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Abstract: This work applies two levels of inference within a Bayesian framework to accomplish
estimation of the directions of arrivals (DoAs) of sound sources. The sensing modality is a spherical
microphone array based on spherical harmonics beamforming. When estimating the DoA, the
acoustic signals may potentially contain one or multiple simultaneous sources. Using two levels of
Bayesian inference, this work begins by estimating the correct number of sources via the higher level
of inference, Bayesian model selection. It is followed by estimating the directional information of
each source via the lower level of inference, Bayesian parameter estimation. This work formulates
signal models using spherical harmonic beamforming that encodes the prior information on the
sensor arrays in the form of analytical models with an unknown number of sound sources, and their
locations. Available information on differences between the model and the sound signals as well as
prior information on directions of arrivals are incorporated based on the principle of the maximum
entropy. Two and three simultaneous sound sources have been experimentally tested without prior
information on the number of sources. Bayesian inference provides unambiguous estimation on
correct numbers of sources followed by the DoA estimations for each individual sound sources. This
paper presents the Bayesian formulation, and analysis results to demonstrate the potential usefulness
of the model-based Bayesian inference for complex acoustic environments with potentially multiple
simultaneous sources.

Keywords: Bayesian inference; maximum entropy; spherical harmonics; direction of arrival; model
selection; parameter estimation

1. Introduction

This paper offers a solution to the problem of localizing multiple simultaneous acoustic sources in
acoustic environments through a model-based probabilistic approach. This research demonstrates that
the number of sound sources as well as the directions in which they arrive can be estimated given a set
of sound signals recorded on a spherical microphone array [1,2]. The estimation requires a process
known as spherical beamforming, or the spatial filtering of a sound signal using spherical harmonics
theory [3]. This is combined with probabilistic inference using Bayesian model selection and parameter
estimation [4,5].

Estimation of direction of arrivals (DoAs) from multiple simultaneous sound sources in complex
sound environments presents a challenge as there may be variations in the number of simultaneous
sources, along with their locations, characteristics, and strengths [6–8]. Furthermore, there can be
unwanted, fluctuating background noise as well. Some solutions to this problem have been reported [9].
However, to the best of the authors’ knowledge, applying Bayesian inference to solve this problem has
not yet been sufficiently explored.
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Spherical harmonics have long been applied in mathematics and science fields [10–12].
In acoustics, interest in spherical harmonics can be traced back to Lord Raleigh [10]. In recent years
interest has been growing greatly. One recent example includes Fourier acoustics [3], applied in acoustic
near-field holographical investigations that employ spherical harmonics theory. Using microphone
array technology [13], specifically spherical microphone arrays, an entire soundfield could be analyzed
without directional constraints [1].

One aspect of localizing sound sources in complex sonic environments is performing the DoA
analysis on the recorded signals. There exists a number of methods that have been developed to
address this problem. Recent development of various different microphone arrays includes sparse
linear microphone arrays [7,14] and a two-microphone array used in a room-acoustic study [8].

A spherical microphone array contains a certain number of microphone capsules arranged on a
spherical surface that sense sound signals simultaneously. Because of the spherical arrangement of
the microphone arrays, there are no inherent directional constraints, unlike classical line-arrays [7] or
the two microphone array as reported by Escolano et al. [8]. The recorded signals can be processed to
any orientation. Various methods of data processing have attempted to determine the best ways to
process sound signals in order to analyze complex sound environments, such as spherical harmonic
beamforming in combination with optimal array processing, frequency smoothing methods [15], and
modal smoothing methods [16]. Nadiri and Rafaely [17] localize multiple speakers under reverberant
environment while Sun et al. [18] apply a spherical microphone array to localize reflections in rooms.
On table tops in conference room applications, or mounted in the ceiling, hemispherical microphone
arrays [19] have been proven to be more suitable. These methods implemented with spherical
microphone arrays improve the ability to determine the DoAs of sound sources. Many methods,
however, still rely on the basic approach to localizing source locations through correlating them
directly with high sound energy levels. A number of other recent investigations also exist using
spherical harmonics either for sound radiation [20], sound field reconstruction [21], estimation of
oblique incident surface impedance [22], in noise analysis [23], and capturing sound intensities, [24].
Rules-of-thumb [25] are also discussed on how the estimation precision for an incident source’s
azimuth-polar DoA depends on the number of identical isotropic sensors. A solution [26] has been
suggested to avoid ill-conditioned singularity when solving least-squares and eigenvalue problems to
estimate the DoAs.

As for complex sound source analysis, the spatial resolution to determine discrete source locations
has not been well investigated unless the sources are clearly separated in space due to the fact that
limited order spherical arrays have a limited spatial resolution. With a large number of sound sources,
the signals to be analyzed can blend together if the sound sources are located too closely to each other
in physical space. The sound signals recorded by the limited order of spherical arrays often carry
insufficient information. This situation requires higher order spherical arrays to be used to accurately
determine sound sources, which in turn requires more microphone channels.

In addition to the parameter estimation problems [27], which are solely associated with the DoA
estimation given a known number of sound sources, there is a need to answer the overarching question
of how to reliably determine the number of sound sources present. The answer resides in model-based
Bayesian inference, which represents a probabilistic method that can estimate the number of sources
and their attributes through probabilistic analysis rather than just correlating high sound energy levels
to sound source locations. This work applies Bayesian model selection to the DoA estimation tasks
when the number of sound sources is unknown prior to the analysis. This Bayesian formulation for
model selection starts with the application of Bayes’ theorem, followed by the incorporation of prior
information. Any interest in directional parameter values will be deferred into the background of the
model selection problem. This allows attention to be focused on estimating the probabilities for the
number of simultaneous sound sources.

