:

P2 : max
p(x)

I(X||Y)

s.t. L(v, X)− L(v, X|Y) ≤ ε,

∑
yj

p(xi) = 1,

p(xi) ≥ 0,

(44)

where I(X||Y) = ∑xi ,yj
p(xi)p(yj|xi) log

p(xi)p(yj |xi)

p(yj)
, p(yj) = ∑xi

p(xi)p(yj|xi), L(v, X) and L(v, X|Y)

are MIM and CMIM defined in Equations (1) and (4), as well as 0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.
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Actually, the bitrate transmission with a message importance loss constraint has a special solution
for a certain scenario. In order to give a specific example, we investigate the optimization problem in
the Bernoulli(p) source with a symmetric or erasure transfer matrix as follows.

5.1. Binary Symmetric Matrix

Proposition 5. For a Bernoulli(p) source X whose distribution is {p, 1− p} (0 ≤ p ≤ 1/2) and an information
transfer process {X, p(y|x), Y} with transfer matrix

p(y|x) =
[

1− βs βs

βs 1− βs

]
, (45)

we have the solution for P2 defined in Equation (44) as follows:

max
p(x)

I(X||Y)

=

{
1− H(βs), (ε ≥ Cβs)

H(ps(1− βs) + (1− ps)βs)− H(βs), (0 < ε ≤ Cβs),

(46)

where ps is the solution of L(v, X)− L(v, X|Y) = ε (L(v, X) and L(v, X|Y) mentioned in the optimization
problem P2), whose approximate value is

ps
.
=

1−
√

Θ
2

, (47)

in which the parameter Θ is given by

Θ = 1− 4ε

4v + v2 −
4
√
(1− 2βs)2ε2 + 2(4v + v2)βs(1− βs)ε

(4v + v2)|1− 2βs|
, (48)

and H(·) denotes the operator for Shannon entropy, that is H(p) = −[(1 − p) log(1 − p) + p log p] ,
Cβs = e

v
2 − {βsev(1−βs) + (1− βs)evβs} (0 ≤ βs ≤ 1) and v < 2 ≤ 2/ max {p(xi)}.

Proof of Proposition 5. Considering the Bernoulli(p) source X following {p, 1− p} and the binary
symmetric matrix, it is not difficult to gain

I(X||Y) = H(Y)− H(Y|X)

= −{p(y0) log p(y0) + p(y1) log p(y1)} − H(βs),
(49)

where p(y0) = p(1− βs) + (1− p)βs, p(y1) = pβs + (1− p)(1− βs) and H(βs) = −[(1− βs) log(1−
βs) + βs log βs].

Moreover, define the Lagrange function as Gs(p) = I(X||Y)+λs(L(v, X)− L(v, X|Y)− ε) where
ε > 0, 0 ≤ p ≤ 1/2 and λs ≥ 0. It is not difficult to have the partial derivative of Gs(p) as follows:

∂Gs(p)
∂p

=
∂I(X||Y)

∂p
+ λs

∂C(p, v, βs)

∂p
, (50)

where ∂C(p,v,βs)
∂p is given by the Equation (14) and

∂I(X||Y)
∂p

= (1− 2βs) log
{
(2βs − 1)p + 1− βs

(1− 2βs)p + βs

}
. (51)

By virtue of the monotonic increasing function log(x) for x > 0, it is easy to see the nonnegativity
of ∂I(X||Y)

∂p is equal to (1− 2βs){(2βs − 1)p + 1− βs − [(1− 2βs)p + βs]} = (1− 2p)(1− 2βs)2 ≥ 0 in
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the case 0 ≤ p ≤ 1/2. Moreover, due to the nonnegative ∂C(p,v,βs)
∂p in p ∈ [0, 1/2] which is mentioned in

the proof of Proposition 1, it is readily seen that ∂Gs(p)
∂p ≥ 0 is satisfied under the condition 0 ≤ p ≤ 1/2.

Thus, the optimal solution p∗s is the maximal available p (p ∈ [0, 1/2]) as follows:

p∗s =


1
2

, for ε ≥ Cβs ,

ps, for 0 < ε ≤ Cβs ,
(52)

where ps is the solution of L(v, X)− L(v, X|Y) = ε, and Cβs is the MILC mentioned in Equation (11).
By using Taylor series expansion, the equation L(v, X) − L(v, X|Y) = ε can be expressed

approximately as follows:

(2v +
v2

2
)

{
(1− p)p− p(1− p)βs(1− βs)

[(2βs − 1)p + 1− βs][(1− 2βs)p + βs]

}
= ε, (53)

whose solution is the approximate ps as the Equation (47).
Therefore, by substituting the p∗s into Equation (49), we have Equation (46).

