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Abstract: Dempster–Shafer (DS) evidence theory is widely applied in multi-source data fusion
technology. However, classical DS combination rule fails to deal with the situation when evidence is
highly in conflict. To address this problem, a novel multi-source data fusion method is proposed in this
paper. The main steps of the proposed method are presented as follows. Firstly, the credibility weight
of each piece of evidence is obtained after transforming the belief Jenson–Shannon divergence into
belief similarities. Next, the belief entropy of each piece of evidence is calculated and the information
volume weights of evidence are generated. Then, both credibility weights and information volume
weights of evidence are unified to generate the final weight of each piece of evidence before the
weighted average evidence is calculated. Then, the classical DS combination rule is used multiple
times on the modified evidence to generate the fusing results. A numerical example compares the
fusing result of the proposed method with that of other existing combination rules. Further, a practical
application of fault diagnosis is presented to illustrate the plausibility and efficiency of the proposed
method. The experimental result shows that the targeted type of fault is recognized most accurately
by the proposed method in comparing with other combination rules.

Keywords: Dempster–Shafer evidence theory; belief entropy; belief Janson–Shannon divergence;
multi-source data fusion

1. Introduction

Multi-source data fusion is the process of combining data obtained from different sources to
make robust and complete evaluation on the certain system. As is known, single data source cannot
provide sufficient information to detect a complex system in a full scale. By contrast, multi-source data
fusion presents comprehensive and credible results after integrating groups of data that reflect various
features of the system [1,2]. Therefore, multi-source data fusion technology is widely applied in many
real applications, such as energy management strategy [3,4], health prognosis [5–7], suppliers selection
[8–11], decision making [12–14], evaluation [15–17], etc. However, since the single data source is easily
disturbed by environmental factors, it is unavoidable to meet the situation when the data collected
from different sources are inconsistent, irrelevant or even conflicted [18]. How to fuse these groups of
data from different sources correctly has received much attention but is still an open problem [19,20].
Thus far, many theories and methods have been proposed to solve the uncertain problem, which were
extended from Z-numbers [21,22], D-numbers [23–27], R-numbers [28], fuzzy sets [29–32], rough sets
[33], evidence theory [34], entropy [35,36], quantum [37], and so on.

Dempster–Shafer evidence theory (DS evidence theory), firstly proposed by Dempster [38]
and later developed by Shafer [39], is a general framework for reasoning with uncertainty. As a
generalization of Bayesian theory, DS evidence theory can express uncertain and imprecise data
more explicitly by using mass function, which can assign the probability to the union of single
elements [40,41]. Besides, DS evidence theory provides a combination rule to fuse pieces of evidence.
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Due to its flexibility and effectiveness on handling uncertainty, DS evidence theory is widely applied
in information fusion technology [42–44]. However, the combination rule in DS evidence theory
presents counter-intuitive results when evidence is highly in conflict [45,46]. To address this problem,
many modified combination methods have been proposed, which derive from two basic strategies.
One is to modify classical DS combination formula. Based on this strategy, Yager [47] believed
that little about conflicting evidence can be understood and reassigned the conflict constant to the
unknown space. In [48], Smets thought that the conflict is attributed to the incompleteness of the
frame of discernment and proposed unnormalized combination rule. In [49], Lefevre et al. proposed
a general framework to unify the general combination rules. In [50], Sun et al. believed that the
availability of conflicting evidence is associated with their credibilities. In [51], Li et al. reallocated the
conflict constant based on the weighted average support degree to each piece of evidence. However,
the main shortcoming of these methods is the loss of associative properties, which greatly increases the
computational complex degree especially when fusing thousands of pieces of evidence simultaneously.
Another strategy is to pre-process the original evidence and apply the classical DS evidence theory on
the adjusted evidence multiple times. Many combination methods have been proposed on the basis
of this strategy. In [52], Murphy generated the modified evidence by simply averaging the original
evidence. In [53], Deng et al. took the distance between pieces of evidence into consideration and
reallocated the weight on the evidence. In [54], Jiang et al. proposed a new combination rule based
on information volume calculated by belief entropy. In [55], Zhang et al. applied cosine theorem to
calculate the support degree of evidence. In [56], Lin et al. generated a similarity vector by measuring
Euclidean distances between pieces of evidence before generating the weighted average evidence.
Although these combination methods presented quite reasonable fusing results, there is still some
room for further improvement. In this paper, therefore, a novel multi-source data combination method
is proposed to handle the problem of highly-conflicted evidence fusion.