There have been many recent efforts to apply Bayesian model selection to other acoustics problems.
Xiang et al. [28] apply Bayesian model selection to determine the number of exponential decays present
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in acoustic enclosures by analyzing sound energy decay functions. Bayesian model selection has also
been applied to room-acoustic modal analysis [29]. Previous studies [7,8,14] of DoA analysis have
also employed two-levels of Bayesian inference. However, to the best of the authors’ knowledge, the
model-based Bayesian analysis has not yet been sufficiently investigated using spherical microphone
arrays. This paper demonstrates that the model-based Bayesian probabilistic approach can be applied
to spatial sound field analysis with a set of sound signals recorded on a spherical microphone array.
This approach estimates the number of sound sources as well as the directions of arrivals via two levels
of Bayesian inference.

The remainder of this paper is as follows, Section 2 formulates the spherical harmonic
beamforming for the data processing and models of potential multiple sound sources. Section 3
introduces two levels of Bayesian inference framework. Section 4 discusses maximum entropy
assignment of prior probabilities. Section 5 explains a Markov Chain Monte Carlo method dedicated
to the Bayesian analysis, nested sampling. Section 6 discusses experimental results using the two
levels of Bayesian inference. Section 7 further discusses estimation errors and angular resolution issues.
Section 8 concludes the paper.

2. Data and Models in Spherical Harmonics

Spherical harmonics theory plays a central role in the DoA analysis using a spherical microphone
array. It is used to process recorded sound signals to obtain sound energy distributions around the
spherical microphone array.

2.1. Spherical Harmonics

Spherical harmonics are eigen-functions of the wave equation in spherical coordinates [30]. Any
sound field is composed of a series of orthogonal spherical harmonics of different orders. Taking the
spherical wave equation in Helmholtz form with a solution

p(r, Φ) = R(r)Y(Φ), (1)

this equation separates the solution in radial (r), and angular Y(Φ) components, respectively.
Throughout the following discussions, a time-dependence e j ω t is implicitly assumed, j =

√
−1

with ω being angular frequency, k = ω/c is the propagation coefficient, and c is sound speed. Also an
under bar of all the variables, e.g., Y , explicitly indicates complex-valued functions. Angular variable,
Φ = (θ,ϕ), includes elevation and azimuth angles.

The solution of the angular components in Equation (1) can be particularly specified by
Y(Φ) = Ym

n(Φ), combined with specific amplitude values [3],

Ym
n(Φ) =

√
2n + 1

4π

(n−m)!
(n + m)!

Pm
n (cos θ) e j m ϕ, (2)

where Pm
n (·) is the associated Legendre function. Ym

n(Φ) is termed spherical harmonics, integer
n = 0, 1, 2, . . . , is termed order, and m = 0,±1,±2, . . . , termed degree (mode) of the spherical
harmonics, respectively. Figure 1 illustrates real-part of the spherical harmonics up to order 3 for all
degrees. The spherical harmonics with the specified amplitude values are orthonormal,

∞

∑
n=0

n

∑
m=−n

[Ym
n (Φ

′)]∗ Ym
n (Φ) = δn′n δm′m , (3)
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where the symbol ∗ denotes complex conjugate. The spherical harmonics form a set of orthonormal
basis functions, used as the expansion for any arbitrary function, f (Φ), on the surface of a sphere,

f (Φ) =
∞

∑
n=0

n

∑
m=−n

fn m Ym
n(Φ), (4)

with appropriate weights fn m. These weights form the spherical Fourier transform of f (Φ) [3].
The solution of the radial component in Equation (1) can be expressed

R(r) = R 1 jn(k r) + R 2 yn(k r), (5)

where R 1, R 2 are constants, jn(ν) and yn(ν) are spherical Bessel functions [3,11]. The radial solution
can also be expressed

R(r) = R 3 h n(k r) + R 4 h∗n(k r), (6)

with R 3, R 4 being constants, h n(β r) is the spherical Hankel function

h n(k r) = jn(k r) + j yn(k r). (7)

Figure 1. Real parts of the spherical harmonics up to third order (n = 0, 1, 2, 3), for degree between
−3 ≤ m ≤ 3, with lobes in light (cyan-) color indicating positive values and lobes in dark (red) color
indicating negative values. For each given order n, each row in the table contains 2n + 1 modes.

2.2. Spherical Array Data Processing

This work applies the basic principle of spherical harmonics as briefly stated above to process
spherical microphone signals. The process facilitates the analysis of incoming soundfield and
predicts the sound energy around the spherical microphone array. The processing of M microphones
flush-mounted on the rigid spherical surface is expressed as

pn m(k, a) =
4π

M

M

∑
i=1

p mic(k, a, Φi) [Ym
n (Φi)]

∗ , (8)
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where a is the radius of the spherical array, pn m(k, a) are the spherical harmonic weights [2],
pmic(k, a, Φi) represents i-th microphone output among M microphone channels around a rigid sphere
surface at angular position, Φi. The order, n, provides an increase in angular resolution. The number of
microphones, M, sampling the sphere determines the maximum order of spherical harmonics, N, that
the spherical array can achieve with (N + 1)2 ≥ M [31]. To achieve high orders of spherical harmonics,
more microphone channels are required to sample the spherical array, e.g., higher resolution. The
spherical harmonic weights, pn m(k, a), are further transformed into the spherical harmonic domain [1]

y(Φ) =
N

∑
n=0

n

∑
m=−n

w∗n m(k a, Φ) pn m(k, a), (9)

where now weights w∗n m(k a, Φ) combine both the radial and angular solutions stated before in the
following way

w∗n m(k a, Φ) =
Ym

n (Φ)

bn(k a)
, (10)

for axis-symmetric beamforming in the plane-wave decomposition mode [2]. Variable bn(k a)
represents spherical modal amplitude for a rigid sphere with radius, a,

bn(k a) = 4 π jn
[

jn(k a)− j′n(k a)

h(2)
′

n (k a)
h(2)n (k a)

]
, (11)

with jn = (−1)n/2, and jn(k a) being spherical Bessel function of the first kind and h(2)n (k a) being
spherical Hankel function of the second kind [2]. The prime denotes the derivative with respect to the
argument. Note that this work focuses on the application under the plane-wave condition, that requires
sound sources find themselves in the far-field. Though beamforming can inherently be formulated in
regards to the near-field condition as well, yet the current application requires a far-field condition. In
that case, the spherical modal amplitude in Equation (11) needs to be formulated accordingly [2]. It is
however, beyond the scope of the current work.