Remark 4. Proposition 5 gives the maximum transmission bitrate under the constraint of message importance
loss. Particularly, there are growth regions and smooth regions for the maximum transmission bitrate in the
receiver with respect to message importance loss ε. When the message importance loss ε is constrained in a little
range, the real bitrate is less than the Shannon information capacity, which is involved with the entropy of the
symmetric matrix parameter βs.

5.2. Binary Erasure Matrix

Proposition 6. Assume that there is a Bernoulli(p) source X following distribution {p, 1− p} (0 ≤ p ≤ 1/2)
and an information transfer process {X, p(y|x), Y} with the binary erasure matrix

p(y|x) =
[

1− βe 0 βe

0 1− βe βe

]
, (54)

where 0 ≤ βe ≤ 1. In this case, the solution for P2 described in Equation (44) is

max
p(x)

I(X||Y)

=

{
1− βe, (ε ≥ Cβe)

(1− βe)H(pe), (0 < ε ≤ Cβs),

(55)

where pe is the solution of (1− βe){pev(1−p) + (1− p)evp − 1} = ε, whose approximate value is

pe
.
=

1−
√

1− 8ε
(1−βe)(4v+v2)

2
, (56)

and H(x) = −[(1− x) log(1− x) + x log x], Cβe = (1− βe)(e
v
2 − 1) and v < 2 ≤ 2/ max {p(xi)}.

Proof of Proposition 6. In the binary erasure matrix, considering the Bernoulli(p) source X whose
distribution is {p, 1− p} , it is readily seen that

I(X||Y) = H(Y)− H(Y|X)

= (1− βe)H(p),
(57)

where H(·) denotes the Shannon entropy operator, namely H(p) = −[(1− p) log(1− p) + p log p].
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Moreover, according to the Definitions 1 and 2, it is easy to see that

L(v, X)− L(v, X|Y) = (1− βe){L(v, p)− 1}, (58)

where L(v, p) = pev(1−p) + (1− p)evp.
Similar to the proof of the Proposition 5 and considering the monotonically increasing H(p) and

L(v, p) in p ∈ [0, 1/2], it is not difficult to see that the optimal solution p∗e is the maximal available p
in the case 0 ≤ p ≤ 1

2 , which is given by

p∗e =


1
2

, for ε ≥ Cβe ,

pe, for 0 < ε ≤ Cβe ,
(59)

where pe is the solution of (1 − βe){L(v, p) − 1} = ε, and the upper bound Cβe is gained in
Equation (16).

By resorting to Taylor series expansion, the approximate equation for (1− βe){L(v, p)− 1} = ε

is given by

(1− βe)(2v +
v2

2
)(1− p)p = ε, (60)

from which the approximate solution pe in Equation (56) is obtained.
Therefore, Equation (55) is obtained by substituting the p∗e into the Equation (57).

Remark 5. From Proposition 6, there are two regions for the maximum transmission bitrate with respect to
message importance loss. The one depends on the message importance loss threshold ε. The other is just related
to the erasure matrix parameter βe.

Note that single-letter models are discussed to show some theoretical results for information
transfer under the constraint of massage importance loss, which may be used in some special potential
applications such as maritime international signal or switch signal processing. As a matter of fact,
in practice, it is preferred to operate multi-letters models which can be applied to more scenarios such
as the multimedia communication, cooperative communications and multiple access, etc. As for these
complicated cases which may be different from conventional Shannon information theory, we shall
consider it in the near future.

6. Numerical Results

This section shall provide numerical results to validate the theoretical results in this paper.

6.1. The Message Importance Loss Capacity

First of all, we give some numerical simulation with respect to the MILC in different information
transmission cases. In Figure 2, it is apparent to see that if the Bernoulli source follows the
uniform distribution, namely p = 0.5, the message importance loss will reach the maximum in
the cases of different matrix parameter βs. That is, the numerical results of MILC are obtained as
{0.4081, 0.0997, 0, 0.2265} in the case of parameter βs = {0.1, 0.3, 0.5, 0.8} and v = 1, which corresponds
to Proposition 1. Moreover, we also know that if βs = 0.5, namely the random transfer matrix is
satisfied, the MILC reaches the lower bound that is C = 0. In contrast, if the parameter βs satisfies
βs = 0, the upper bound of MILC will be gained such as {0.1618, 0.4191, 0.6487, 1.7183} in the case
v = {0.3, 0.7, 1.0, 2.0}.