In particular, by taking advantage of the belief entropy to quantify the information volume of the
system and belief divergence to measure the difference among multi-source data, the credibility and
the information volume, as two important factors of evidence are integrated to allocate the weight
on the original evidence. In this way, the weight of untrustworthy evidence is declined, so that the
influence of conflicted evidence is controlled more strictly. The main steps of the proposed procedure
are concluded as follows. Firstly, the credibility of evidence is calculated according to their similarity
with the average evidence. Besides, the belief entropy is applied to calculate the information volume of
each piece of evidence. After that, the weight is allocated on the evidence based on their credibility and
information volume before the weighted average evidence is generated. Finally, classical DS evidence
is used to fuse the modified evidence multiple times and the final result is obtained. A practical
application of fault diagnosis is given to prove the efficiency of the proposed method.

The following parts of this paper are organized as follows. In Section 2, some basic concepts
and definitions of DS evidence theory, belief entropy and Belief Jenson–Shannon divergence are
concisely introduced. In Section 3, a novel multi-source data fusion method is presented. In Section 4,
a numerical example is used to compare the fusing results with other existing combination rules.
In Section 5, the proposed combination method is applied in a practical example of fault diagnosis.
Finally, the conclusion of this paper is discussed in Section 6.

2. Preliminaries

In this section, several preliminary theories are briefly introduced, including DS evidence theory,
belief entropy and Belief Jenson–Shannon divergence.

2.1. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence theory is an extension of the Bayes probability theory. Comparing
with probability theory, DS evidence theory can not only assign the probability on one single element,
but also on the subset of the universal set [57,58]. Besides, DS evidence theory can handle uncertainty
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and imprecision without prior probability is given [59–62]. When the probability is only allocated
on several single elements, DS evidence theory degenerates into Bayes probability theory [63,64].
Some basic concepts of Dempster–Shafer theory are introduced as follows.

Definition 1 (Frame of discernment). Assume Θ is an exhaustive and finite set of all possible, independent
and exclusive values of variable x, indicated by:

Θ = {x1, x2, x3, ..., xn} (1)

where Θ is denoted as a frame of discernment. The power set of Θ is 2Θ. If A ∈ 2Θ, then A is called a proposition
[65–68].

Definition 2 (Basic probability assignment). On the frame of discernment Θ, assume a mapping m : 2Θ ->
[0,1], which satisfies:

m(∅) = 0 and ∑
A⊆Θ

m(A) = 1 (2)

then function m is called mass function or basic probability assignment (BPA).

In DS evidence theory, m(A) represents how strongly the evidence supports hypothesis A [69–71].
If m(A) > 0, A is called a focal element of m [72,73].

Definition 3 (Belief function). The belief function is a mapping Bel: 2Θ -> [0, 1], defined as:

Bel(A) = ∑
B⊆A

m(B), ∀A ⊆ Θ (3)

which represents the total belief on A [74,75]. Belief function is the lower limit function of A.

Definition 4 (Plausibility function). The plausibility function is a mapping Pl: 2Θ -> [0,1], defined as:

Pl(A) = 1− Bel(A) = ∑
B∩A 6=∅

m(B), ∀A ⊆ Θ (4)

which represents the undeniable degree on A [76,77]. Plausibility function is the upper limit function of A.

Definition 5 (DS combination rule). Assume m1 and m2 are two independent BPAs on 2Θ. In DS evidence
theory, their orthogonal sum m1 ⊕m2 is defined as:

m(A) =


1

1− k ∑B∩C=A m1(B)m2(C), A 6= ∅.