From Equation (9), the directional pattern around the spherical microphone array is then
formulated in their normalized absolute energy values

D(Φ) =
|y(Φ)|2

max
[
|y(Φ)|2

] . (12)

The normalized directional pattern is taken as ‘experimental’ data for the Bayesian inference in
the following discussion. They are denoted in vector/matrix form as D = [D(Φ)].

2.3. Analytical Beamforming Models

The orthonromal property of the spherical harmonics in Equation (3) essentially expresses
spherical processing that predicts spatial filter capability with respect to a sphere. The spatial filter
direction is referred to as a beam. The directional beam pattern with a finite spherical harmonic order
is expressed by the truncated orthonormality as

g(Φs, Φ) = 2 π
N

∑
n=1

n

∑
m=−n

Ym
n (Φs)

∗ Ym
n (Φ), (13)

where Φs = {θs, φs} denotes the specific filtering direction, and g(Φs, Φ) represents specific
beamforming function oriented towards direction, Φs, over angular range specified by Φ. The
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maximum order, N, determines the sharpness of the beam patterns. When normalizing the squared
beamforming function, g(·),

gs(Φs, Φ) =
|g(Φs, Φ)|2

max
[∣∣∣g(Φs, Φ)

∣∣∣2] , (14)

the formulation is exploited to predict specific sound source energy in the beamforming process.
Prediction of multiple sound sources requires an energy sum of multiple filter directions as

HS(ΦS, Φ) =
S

∑
s=1

As gs(Φs, Φ), (15)

with As representing strength associated with sth sound source. ΦS = {θ1, . . . , θS; φ1, . . . , φS} are S
number of sound source directions.

Figure 2 illustrates the beam patterns in their normalized energy form expressed in
Equations (13)–(15). Figure 2a shows single beam patterns for S = 1, N = 2, 3, 6, 10 and 16,
respectively. Figure 2b shows the beam pattern of two simultaneous sources with order N = 4
for S = 2 at Φ1 = {75◦, 90◦} and Φ2 = {270◦, 90◦}, and A1 = A2, while Figure 2c illustrates the
beam pattern of three simultaneous sources with order N = 8, for S = 3 at Φ1 = {120◦, 90◦},
Φ2 = {90◦, 270◦}; and Φ3 = {45◦, 240◦}, and A1 = A2 = A3. Note that the data and the model are
formulated in terms of sound energy as in Equations (12) and (14), therefore, a degree of coherence
of simultaneous sound sources is expected to play an insignificant role as long as the simultaneous
sound sources find themselves in different angular directions.

Figure 2. Spherical harmonics beam patterns. (a) Single beam patterns for N = 2, 3, 6, 10 and 16; (b) Two
different, simultaneous beamforming directions of order N = 4. (c) Three different, simultaneous
beamforming directions of order N = 8.
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3. Model-Based Bayesian Inference

The beamforming models in Equation (15) formulated previously are now applied to acoustic
experimental data as formulated in Section 2.3, particularly for the cases where multiple simultaneous
sound sources are potentially contained in the beamforming data. The DoA analysis requires two-levels
of inference. On one hand, there is a higher level question of how many sound sources are present. On
the other hand, after obtaining an answer for the correct number of simultaneous sound sources, there
is a lower level question of determining the parameters of the present sound sources, e.g., incident
angles and strengths.

To be more precise, the data, D, processed using Equation (12) are potentially well described by
one set of finite competing models (hypotheses) H1, H2, . . . , HS. Often one of the models is preferred
to predict the data. For the finite model set with S models, each model, Hs, is associated with s number
of sound sources, with s ∈ [1, S]. Bayesian inference applied to the model selection is a higher level of
inference, also known as the second level of inference. It represents an inverse problem to infer which
one of the models, Hs, the data prefer under multiple simultaneous sound sources. The model, Hs,
contains a set of parameters, Θs, representing s number of sound sources with their individual strengh
As and angular direction Φs. Bayesian inference applied to estimating DoA parameters is referred to as
the lower level of inference, also known as the first level of inference. Bayesian inference enables both
parameter estimation and the model selection by applying Bayes’ theorem intensively to these two
levels of inference. The following discussion begins with the second level of inference namely, sound
source enumeration by model selection, followed by the DoA parameter estimation. This top-down
approach is logical; Only when a proper model, Hs, is selected among competing models, the lower
level of inference, parameter estimation, can properly estimate the DoA parameters, Θs, encapsulated
in the selected model, Hs.

3.1. Bayesian Model Selection

This higher level of inference applies Bayes’ theorem to determine the probability of one of a finite
set of models, Hi, given the experimentally measured data, D, as processed by Equation (12) and the
background information, I, including a preselected S number of models expressed by Equation (15),
which describes the data well,

p(Hi|D, I) =
p(D|Hi, I) p(Hi|I)

p(D|I) , (16)

where p(Hi|D, I) is the posterior probability of model, Hi, p(D|I) is the probability of observing
the experimental data, and for this work it will act as a normalizing constant. p(Hi|I) is the prior
probability of the model, Hi, and should be assigned based on any prior knowledge of the circumstance.
Finally, p(D|Hi, I) is the marginal likelihood of a model given the measured data, otherwise known as
“Bayesian evidence” [5]. This term is key in the model selection. In the current context as expressed
in Equation (16), Bayes’ theorem represents how one’s prior knowledge about the model, p(Hi|I), is
updated in the presence of the data, which are involved through p(D|Hi, I). At this stage, any interest
in directional parameter values will be deferred into the background.