Figure 3 shows that, in the binary erasure matrix, the MILC is reached under the same condition
as that in the binary symmetric matrix, namely p = 0.5. For example the numerical results of MILC
with v = 1 are {0.5838, 0.4541, 0.3244, 0.1297} in the cases βe = {0.1, 0.3, 0.5, 0.8}. However, if βe = 1,
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the lower bound of MILC (C = 0) is obtained in the erasure transfer matrix, different from the
symmetric case.
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Figure 2. The performance of message importance loss and MILC (mentioned in Definition 4) in
the Binary symmetric matrix. (a) the performance of message importance loss (with v = 1) versus
probability p in the cases of different symmetric matrix parameter (βs = 0.1, 0.3, 0.5, 0.8); (b) the
performance of MILC versus matrix parameter βs in the cases of different parameter v.
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Figure 3. The performance of message importance loss and MILC in the Binary erasure matrix. (a) the
performance of message importance loss (with v = 1) versus probability p in the cases of different
matrix parameter (βe = 0.1, 0.3, 0.5, 0.8); (b) the performance of MILC versus erasure matrix parameter
βe in the cases of different parameter v.

From Figure 4, it is not difficult to see that the certain transfer matrix (namely βk = 0) leads to
upper bound of MILC. For example, when the number of source symbols satisfies K = {4, 6, 8, 10},
the numerical results of MILC with v = 2 are {3.4817, 4.2945, 4.7546, 5.0496}. In addition, the lower
bound of MILC is reached in the case that βk = 1− 1

K .
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Figure 4. The performance of MILC in strongly symmetric matrix with K = 4, 6, 8, 10.

6.2. Message Importance Distortion

We focus on the distortion of message importance transfer and give some simulations in
this subsection. From Figure 5, it is illustrated that the message importance distortion function
Rv(D) is monotonically non-increasing with respect to the distortion D, which can validate some
properties mentioned in Section 4.1. Moreover, the maximum Rv(D) is obtained in the case
D = 0. Taking the Bernoulli(p) source as an example, the numerical results of Rv(D) with
v = 0.2 are {0.0379, 0.0674, 0.0884, 0.1010, 0.1052} and the corresponding probability satisfies
p = {0.1, 0.2, 0.3, 0.4, 0.5}. Note that the turning point of Rv(D) is gained when the probability
p equals to the distortion D, which conforms to Proposition 4.
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Figure 5. The performance of message importance distortion function Rv(D) in the case of Bernoulli(p)
source (p = 0.1, 0.2, 0.3, 0.4).

6.3. Bitrate Transmission with Message Importance Loss

Figure 6 shows the allowable maximum bitrate (characterized by mutual information) constrained
by a message importance loss ε in a Bernoulli(p) source case. It is worth noting that there are two
regions for the mutual information in the both transfer matrixes. In the first region, the mutual
information is monotonically increasing with respect to the ε; however, in the second region, the mutual
information is stable, namely the information transmission capacity is obtained. As for the numerical
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results, the turning points are obtained at ε = {0.0328, 0.0185, 0.0082, 0.0021} and the maximum
mutual information values are {0.5310, 0.2781, 0.1187, 0.0290} in the binary symmetric matrix with
the corresponding parameter βs = {0.1, 0.2, 0.3, 0.4}, while the turning points of erasure matrix are at
ε = {0.0416, 0.0410, 0.0359, 0.0308} in the case that βe = {0.1, 0.2, 0.3, 0.4} with the maximum mutual
information values {0.9, 0.8, 0.7, 0.6}. Consequently, Propositions 5 and 6 are validated from the
numerical results.
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Figure 6. The performance of mutual information I(X||Y) constrained by the message importance loss
ε (the parameter v = 0.1). (a) the performance of I(X||Y) versus ε in the binary symmetric matrix;
(b) the performance of I(X||Y) versus ε in the erasure matrix.