0, A = ∅.
(5)

where
k = ∑

B∩C=∅
m1(B)m2(C)

The orthogonal sum in Equation (5) can be extended to the condition when n pieces of BPAs are
fused simultaneously, which satisfies the mathematical communication law and the associative law.
In Equation (5), the constant k measures the conflict degree of BPAs [78–80]. If k is higher, the conflict
between BPAs is more serious [81–83].

2.2. Belief Entropy

In [84], Deng proposed belief entropy. As a generalization of Shannon entropy [85], Deng’s belief
entropy can be used to measure the information volume of BPAs. When the belief is only assigned to
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the single element, Deng’s belief entropy degenerates into Shannon entropy. Many applications have
proved the efficiency of Deng entropy [86]. Deng’s belief entropy is defined as follows:

Ed(m) = − ∑
A⊆Θ

m(A) log2
m(A)

2|A| − 1
. (6)

where m is a BPA defined on the frame of discernment Θ, and A is a focal element of m. |A| indicates
the cardinality of A. When the belief is only assigned to single elements of Θ, Deng’s belief entropy
degenerates into Shannon entropy, which is shown as:

Es(m) = − ∑
A⊆Θ

m(A) log2 m(A). (7)

However, Deng’s belief entropy has some limitations when the propositions are of intersections.
To address this shortcoming, Cui et al. [87] improved Deng ’s belief entropy, which takes out the
redundant volume created by intersections. Cui et al.’s belief entropy is defined as follows:

E∗d(m) = − ∑
A⊆Θ

m(A) log2(
m(A)

2|A| − 1
e

∑B⊆Θ,B 6=A
|A ∩ B|
2|Θ| − 1 ) (8)

where |A| denotes the cardinality of proposition A. Here, a numerical example in [87] is used to
demonstrate that Cui et al.’s belief entropy is more efficient in measuring the information volume of
evidence that contains intersecting propositions.

Example 1. Assume the frame of discernment is Θ = {a, b, c, d}. The values of two BPAs is presented
as follows:

m1 : m1({a, b}) = 0.4, m1({c, d}) = 0.6;

m2 : m2({a, c}) = 0.4, m2({b, c}) = 0.6.

According to the data above, both m1 and m2 have the same scale of focal elements and the same function
values. However, the propositions of m2 are of intersections, which only contain three elements a, b and c.
Therefore, m1 has greater information volume than that of m2. Next, Deng’s belief entropy and Cui et al.’s belief
entropy of two pieces of evidence are calculated as follows.

Deng’s belief entropy:

Ed(m1) = − ∑
A⊆Θ

m1(A) log2
m1(A)

2|A| − 1

= −0.4 log2
0.4

22 − 1
− 0.6 log2

0.6
22 − 1

= 2.5559

Ed(m2) = − ∑
A⊆Θ

m2(A) log2
m2(A)

2|A| − 1

= −0.4 log2
0.4

22 − 1
− 0.6 log2

0.6
22 − 1

= 2.5559
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Cui et al.’s belief entropy:

E∗d(m1) = − ∑
A⊆Θ

m1(A) log2(
m1(A)

2|A| − 1
e

∑B⊆Θ,B 6=A
|A ∩ B|
2|Θ| − 1 )

= −0.4 log2(
0.4

22 − 1
e0)− 0.6 log2(

0.6
22 − 1

e0)

= 2.5559

E∗d(m2) = − ∑
A⊆Θ

m2(A) log2(
m2(A)

2|A| − 1
e

∑B⊆Θ,B 6=A
|A ∩ B|
2|Θ| − 1 )

= −0.4 log2(
0.4

22 − 1
e

1
15 )− 0.6 log2(

0.6
22 − 1

e
1

15 )

= 2.4597

As shown in Example 1, Deng’s belief entropy ignores the influence of intersections and presents
the same uncertain degree of two pieces of evidence. Comparatively, Cui et al.’s belief entropy takes
the redundant space of intersections out from their information volume. Therefore, if the evidence has
many intersecting propositions, it would be better to use Cui et al.’s belief entropy to measure their
information volume more accurately. Besides, if the evidence has greater belief entropy, it contains more
information and there fewer less conflicts between this subset and the frame of discernment. Therefore,
the evidence that has greater belief entropy should be assigned more weights in the fusing procedure.