To pursue Bayesian model evaluation, Bayes factor, or odds ratio [32] is used to compare two
models: model, Hi, over model, Hj, as

Bij =
p(Hi|D, I)
p(Hj|D, I)

=
p(D|Hi, I)
p(D|Hj, I)

, ∀i, j ∈ [1, S], i 6= j, (17)
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where no preference to any of the models assigns equal prior probability to p(Hi|I), i ∈ [1, S].
For computational convenience, the Bayes Factor is determined in logarithmic scale with the unit
“decibans” [33],

Lij = 10 log10(Bij) = 10 log10(Zi)− 10 log10(Zj), [ decibans ], (18)

with simplified notations for Bayesian evidence, Zi = p(D|Hi, I), and Zj = p(D|Hj, I). This enables
the evidences for two models to be quantitatively compared against one another. Among a finite set of
models, the highest positive Bayes factor, Lij, indicates that the data prefer model Hi over Hj the most.
Therefore, the Bayes factor is also applied to select a finite number of models under consideration in
the following (Section 6).

Overall, this process offers a penalty for over-complicated models if they only increase maximum
likelihood rather than the Bayesian evidence compared to simpler models. This is the quantitative
implementation of Occam’s razor, which favors simplicity over complexity when comparing models
that competitively predict measured data [34].

3.2. Bayesian Parameter Estimation

On the lower level of the inference, the background information, I, now denotes that the model,
Hs, predicting s number of sound sources, is already given as discussed above in Section 3.1, and the
selected model describes the experimental data well. Now Bayesian inference focuses the attention to
the DoA parameters, Θs, encapsulated in the selected model, Hs. Since the model is already specified
through the Bayesian model selection, the subscripts of Hs and Θs will be dropped for simplicity
throughout the following discussions, but still bearing in mind that the model, H, has been given
via the model selection. The model contains a specific set of parameters, Θ = {θ; φ; A}, including,
both angular and amplitude parameters for a specific number of sound sources. The DoA parameter
estimation applies Bayes’ Theorem to determine the probabilities of parameters, Θ, given data, D,
model, H, and the background information, I, yielding,

p(Θ|D, H, I) =
p(D|Θ, H, I) p(Θ|H, I)

p(D|H, I)
. (19)

Probability p(Θ|D, H, I) is referred to as the posterior probability distribution of the
parameters, Θ. Quantity p(D|Θ, H, I), represents the likelihood that the measured data, D, would
have been generated for a given value of Θ. It is termed in the following as likelihood in short.
Term p(Θ|H, I), represents the prior probability of the parameters given the model, H. Finally, term
p(D|H, I) is the same as the marginal likelihood p(D|H, I) in Equations (16) and (17). This quantity
is also known as Bayesian evidence [5,35], or evidence, in short. Bayes’ theorem, applied to the
parameter estimation problem as stated in Equation (19), represents how the prior knowledge about
the parameter, p(Θ|H, I), is updated in the presence of data, which are incorporated through the
likelihood, p(D|Θ, H, I).

3.3. Unified Bayesian Framework

The integral of any proper probability (density) over the entire parameter space in which it is
defined equals unity. When integrating the both sides of Equation (19) it results in

Z = p(D|H, I) =
∫

Θ
p(D|Θ, H, I) p(Θ|H, I) dΘ , (20)

where the evidence, p(D|H, I), as in a simplified notation, Z, does not depend on Θ, therefore, is
taken out of the integral. Equation (20) indicates that the evidence of a given model, Z, is evaluated
over the entire parameter space by integrating the product of the likelihood and prior distribution.
This is the same evidence value as in Equations (16) and (17), expressing that both processes of the
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model selection and the parameter estimation involve evaluating the likelihood of a given model over
its parameter space. Therefore both levels of Bayesian inference can be performed within a unified
framework, as elaborated in the following.

According to Skilling [35] Equation (19) is rewritten in simplified notations as

p(Θ|D, H, I)︸ ︷︷ ︸
posterior

· Z︸︷︷︸
evidence

= L(Θ)︸ ︷︷ ︸
likelihood

· π(Θ)︸ ︷︷ ︸
prior

, (21)

where evidence is determined by evaluating likelihood, L(Θ) = p(D|Θ, H, I), and prior,
π(Θ) = p(Θ|H, I) using Equation (20). Equations (20) and (21) indicate that the Bayesian evidence
plays a central role in the model selection. The evidence relies on exploration of the likelihood over the
entire parameter space, which is also required in the parameter estimation, based on the estimation of
the posterior in Equation (19). The formulation in both Sections 3.1 and 3.2 can be accomplished within
one unified framework. In this Bayesian framework, two terms on the right-hand side of Equation (21)
are input quantities, particularly the likelihood function in Equation (21), while the two terms on the
left-hand side are the output quantities; the evidence, Z, represents the output for the Bayesian model
selection, and the posterior, p(Θ|D, H, I), represents the output for the Bayesian parameter estimation.

4. Maximum Entropy Priors

Jaynes [36] applied a continuum version of Shannon [37] entropy to encode the available
information into a prior probability assignment. The assignment maximizes the entropy in order to
obtain the prior probability. In Bayesian literature [36,38], this is so-called the principle of maximum
entropy. Two input quantities are all prior probabilities, which need to be assigned prior to pursuing
further analysis.

4.1. Likelihood Assignment

The likelihood is collectively determined by probabilities of the residual errors, p(ej,k). This is
the difference between the data in Equation (12) and the model prediction in Equation (15) at each
single datum,

ej,k = D(θj, φk)− H(θj, φk), (22)

where ej,k, namely e = D−H are in the form of two-dimensional matrices over Φj,k = {θj, φk} within
this work.

The likelihood assignment also incorporates what is known about the model, H, that has been
formulated in Equation (15) in Section 2.3 through Equations (13) and (14). So the models are also
part of prior information [39]. Notation L(Θ) = p(D|Θ, H, I) in Equations (19) and (21), explicitly
expresses this conditional statement through ’the given model, H’ and ‘background information, I’.
The probability for the likelihood L(Θ), including all p(ej,k), should be assigned based on what is
known about the error function.