6.4. Experimental Simulations

In this subsection, we take the binary stochastic process (in which the random variable follows
Bernoulli distribution) as an example to validate theoretical results. In particular, the Bernoulli(p)
source X (whose distribution is denoted by P(X) = {p, 1− p} where 0 < p < 1) with the symmetric
or erasure matrix (described by Equations (10) and (15)) is considered to reveal some properties of
message importance loss capacity (in Section 3), message importance distortion function (in Section 4)
as well as bitrate transmission constrained by message importance (in Section 5).

From Figure 7, it is seen that the uniform information source X (that is P(X) = {1/2, 1/2})
leads to the maximum message importance loss (namely MILC) in both cases of symmetric matrix
and erasure matrix, which implies Propositions 1 and 2. Moreover, with the increase of number of
samples, the performance of massage importance loss tends to smooth. In addition, the MILC in
symmetric transfer matrix is larger than that in the erasure one when the matrix parameters βs and βe

are the same.
As for the distortion of message importance transfer, we investigate the message importance loss

based on different transfer matrices, which is shown in Figure 8 where poptimal(y|x) is described

as Equation (43), psymmetric(y|x) =

[
1− D D

D 1− D

]
, prandom 1(y|x) =

[
1− D

10p
D

10p
9D

10(1−p) 1− 9D
10(1−p)

]
,

prandom 2(y|x) =

[
1− D

5p
D
5p

D
5(1−p) 1− D

5(1−p)

]
, prandom 3(y|x) =

[
1− D

10p
D

10p
D

10(1−p) 1− D
10(1−p)

]
, pcertain(y|x) =[

1 0
0 1

]
, D is the allowable distortion and p is the probability element of Bernoulli(p) source. From
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Figure 8, it is illustrated that, when the poptimal(y|x) is selected as the transfer matrix, the massage
importance loss reaches the minimum, which corresponds to Proposition 4. In addition, if the transfer
matrix is not certain (existing distortion), message importance loss is decreasing with the increase of
allowable distortion.
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Figure 7. The message importance loss (with parameter v = 1) versus the probability p of Bernoulli(p)
source with number of samples N (N = {100, 1000, 10, 000}). There are two different transfer matrices,
namely the symmetric matrix with parameter βs = 0.1 and the erasure matrix with parameter βe = 0.1.
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Figure 8. The message importance loss (with parameter v = 0.1) versus allowable distortion D
(the corresponding distortion function is Hamming distortion) in the case of different transfer matrices.
The information source X follows Bernoulli(p) distribution (where p = 0.3, namely P(X) = {0.3, 0.7})
and the number of samples is n = 10, 000.

Considering the transmission with a message importance loss constraint, Figure 9 shows
that, when the p∗s (given by Equation (52)) and p∗e (given by Equation (59)) are selected as the
probability elements for the Bernoulli(p) source in the symmetric matrix and erasure matrix respectively,
the corresponding mutual information values are larger than those based on other probability (such
as prandom 1 = (1−

√
1− 8ε)/2 and prandom 2 = (1−

√
1− 4ε)/2). In addition, it is not difficult to

see that, when the parameter βs is equal to βe, the mutual information (constrained by a message
importance loss) in symmetric transfer matrix is larger than that in the erasure one.
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Figure 9. The mutual information I(X||Y) versus the rare message importance loss threshold ε (the
parameter v = 0.1) in the case of Bernoulli(p) source X (that is P(X) = {p, 1− p} with different
probability p). The number of samples observed from the source X is n = 10, 000, and transfer matrix
is the symmetric matrix with parameter βs = 0.1 or the erasure matrix with parameter βe = 0.1.

7. Conclusions

In this paper, we investigated the information processing from the perspective of an information
measure i.e., MIM. Actually, with the help of parameter v, the MIM has more flexibility and can be
used widely. Here, we just focused on the MIM with 0 ≤ v ≤ 2/ max{p(xi)} which not only has
properties of self-scoring values for probabilistic events but also has similarities with Shannon entropy
in information compression and transmission. In particular, based on a system model with message
importance processing, a message importance loss was presented. This measure can characterize the
information distinction before and after a message transfer process. Furthermore, we have proposed
the message importance loss capacity which can provide an upper bound for the message importance
harvest in the information transmission. Moreover, the message importance distortion function, which
is to select an information transfer matrix to minimize the message importance loss, was discussed
to characterize the performance of information lossy compression from the viewpoint of message
importance of events. In addition, we exploited the message importance loss to constrain the bitrate
transmission so that the combined factors of message importance and amount of information are
considered to guide an information transmission. To give the validation for theoretical analyses,
some numerical results and experimental simulations were also presented in details. As the next
step research, we are looking forward to exploiting real data to design some applicable strategies for
information processing based on the MIM, as well as investigating the performance of multivariate
systems in the sense of MIM.
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Abbreviations