2.3. Belief Jenson–Shannon Divergence

In [88], Xiao proposed Belief Jensen–Shannon (BJS) divergence by integrating DS evidence theory
and Jenson–Shannon divergence. Suppose m1 and m2 are two BPAs on the same frame of discernment
that contains n elements; the BJS divergence between m1 and m2 is defined as:

BJS(m1, m2) =
1
2
[S(m1,

m1 + m2

2
) + S(m2,

m1 + m2

2
)], (9)

where

S(m1, m2) =
n

∑
i

m1(Ai) log
m1(Ai)

m2(Ai)
. (10)

The main contribution of the belief Jenson–Shannon divergence is that it replaces the probabilities
distributions in JS divergence with BPAs, so that BJS divergence can be applied in DS evidence theory
to measure the difference between BPAs.

3. The Proposed Method

To address the problem of fusing highly-conflicted evidence, a new combination method is
proposed in this section. To allocate the weight on evidence more properly, not only credibility of the
evidence but also its information volume is taken into consideration. The procedure is divided into
three parts. Firstly, the credibility weight of evidence is obtained after transforming BJS divergence
into similarities. Secondly, the information volume weight of evidence is obtained by calculating the
belief entropy. Thirdly, the weighted average BPA is generated before fusing it by DS combination rule.
The flowchart of the method is shown in Figure 1. More details and explanations about each step of
the method are described as follows.
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Collect data from different sources.

Model the data from different 
sources into BPAs.

Step 1-1: Generate the  arithmetical 
averaging BPA.

Step 1-2: Calculate the BJS 
divergence between each evidence 

and averaging BPA.

Step 1-3: Calculate the similarity 
degree of evidences.

Step 1-4: Generate the credibility 
weight of evidences.

Step 2-1: Calculate the belief entropy 
of evidences.

Step 2-2: Adjust the information 
volume of evidences.

Step 2-3: Generate the information 
volume weight of evidences.

Step 3-1: Adjust the final weight of 
each evidence.

Step 3-2: Generate the weighted 
average evidence.

Step 3-3: Fuse the modified evidence 
by DS combination rule.

Figure 1. The flowchart of the proposed method.

3.1. Calculate the Credibility Weight of Evidences

Step 1-1. Suppose M = {m1, m2..., mn} is a set of n independent BPAs on the same frame of
discernment that contains N elements: Θ = {F1, F2, F3, ..., FN}. The arithmetical average BPA ma

is defined as:

ma(A) =
1
n

n

∑
i=1

mi(A), ∀A ⊆ Θ. (11)
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Step 1-2. Calculate the BJS divergence between mi and ma (i = 1, 2, 3..., n) according to Equation (9).

BJS(mi, ma) =
1
2
[S(mi,

mi + ma

2
) + S(ma,

mi + ma

2
)], (12)

where

S(m1, m2) =
n

∑
i

m1(Ai) log
m1(Ai)

m2(Ai)
.

Step 1-3. Since the similarities of the pieces of evidence are negatively correlated with their divergences,
if the divergence between two pieces of evidence is higher, they have lower similarity. The divergence
between mi and ma is converted into their similarity as follows:

Sim(mi, ma) = e−BJS(mi ,ma), i = 1, 2, 3...n. (13)

Step 1-4. If a piece of evidence is highly similar to the average BPA, it means that the evidence is
supported by most of the other pieces of evidence and it is more reliable, thus it gains high credibility.
Thus, the credibility weight of the pieces of evidence is determined by normalizing their similarity
with the arithmetical average BPA. The credibility weight (Wc) of each piece of evidence is defined as
follows:

Wc(mi) =
Sim(mi, ma)

∑i Sim(mi, ma)
, i = 1, 2, 3..., n (14)

3.2. Calculate Information Volume Weight of Evidence

Step 2-1. Calculate the belief entropy of mi (i = 1, 2, 3..., n) according to Equation (8).