The only information about the residual errors, ej,k, is that the error energy is limited to a finite,
yet unknown bound due to the fact that the model is known to be able to predict the data well. This
prior information is therefore encoded as a finite, yet unknown error variance. In addition, a universal
constraint on the probability density, or the so-called normalization constraint, is that the integral of
the individual probability (density) equals unity. Application of the principle of maximum entropy
by taking the finite error variance and the normalization into the assignment, leads to a Gaussian
probability distribution [36,40],

p(ej,k|Θ, H, σj,k) =
1√

2π σj,k
exp

(
−

e2
j,k

2σ2
j,k

)
. (23)
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The residual errors are also assigned zero-means, µj,k = 0, since any other non-zero values can
be included in the model in Equation (15) when necessary by adding another unspecified parameter.
Note that this Gaussian assignment is the consequence of limited information on the residual errors,
e = { ej,k }. Namely, only a finite, yet unspecified error variance is available. This Gaussian assignment
is distinctly different from assuming the statistics of the residual errors to be Gaussian.

The principle of the maximum entropy regards the residual errors as independent of each
other [36], since any dependence or correlation will reduce the entropy. The overall likelihood becomes
the product of the individual error probabilities

L(Θ) =
J

∏
j=1

K

∏
k=1

1√
2π σj,k

exp

(
−

e2
j,k

2σ2
j,k

)
= (
√

2π σ)−Q exp
(
− E

σ2

)
, (24)

with σ2 being a constant, unspecified error variance across the data points, Q is the total number of
data points, Q = J · K, and

E =
1
2

J

∑
j=1

K

∑
k=1

[D(θj, φk)− H(θj, φk)]
2, (25)

with θ1 ≤ θj ≤ θJ and φ1 ≤ φk ≤ φK covering the entire angular range under consideration. Data,
D(θj, φk), and model, H(θj, φk), are determined by Equations (12) and (15), respectively.

4.2. Prior Probability Assignment

For the prior probability, π(Θ), other than the normalization constraint, no other prior knowledge
on parameter values is available. Typical model parameters are also location parameters, just as Θ is
in the current work. The principle of maximum entropy assigns π(Θ) to be a uniform distribution
over a wide parameter value range [36].

In similar fashion, the model prior, p(Hi|I), in Equation (16) within the model selection is also
assigned a constant prior, within a discrete, finite number (S) of models,

p(Hi|I) =
1
S

, (26)

which leads to Equations (17) and (18) in Section 3.1.
The hyperparameter, σ, in Equation (24) is a consequence of the maximum entropy assignment of

the likelihood. Representing a scale parameter, it has to be assigned as well. The principle of maximum
entropy also assigns a uniform prior to the scale parameter, but in the logarithmic domain, since the
scale parameter acts invariant only in the logarithmic domain [36,38]. This assignment leads to the
so-called Jeffreys’ prior [41],

p(σ) =
1
σ

. (27)

Bretthorst [42] considers the hyperparameter, σ, as a nuisance in a number of applications. It is
the case also in the current work and can be removed by applying Jeffreys’ prior for marginalization.
The marginalization removes the hyperparameter [42,43] from the likelihood in Equation (24), leading
to Student-t distribution,

L(Θ) ∝ Γ
(

Q
2

)
(2πE)−Q/2

2
, (28)

where Γ(·) is the Gamma function, Q is the total number of data points, and E is given in Equation (25).

5. Nested Sampling

The Bayesian framework applied to the DoA analysis for multiple sound sources requires
numerical calculations of the evidence. Different sampling methods exist for this purpose. A recent
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overview on a number of suitable methods for calculating Bayesian evidence is given by Knuth [5].
This work employs nested sampling originally proposed by Skilling [35,44].

5.1. Lebesgue Integration as Foundation

Nested sampling represents a Markov chain Monte Carlo method, estimating directly how the
likelihood distribution relates to the prior mass, and partitions the range of the likelihood distribution
similarly to Lebesgue integration [45,46] as opposed to the parameter space domain over which the
likelihood is defined. The evidence as given in Equation (20) requires integral calculation over the entire
multi-dimensional parameter space. In the unified framework, nested sampling yields the evidence as
the prime result, while samples from the posterior distribution are an optional byproduct [44]. Using
simplified notation similar to Equation(21), the evidence is determined by

Z =
∫

Θ
L(Θ)π(Θ) dΘ =

∫
µ
L(µ) dµ, (29)

where a differential notation, dµ = π(Θ) dΘ, is introduced. The differential element, dµ, represents
volume under prior distribution over elementary parameter space, dΘ. It is termed elementary prior
mass. An accumulated prior mass, in the form of Lebesgue measure [45,46] can then be defined as

µ(Lε) =
∫
L(Θ)>Lε

π(Θ) dΘ, (30)

where Lε is a certain value among the likelihood range. Expressing the inverse function L[µ(Lε)] =

Lε [44], this variable change converts the evidence expressed in Equation (29) into a one-dimensional
integral over unit range

Z =
∫ 1

0
L(µ) dµ. (31)

As likelihood value Lε increases, the enclosed prior mass µ(Lε) decreases from 1 to 0. At its minimum,
Lε = 0, this corresponds to the maximum prior mass. Particularly, it encloses the prior, π(Θ), over
the entire parameter space, so that µ(Lε = 0) = 1. In the opposite, when likelihood value Lε → Lmax,
namely, approaches the maximum, the prior mass approaches zero, µ(Lmax)→ 0 [see Figure 3].

Nested sampling partitions the likelihood range between 0 ≤ Lε ≤ Lmax, in a Monte Carlo
manner which leads to

0 ≈ Lmin = L0 < L1 < . . . < Lt−1 < Lt < . . . < Lmax. (32)

Iterations of the nested sampling implementation as shown in Figure 3a create this likelihood sequence
that corresponds to a prior mass sequence

1 = µ0 > µ1 > . . . > µt−1 > µt > . . . > µmin = 0, (33)

as graphically illustrated in Figure 3a with labels at the bottom. These two sequences lead to the
numerical approximation of the evidence in Equations (29) and (31)

Z ≈
T

∑
t=0
Lt ∆µt, (34)

with L0 = Lmin, LT = Lmax, µT = µmin, µ0 = 1, and

∆µt = µt−1 − µt. (35)
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After a decent number of steps, also by acknowledging uncertainties [44], the prior mass is
supposed to shrink,

µt ≈ e−t/P, (36)

where number, P, is used for constructing an initial sampling population as elaborated below.