The following abbreviations are used in this manuscript:

MIM Message Importance Measure
MEMS Max Entropy in Metric Space
IoT Internet of Things
NMIM Non-Parametric MIM
DMIM Differential MIM
CMIM Conditional Message Importance Measure
MILC Message Importance Loss Capacity

Appendix A. Proof of the Convexity Property of Rv(D)

As for an allowable distortion D0 = δDa + (1− δ)Db, we have the average distortion for the
information transfer matrix p0(y|x) = δpa(y|x) + (1− δ)pb(y|x) as follows:

D̄0 = δ ∑
xi

∑
yj

p(xi)pa(yj|xi)d(xi, yj) + (1− δ)∑
xi

∑
yj

p(xi)pb(yj|xi)d(xi, yj)

≤ δDa + (1− δ)Db = D0,
(A1)

which indicates that the p0(y|x) is an allowable information transfer matrix for D0.
Moreover, by using Jensen’s inequality and Bayes’ theorem, we have the CMIM with respect to

p0(y|x) as follows:

L0(v, X|Y)

= ∑
xi

∑
yi

p(xi)p0(yj|xi)e
v{1−

p(xi)p0(yj |xi)

p0(yj)
}

= ∑
xi

∑
yi

p(xi)[δpa(yj|xi) + (1− δ)pb(yj|xi)]e
v{1−

p(xi)[δpa(yj |xi)+(1−δ)pb(yj |xi)]

p0(yj)
}

≥∑
xi

∑
yi

p(xi)[δpa(yj|xi)]e
v{1−

p(xi)[δpa(yj |xi)]

p0(yj)
}
+ ∑

xi

∑
yi

p(xi)[(1− δ)pb(yj|xi)]e
v{1−

p(xi)[(1−δ)pb(yj |xi)]

p0(yj)
}

≥ δ ∑
xi

∑
yi

p(xi)pa(yj|xi)e
v{1−

p(xi)pa(yj |xi)

pa(yj)
}
+ (1− δ)∑

xi

∑
yi

p(xi)pb(yj|xi)e
v{1−

p(xi)pb(yj |xi)

pb(yj)
}

= δLa(v, X|Y) + (1− δ)Lb(v, X|Y),

(A2)

in which
p0(yj) = ∑

xi

p(xi)p0(yj|xi)

= ∑
xi

p(xi)[δpa(yj|xi) + (1− δ)pb(yj|xi)]

= δpa(yj) + (1− δ)pb(yj),

(A3)

and the parameter v is 0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.
Furthermore, according to the Equations (29) and (A2), it is not difficult to have

Rv(D0) = min
p(y|x)∈BD0

{L(v, X)− L(v, X|Y)}

≤ {L(v, X)− L0(v, X|Y)}
≤ δ{L(v, X)− La(v, X|Y)}+ (1− δ){L(v, X)− Lb(v, X|Y)}
= δRv(Da) + Rv(Db),

(A4)
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where L(v, X) is the MIM for the given information source X, while La(v, X|Y) and Lb(v, X|Y) denote
the CMIM with respect to pa(y|x) and pb(y|x), respectively.

Therefore, the convexity property is testified.

Appendix B. Proof of Proposition 4

Considering the fact that the Bernoulli source X is given and the equivalent expression is
mentioned in Equation (39), the optimization problem P1 can be regarded as

P1−A : max
p(yj |xi)

L(v, X|Y)

s.t. p(x0)p(y1|x0) + p(x1)p(y0|x1) = D,

p(y0|x0) + p(y1|x0) = 1,

p(y0|x1) + p(y1|x1) = 1,

p(yj|xi) ≥ 0, (i = 0, 1; j = 0, 1),

(A5)

where L(v, X|Y) = ∑xi ,yj
p(xi, yj)e

v(1−p(xi |yj)) and 0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.
To simplify the above one, we have

P1−B : max
α,β

LD(v, X|Y)

s.t. pα + (1− p)β = D,

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ p ≤ 1,

(A6)

in which p and (1− p) denote p(x0) and p(x1), α and β denote p(y1|x0) and p(y0|x1), and

LD(v, X|Y)