Figure 3. Log likelihood values vs. the prior mass (bottom) and the nested sampling iterations (top)
for the two-source data with the two-source model. (a) Entire course of sampling for all (T =) 18,968
iterations. The prior mass is labeled at the bottom of the horizontal axis from left to right, while
number of iterations are labeled at the top from right to left. The shaded area under the likelihood
curve corresponds to the evidence; (b) magnified segment when nested sampling approaching to
convergence.

5.2. Major Implementation Steps

Main steps in a practical implementation of nested sampling for each model are summarized
as follows:

1. Draw a sufficient initial population, P, uniformly distributed samples, containing randomly
generated values of all parameters, based on the maximum entropy prior probability (Section 4.2).
In this case, P = 1000.

2. Evaluate the likelihood value of each sample Θi using Equation (28) inside the P populations in
which the model in Equation (15) is involved at each sample.

3. Identify the sample Θm with the lowest likelihood value, Lm within the population.
4. Store this lowest likelihood value along with associated sample [Lm, Θm] → [Lt, Θt] in a list

outside the initial population. The list is referred to as the sample list below.
5. For the following step t + 1, perturb the parameters associated with this least-likely sample in a

random fashion and re-evaluate the likelihood value, with constraint, Lt+1 > Lt.

(a) If the perturbed sample now meets the constraint, replace [Lt, Θt] by this new sample,
[Lt+1, Θt+1], into the initial population, then move on to the next step.
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(b) If not, keep perturbing in a way of randomly walking around in the parameter space, until
the above constraint is fulfilled.

6. Repeat steps 3–5 until the sample population has satisfied some predefined convergence
criteria [44], or until some maximum number of iterations is met.

7. The sample list storing all the likelihood values along with their samples, [Lt, Θt], t ∈ [1, T]
are already in the sequence in Equation (32) which is the ordered partition. The summation in
Equation (34) along with Equations (35) and (36) using this likelihood sequence approximates the
evidence estimate for the model under consideration.

8. Repeat steps 1–7 for all the beamforming models, Hj, j ∈ [1, S], under consideration to
approximate evidence estimate for each models using Equations (34) and (35).

9. Use the evidence estimates from step 8 to evaluate Bayes factor distribution using Equation (18)
over all the models, this facilitates the model selection.

5.3. Evidence Via Likelihood Range Partitions

Figure 3 illustrates one nested sampling run for an experimental beamforming data set of two
simultaneous sound sources given a two-source model (H2). The figure illustrates the integral
expression in Equation (31) as shaded area with the prior mass being the principle variable going
from 0 to 1. The vertical axis represents 10 times the logarithm of likelihood in base 10, that is in
unit [deciBans]. In the numerical implementation at the start of sampling, the likelihood at the first
iteration is the lowest value at outright side of the figure. The iterations are labeled leftwards on the
upper side of the horizontal-axis. This lowest likelihood value is stored in the sample list in the form
of 10 log10(L0). This value corresponds to the maximum prior mass (µ0 = 1) since it includes the
entire parameter space, expressed on the left-hand side of Equation (33). As the sampling iteration
progresses, once the hard constraint, Lt+1 > Lt, is fulfilled, the log likelihood value, 10 log10(Lt+1),
along with its parameters, Θt+1 will be repetitively stored into the sampling list and at the same time,
replacing the previous lowest sample associated with [Lt, Θt]. With the iterations progressing, the log
likelihood value increases, while the prior mass decreases. As the sampling converges through many
iterations, the likelihood climbs to its maximum value, the prior mass at the convergence state shrinks
to zero (µmin = 0). Figure 3b shows a magnified segment of the converging likelihood sequence. Once
the exploration criteria described in step 6 have been met, the sampling evolution creates the likelihood
sequence as in Equation (32), as shown in Figure 3a which is then used in Equation (34) to estimate
the evidence indicated by the shaded area in the figure. Nested sampling leads to the likelihood
sequence as in Equation (32), which essentially partitions the likelihood range over the prior mass of
the entire parameter space. In this example, illustrated in Figure 3, the upper bound in Equation (34) is
T = 18 968. These evidence estimates allow for evaluating/ranking the competing models.

5.4. Posterior Estimates as Byproducts

One model among the finite model set should be selected for use in the lower level of inference,
the DoA parameter estimation. As discussed previously, this work benefits from the unified Bayesian
framework, since the thorough exploration over the entire parameter space has been performed in
order to estimate evidences. After the model selection, the evidence value of the selected model along
with all the likelihood values and the associated random sample parameters are already available and
stored in the respective sample list. They lead directly to samples from the posterior distribution for
the parameter estimation. All the samples in the sample list [Lt, Θt], t ∈ [0, T] are readily available to
estimate the mean DoA parameters

Θ̃ =
T

∑
t=0

pt Θt, (37)
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with posterior samples

pt =
Lt ∆µt

Z
, t ∈ [0, T], (38)

where ∆µt is taken from Equation (35), Lt is the likelihood sequence in Equation (32), resulting from
nested sampling, and the parameter variance as

σ2(Θ) =

[
T

∑
t=0

pt (Θt − Θ̃)2

]
. (39)

Bush and Xiang [7], Jasa and Xiang [46], Fackler et al. [47] have recently implemented nested
sampling in other acoustics applications.

6. Experimental Results

This work experimentally investigated two and three simultaneous sound sources around the
spherical microphone array for obtaining various impulse responses sets. The array contained sixteen
microphones flush-mounted on a rigid sphere of 6 cm in diameter. The experimental measurement
utilized a single sound source (a loudspeaker) to measure impulse response at various locations around
the microphone array. Logarithmic sweep sines are used to excite the loudspeaker and the spherical
microphone array providing sixteen channel of responses to this excitation. The loudspeaker was
placed 1.5 m away from the microphone array in a sufficiently large indoor space. All the responses to
the sweeps were averaged and transferred into impulse responses to improve the signal-to-noise ratio.