= p(1− α)e
v(1−p)β

p(1−α)+(1−p)β + (1− p)βe
vp(1−α)

(1−p)β+p(1−α) + (1− p)(1− β)e
vpα

pα+(1−p)(1−β) + pαe
v(1−p)(1−β)

pα+(1−p)(1−β) ,
(A7)

where 0 < v ≤ 2 minj {p(yj)}
maxi {p(xi)}

.
Actually, it is not easy to deal with the Equation (A6) directly; we intend to use an equivalent

expression to describe this objective. By using Taylor series expansion of ex, namely ex = 1 + x + x2

2 +

o(x2), we have

LD(v, X|Y) .
= 1 + (2v +

v2

2
)
{ pα(1− p)(1− β)

pα + (1− p)(1− β)
+

p(1− α)(1− p)β

p(1− α) + (1− p)β

}
. (A8)

By substituting β = D−pα
1−p into the Equation (A8), it is easy to have

LD(v, X|Y) .
= 1 + p(2v +

v2

2
)
{ pα2 + (1− p− D)α

2pα + (1− p− D)
+

pα2 − (p + D)α + D
(p + D)− 2pα

}
, (A9)

where max{0, 1 + D−1
p } ≤ α ≤ min{1, D

p } resulted from the constraints in Equation (A6).
Moreover, it is not difficult to have the partial derivative of LD(v, X|Y) in Equation (A9) with

respect to α as follows:

∂LD(v, X|Y)
∂α

.
= 2p2(2v +

v2

2
)
{−pα2 − (1− p− D)α

[2pα + (1− p− D)]2
+

pα2 − (p + D)α + D
[(p + D)− 2pα]2

}
. (A10)

By setting ∂LD(v,X|Y)
∂α = 0, it is readily seen that the solutions of α in Equation (A10) are given by

α1 = (1−p−D)D
p(1−2D)

and α2 = 1−D−p
1−2p , respectively.
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In addition, in the light of the domain of D mentioned in Equation (35), it is easy to have
Dmax = min{p, 1 − p} in the Bernoulli source case. That is, the allowable distortion satisfies
0 ≤ D ≤ min{p, 1− p}. Thus, the domain of α namely max{0, 1 + D−1

p } ≤ α ≤ min{1, D
p }, can

be given by 0 ≤ α ≤ D
p .

Then, it is easy to have the appropriate solution of α as follows:

α∗ =
(1− p− D)D

p(1− 2D)
, (A11)

in which the second derivative ∂2LD(v,X|Y)
∂α2 is non-positive, namely maximum value is reached, and the

corresponding information transfer matrix is

p(y|x) =


(1−D)(p−D)

p(1−2D)
(1−p−D)D

p(1−2D)

D(p−D)
(1−p)(1−2D)

(1−p−D)(1−D)
(1−p)(1−2D)

 , (A12)

where 0 ≤ D ≤ min{p, 1− p}.
Consequently, by substituting the matrix Equation (A12) into the Equation (40), it is not difficult

to verify this proposition.

References

1. Ju, B.; Zhang, H.; Liu, Y.; Liu, F.; Lu, S.; Dai, Z. A feature extraction method using improved multi-scale
entropy for rolling bearing fault diagnosis. Entropy 2018, 20, 212. [CrossRef]

2. Wei, H.; Chen, L.; Guo, L. KL divergence-based fuzzy cluster ensemble for image segmentation. Entropy
2018, 20, 273. [CrossRef]

3. Rehman, S.; Tu, S.; Rehman, O.; Huang, Y.; Magurawalage, C.M.S.; Chang, C.C. Optimization of CNN
through novel training strategy for visual classification problems. Entropy 2018, 20, 290. [CrossRef]

4. Rui, S.; Liu, S.; Fan, P. Recognizing information feature variation: message importance transfer measure and
its applications in big data. Entropy 2018, 20, 401. [CrossRef]

5. Hu, H.; Wen, Y.; Chua, T.S.; Li, X. Toward scalable systems for big data analytics: A technology tutorial.
IEEE Access 2017, 5, 7776–7797.