These impulse responses, with peak-to-noise ratios over 65 dB, are windowed to isolate the direct
sound portions so that the individual impulse responses convolved with white noise are considered
from anechoic environment. To synthesize multiple noise sources from different locations around
the spherical array, direct-sound portions of the impulse responses measured from different source
locations are convolved with the white noise which are combined via linear superposition. The
spherical harmonic beamforming for two and three simultaneous sound sources is carried out for
these experimental data. The beamforming data in Equation (12) are summed up between 400 Hz and
4 kHz to form the sound energy map over angular range 0 ≤ θ ≤ 180 ◦ , 0 ≤ φ ≤ 360 ◦. The results
here demonstrate the prediction capability of the model in Equation (15) for the experimental data
and that the two-level Bayesian inference quantitatively implements Occam’s razor to estimate the
number of sound sources present in the data. After the Bayesian model selection, the estimated DoA
parameters are then obtained using the selected model.

Figure 4 illustrates the results for two simultaneous sound sources over an angular range of
360◦ × 180◦ for azimuth, φ, and elevation, θ. Figure 4a illustrates the sound energy distributions
derived from experimentally measured data using Equations (8)–(12), while Figure 4b shows the
predicted results using Equations (13)–(15) to visualize the sound field distribution around the spherical
microphone array in Cartesian coordinates. The grid resolution for these two-dimensional maps is
3.6◦ × 3.6◦ with grid points of K × J = 100× 50 across azimuth and elevation range as expressed
in Equation (25).

Figure 5 illustrates Bayes factor estimations over the different models HS from Equation (15).
Each model represents a different number of sound sources. The Bayesian evidence for each model is
evaluated over 16 individual runs using nested sampling. According to the Bayesian model selection
scheme discussed in Section 3.1, Figure 5a illustrates the Bayes factor estimates, Li j from Equation (18)
in decibans, from i = 2, . . . , 4 over j = 1, . . . , 3.
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Figure 4. Directional responses of two simultaneous sound sources in the form of two-dimensional
sound energy distributions. The directions of the sound sources are at (75◦, 90◦), (270◦, 90◦).
(a) Experimentally measured beamforming data. Two solid dots indicate the directions of arrivals
assigned in the experiment; (b) Sound energy distribution model predicted by the Bayesian model
selection process. Two solid dots indicate the estimated directions of arrivals.

Figure 5. Mean Bayes factor estimates along with variances given the experimental data. The data
contain two sound sources at (75◦, 90◦), and (270◦, 90◦). (a) Bayes factor in decibans comparing the
evidence of the current number of sources to the previous number; (b) Magnified view of the Bayes
factors for two sources with variations.
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Table 1. Experimentally measured and predicted directions of arrivals (DoAs) for two simultaneous
sound sources. The variations are estimated using the Bayesian method over 15 runs. The errors are
differences between experimental and predicted ones. Experimental data are analyzed in an angular
resolution of 3.6◦.

Comparison Direction of Arrival (φ, θ)

Experiment (75◦, 90◦) (270◦, 90◦)
Estimates (70.58◦, 95.46◦) (261.2◦, 80.2◦)
Deviation (±1.55◦,±0.73◦) (±1.47◦,±0.66◦)

Error (4.42◦, 5.46◦) (8.8◦, 9.8◦)

The highest Bayes factor, L2 1 is identified for the case of two sources, expressing that the data
prefer model, H2, over H1, much more than the preference of model H3 over H2, and so on, where HS
is given previously in Equation (15) with S = 1, 2, 3, and 4. After model selection, the evidence estimate
of the two source model can be readily used to estimate the posterior samples using Equation (38) for
Equations (19) or (21). The Bayesian parameter estimation (in Section 3.2) finds the angular parameters
as listed in Table 1. The model in Equation (15) taking this set of parameters for S = 2 predictes the
sound energy distribution as depicted in Figure 4b. Note that both the experimental and predicated
data are analyzed at an angular resolution of 3.6◦. Correlating the highest sound energy with the DoA
indicates that physically placing the sound sources at the listed directions (75◦; 90◦), and (270◦; 90◦)
may also be inaccurate. For this reason, prediction errors as listed in Table 1 and also later in Table 2
need to be evaluated considering this source of experiment errors.

In similar fashion, Figure 6 illustrates the results for the set of three simultaneous sound sources
over an angular range of 360◦ × 180◦ for azimuth, φ, and elevation, θ. The grid resolution is 3.6◦ × 3.6◦.
Figure 6a illustrates the sound energy distributions derived from experimentally measured data
using Equations (8)–(12), while Figure 6b, the model predicted results using Equations (13)–(15), for
the case S = 3.

Figure 7a illustrates Bayes factor estimations over the different models, HS, from Equation (15) for
S = 1, 2, 3, 4 and 5. The Bayes factor estimates, Li j from Equation (18), for i = 2, . . . , 5 over j = 1, . . . , 4
as shown in Figure 7a show the highest Bayes factor is for the case of three sources. Namely, the data
prefer model, H3, over model, H2, the most. This preference was much higher than that of model H4

over H3, and so on. After the selection of the three source model, the Bayesian evidence for this model
was readily available for further parameter estimation. At the same time, the likelihood values in
Equation (19) for this model have already been thoroughly sampled over the entire parameter space
using nested sampling. Therefore the parameter values can be readily extracted from the parameter set
using Equation (38) for Equations (19) or (21). The Bayesian parameter estimation (in Section 3.2) leads
to the angular parameters as listed in Table 2. The model in Equation (15), given this set of parameters
for S = 3, predicts the sound energy distribution as depicted in Figure 6b.

Table 2. Experimentally measured and predicted DoAs for three simultaneous sound sources. The
variations are estimated using the Bayesian method over 15 runs, The errors are the differences between
the experimental and predicted data. Both data sets are analyzed with an angular resolution of 3.6◦.