6. Villecco, F. On the evaluation of errors in the virtual design of mechanical systems. Machines 2018, 6, 36.
[CrossRef]

7. Bormashenko, E.; Frenkel, M.; Legchenkova, I. Is the Voronoi Entropy a True Entropy? Comments on
“Entropy, Shannon’s Measure of Information and Boltzmann’s H-Theorem”. Entropy 2019, 21, 251. [CrossRef]

8. Delvenne, J. Category theory for autonomous and networked dynamical systems. Entropy 2019, 21, 301.
[CrossRef]

9. Ramaswamy, S.; Rastogi, R.; Shim, K. Efficient algorithms for mining outliers from large data sets.
ACM SIGMOD Rec. 2000, 29, 427–438. [CrossRef]

10. Harrou, F.; Kadri, F.; Chaabane, S.; Tahon, C.; Sun, Y. Improved principal component analysis for anomaly
detection: Application to an emergency department. Comput. Ind. Eng. 2015, 88, 63–77. [CrossRef]

11. Xu, S.; Baldea, M.; Edgar, T.F.; Wojsznis, W.; Blevins, T.; Nixon, M. An improved methodology for outlier
detection in dynamic datasets. AIChE J. 2015, 61, 419–433. [CrossRef]

12. Yu, H.; Khan, F.; Garaniya, V. Nonlinear Gaussian belief network based fault diagnosis for industrial
processes. J. Process Control 2015, 35, 178–200. [CrossRef]

13. Prieto-Moreno, A.; Llanes-Santiago, O.; Garcia-Moreno, E. Principal components selection for dimensionality
reduction using discriminant information applied to fault diagnosis. J. Process Control 2015, 33, 14–24.
[CrossRef]

14. Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access
2016, 4, 2292–2303. [CrossRef]

http://dx.doi.org/10.3390/e20040212
http://dx.doi.org/10.3390/e20040273
http://dx.doi.org/10.3390/e20040290
http://dx.doi.org/10.3390/e20060401
http://dx.doi.org/10.3390/machines6030036
http://dx.doi.org/10.3390/e21030251
http://dx.doi.org/10.3390/e21030302
http://dx.doi.org/10.1145/335191.335437
http://dx.doi.org/10.1016/j.cie.2015.06.020
http://dx.doi.org/10.1002/aic.14631
http://dx.doi.org/10.1016/j.jprocont.2015.09.004
http://dx.doi.org/10.1016/j.jprocont.2015.06.003
http://dx.doi.org/10.1109/ACCESS.2016.2566339


Entropy 2019, 21, 439 26 of 27

15. Wu, J.; Zhao, W. Design and realization of winternet: From net of things to internet of things. ACM Trans.
Cyber Phys. Syst. 2017, 1, 2. [CrossRef]

16. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture,
Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142.
[CrossRef]

17. Sun, Y.; Song, H.; Jara, A.J.; Bie, R. Internet of things and big data analytics for smart and connected
communities. IEEE Access 2016, 4, 766–773. [CrossRef]

18. Zanella, A.; Bui, N.; Zorzi, M. Internet of Things for smart cities. IEEE Internet Things J. 2014, 1, 22–32.
[CrossRef]

19. Jain, R.; Shah, H. An anomaly detection in smart cities modeled as wireless sensor network. In Proceedings
of the 2016 International Conference on Signal and Information Processing (IConSIP), Nanded, India,
6–8 October 2016; pp. 1–5.

20. Ramos, S.; Gehrig, S.; Pinggera, P.; Franke, U.; Rother, C. Detecting unexpected obstacles for self-driving
cars: Fusing deep learning and geometric modeling. In Proceedings of the 2017 IEEE Intelligent Vehicles
Symposium (IV), Redondo Beach, CA, USA, 11–14 June 2017; pp. 1025–1032.

21. Amaradi, P.; Sriramoju, N.; Dang, L.; Tewolde, G.S.; Kwon, J. Lane following and obstacle detection
techniques in autonomous driving vehicles. In Proceedings of the 2016 IEEE International Conference on
Electro Information Technology (EIT), Dekalb, IL, USA, 19–21 May 2016; pp. 674–679.

22. Gaikwad, V.; Lokhande, S. An improved lane departure method for advanced driver assistance system.
In Proceedings of the 2012 International Conference on Computing, Communication and Applications
(ICCCA), Dindigul, India, 22–24 February 2012; pp. 1–5.

23. Fan, P.; Dong, Y.; Lu, J.; Liu, S. Message importance measure and its application to minority subset detection
in big data. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA,
4–8 December 2016; pp. 1–6.

24. Liu, S.; She, R.; Fan, P.; Letaief, K.B. Non-parametric Message Importance Measure: Storage Code Design
and Transmission Planning for Big Data. IEEE Trans. Commun. 2018, 66, 5181–5196. [CrossRef]

25. She, R.; Liu, S.; Dong, Y.; Fan, P. Focusing on a probability element: Parameter selection of message
importance measure in big data. In Proceedings of the 2017 IEEE International Conference on
Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.

26. Renyi, A. On measures of entropy and information. In Proceedings of the 4th Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics; University of California
Press: Berkeley, CA, USA, 1961; pp. 547–561.

27. Wan, S.; Lu, J.; Fan, P.; Letaief, K. Minor probability events’ detection in big data: An integrated approach
with bayes detection and mim. IEEE Commun. Lett. 2019, 23, 418–421. [CrossRef]

28. Liu, S.; Dong, Y.; Fan, P.; She, R.; Wan, S. Matching users’ preference under target revenue constraints in data
recommendation systems. Entropy 2019, 21, 205. [CrossRef]

29. Liu, S.; She, R.; Fan, P. Differential message importance measure: A new approach to the required sampling
number in big data structure characterization. IEEE Access 2018, 6, 42851–42867. [CrossRef]

30. Jalali, S.; Weissman, T. Block and sliding-block lossy compression via MCMC. IEEE Trans. Commun. 2012, 60,
2187–2198. [CrossRef]

31. Cui, T.; Chen, L.; Ho, T. Distributed distortion optimization for correlated sources with network coding.
IEEE Trans. Commun. 2012, 60, 1336–1344. [CrossRef]

32. Koken, E.; Tuncel, E. Joint source–Channel coding for broadcasting correlated sources. IEEE Trans. Commun.
2017, 65, 3012–3022. [CrossRef]

33. Lee, W.; Xiang, D. Information-theoretic measures for anomaly detection. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 13–16 May 2001; pp. 130–143.

34. Ando, S.; Suzuki, E. An information theoretic approach to detection of minority subsets in database.
In Proceedings of the IEEE Sixth International Conference on Data Mining, Hong Kong, China,
13–15 December 2006; pp. 11–20.

35. Touchette, H. The large deviation approach to statistical mechanics. Phys. Rep. 2009, 478, 1–69. [CrossRef]
36. Curiel, R.P.; Bishop, S. A measure of the concentration of rare events. Sci. Rep. 2016, 6, 1–6.
37. Weinberger, N.; Merhav, N. A large deviations approach to secure lossy compression. IEEE Trans. Inf. Theory

2017, 63, 2533–2559. [CrossRef]

http://dx.doi.org/10.1145/2872332
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1109/ACCESS.2016.2529723
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/TCOMM.2018.2847666
http://dx.doi.org/10.1109/LCOMM.2019.2895828
http://dx.doi.org/10.3390/e21020205
http://dx.doi.org/10.1109/ACCESS.2018.2859398
http://dx.doi.org/10.1109/TCOMM.2012.061412.110194
http://dx.doi.org/10.1109/TCOMM.2012.032012.100791
http://dx.doi.org/10.1109/TCOMM.2017.2698031
http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1109/TIT.2016.2641954


Entropy 2019, 21, 439 27 of 27

38. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley Series in Telecommunications and
Signal Processing; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2006.

39. Sechelea, A.; Munteanu, A.; Cheng, S.; Deligiannis, N. On the rate-distortion function for binary source
coding with side information. IEEE Trans. Commun. 2016, 64, 5203–5216. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCOMM.2016.2607745
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Review of Message Importance Measure
	 The Importance Coefficient  in MIM
	Similarities and Differences between Shannon Entropy and MIM
	Motivation and Contributions
	Organization

	System Model with Message Importance
	Message Importance Loss in Transmission 
	Binary Symmetric Matrix
	Binary Erasure Matrix
	Strongly Symmetric Backward Matrix

	Distortion of Message Importance Transfer
	 Properties of Message Importance Distortion Function
	Domain of Distortion
	The Convexity Property
	The Monotonically Decreasing Property
	The Equivalent Expression

	 Analysis for Message Importance Distortion Function

	 Bitrate Transmission Constrained by Message Importance
	Binary Symmetric Matrix
	Binary Erasure Matrix

	Numerical Results
	The Message Importance Loss Capacity
	Message Importance Distortion 
	Bitrate Transmission with Message Importance Loss
	Experimental Simulations

	Conclusions
	Proof of the Convexity Property of R(D)
	Proof of Proposition 4
	References