Comparison Direction of Arrival (φ, θ)

Experiment (5◦, 60◦) (135◦, 140◦) (270◦, 90◦)
Estimates (8.7◦, 72.4◦) (125.8◦, 148.6◦) (254.1◦, 71.5◦)
Deviation (±8.6◦,±8.2◦) (±17.5◦,±1.4◦) (±7.7◦,±7.4◦)

Error (3.7◦, 12.4◦) (9.2◦, 8.6◦) (15.9◦, 18.5◦)
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Figure 6. Directional responses of three sound sources in the form of two-dimensional sound energy
distributions. The directions of the sound sources are at (5◦, 60◦), (135◦, 140◦) and (270◦, 90◦),
respectively; (a) Experimentally measured beamforming data. Three solid dots indicate the directions
of arrivals assigned in the experiment; (b) Sound energy distribution model predicted by the Bayesian
model selection process. Three solid dots indicate the estimated directions of arrivals.

Figure 7. Mean Bayes factors along with variances given the experimental data. The data contain
three sound sources at (5◦, 60◦), (135◦, 140◦) and (270◦, 90◦), respectively. (a) Bayes factor in decibans,
comparing the evidence of the current number of sources to the previous number; (b) Magnified view
of the evidence for four sources with variations.
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Figure 6 demonstrates that it would be very challenging to determine the number of sources
present based solely on visual inspection or on the peak energy values. The correct number of sound
sources may not be correctly determined, let alone their correct locations. Bayesian inference as applied
to the DoA analysis significantly improves sound source localization without having to increase the
resolution of the spherical microphone array.

7. Discussions

This paper discusses the DoA analysis from the sound sources essentially in an anechoic
environment. When two sound sources are well separated as shown in Figure 4. their directions of
arrival are straightforwardly recognized. Two solid dots in Figure 4 indicate that both the experimental
measurements and Bayesian model prediction are prone to certain errors. Even physical placement of
the sound sources at the listed directions (75◦; 90◦), and (270◦; 90◦) may also be inaccurate. Therefore,
prediction errors as listed in Tables 1 and 2 need to be evaluated considering this source of experiment
errors. In case of three simultaneous sound sources, the estimation errors may drop to 18.5◦ for some
source locations. As mentioned before, the estimation directions are not absolute in their errors, one
source of errors also comes from experimental errors when placing the the sound sources.

The results discussed previously indicates that estimation performance will decrease with an
increase in number of sound sources or ambiguity of the sound field also manifests itself in the
confidence of the model selection process. For the case of two simultaneous sources, the Bayesian
evidence estimates alone present stable estimations among individual sampling runs. They also show
behavior consistent with Occam’s razor, because the test scenario is set for two simultaneous sound
sources. As the number of sources increases to three, the variance over individual nested sampling
runs becomes slightly larger. Even then, the experimentally measured data are considered to carry
sufficient information. The Bayes’ factor representing relative Bayesian evidence, is at maximum for
the three source model.

The increased variation and the estimation errors from two to three sound sources are clearly a
result of a higher number of sound sources. Increasing the order of the spherical microphone array for
data recording will be a remedy for the increased variations by higher numbers of sources. It needs
to increase the number of microphones channels on the spherical array, resulting in a higher angular
resolution. It will be of general interest to investigate the resolution capability given a certain order of
spherical microphone array which is beyond the current scope of the research.

8. Concluding Remarks

The present work applies the Bayesian method to beamformed models, evaluating them against
experimental data. A spherical microphone array provides sixteen channels of these data in order to
estimate the DoAs of simultaneous sound sources. Both data and the models are formulated using
spherical harmonics in Section 2. Through a two-level of inferential approach to this problem involving
first estimating the number of sound sources as solved by Bayesian model selection (in Section 3.1)
and second estimating their DoAs as solved by Bayesian parameter estimation (in Section 3.2). Both
of these pieces of information can be reliably estimated within the unified Bayesian framework.
This Bayesian inference approach provides an improvement in the detection of sound sources over
alternative methods, such as those that directly correlate the peak sound energies to the DoAs.

This work demonstrates the feasiblity of nested sampling applied in Bayesian model selection as a
means to determine the number of sound sources, while the DoA parameters are the byproduct of the
sampling exploration upon selecting the correct number of sound sources. The nested sampling
implementation in this work shows its efficacy on experimentally measured data for two and
three simultaneous sound sources. The Bayes factors evaluated sequentially from one model of
a given number of sources against the next lower number model are able to select the right model
unambiguously. The DoA parameters estimated for both two and three simultaneous sources indicate
success of the Bayesian application. Potential estimation errors are also discussed in details.
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The experiments carried out within this work are essentially in anechoic environment. General
room acoustical applications using this method of DoA analysis still remain to be explored through
future efforts. Challenges could potentially be determination of locations of distinct, strong surface
reflections in addition to the DoA of sound sources within an enclosed space.

A sixteen channel spherical microphone array has been experimentally tested in this work. This
second order spherical microphone array offers relatively limited spatial resolution. Increasing the
number of microphone channels would increase the spatial resolution, thus allowing for a more
definitive localization of simultaneous sound sources. This also allows for more sound sources to be
localized. Though this research only tested up to three sound sources, many complex sound fields
have far more than simply three distinct sources occurring at the same time. Investigations using
Bayesian inference should be conducted in the near future, in hopes of discovering ability to handle
challenges in more complicated situations.

Full spherical microphone/sensor arrays are more suitable for applications when sound sources
are expected around the arrays from all possible directions, such as hanging in open spaces or
mooring in deep oceans. In addition, the Bayesian formulation based on spherical harmonics is also
straightforwardly extended to hemispherical or cylindrical array configurations. Another future effort
should be relaxing the plane-wave requirements so as to formulate spherical waves for near-field
conditions. In the future this will open up opportunities for range estimates of sound sources near the
sensing array, in addition to solely direction of arrival analysis.
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