E∗d(mi) = − ∑
A⊆Θ

mi(A) log2(
mi(A)

2|A| − 1
e

∑B⊆Θ,B 6=A
|A ∩ B|
2|Θ| − 1 ), (15)

Step 2-2. To avoid assigning zero weight to the evidence whose belief entropy is zero, the information
volume in Step 2-1 is modified as follows:

IVi = eE∗d (mi), i = 1, 2, 3..., n (16)

where E∗d(mi) represents the belief entropy of mi.
Step 2-3. Calculate the information volume weight (Wiv) of each piece of evidence by normalizing IV,
which is defined as:

Wiv(mi) =
IVi

∑i IVi
, i = 1, 2, 3..., n. (17)

3.3. Generate the Modified Evidence and Fuse

Step 3-1. Based on the credibility weight and information volume weight of evidence, the weight of
each piece of evidence is adjusted as follows:

W(mi) = Wc(mi)×Wiv(mi), i = 1, 2, 3..., n. (18)

Step 3-2. Normalize the modified weight as follows:

W∗(mi) =
W(mi)

∑i W(mi)
, i = 1, 2, 3..., n. (19)
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Step 3-3. Generate the modified evidence by calculating the weighted average sum of BPAs, which is
defined as:

m∗(A) =
n

∑
i=1

W∗(mi)×mi(A), ∀A ⊆ Θ. (20)

Step 3-4. DS combination rule is used n− 1 times on the modified evidence based on [52], then the
final combination result is obtained:

m⊕(A) = (m∗(A)⊕m∗(A)⊕m∗(A)...m∗(A))n−1

= (((m∗(A)⊕m∗(A))1 ⊕m∗(A))2...⊕m∗(A))n−1
(21)

4. Numerical Example

In this section, the proposed method is compared with other existing combination rules by a
numerical example in [55] and the effectiveness of the proposed method is illustrated.

4.1. Example Presentation

Assume the frame of discernment Θ = {A, B, C}. There are five pieces of evidence denoted as m1,
m2, m3, m4, and m5 and their mass functions are listed in Table 1. Here, evidence m2 is not credible as
other pieces of evidence since the sensor which is modeled into m2 is disturbed by some unknown
environmental factors.

Table 1. A numerical example in [55].

{A} {B} {C} {A, C}
m1 0.41 0.29 0.30 0
m2 0 0.90 0.10 0
m3 0.58 0.07 0 0.35
m4 0.55 0.10 0 0.35
m5 0.60 0.10 0 0.30

4.2. Combination by the Proposed Method

Step 1-1. Calculate the arithmetical average BPA.

ma(A) = 0.4280

ma(B) = 0.2920

ma(C) = 0.0800

ma({A, C}) = 0.2000

Step 1-2. Calculate the BJS divergence between each piece of evidence and ma.

BJS(m1, ma) = 0.1033

BJS(m2, ma) = 0.2995

BJS(m3, ma) = 0.0804

BJS(m4, ma) = 0.0655

BJS(m5, ma) = 0.0645
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Step 1-3. Calculate the similarity degree of each piece of evidence.

Sim(m1, ma) = 0.9018

Sim(m2, ma) = 0.7412

Sim(m3, ma) = 0.9227

Sim(m4, ma) = 0.9357

Sim(m5, ma) = 0.9375

Step 1-4. Calculate the weight of credibility.

Wc(m1) = 0.2032

Wc(m2) = 0.1670

Wc(m3) = 0.2079

Wc(m4) = 0.2108

Wc(m5) = 0.2112

Step 2-1. Calculate the belief entropy of each piece of evidence.

E∗d(m1) = 1.3603

E∗d(m2) = 0.2629

E∗d(m3) = 1.5310

E∗d(m4) = 1.6132

E∗d(m5) = 1.5030

Step 2-2. Adjust the information volume of each piece of evidence.

IV1 = 3.8973

IV2 = 1.3007

IV3 = 4.6226

IV4 = 5.0187

IV5 = 4.4953

Step 2-3. Calculate the weight of information volume.

Wiv(m1) = 0.2016

Wiv(m2) = 0.0673

Wiv(m3) = 0.2391

Wiv(m4) = 0.2596

Wiv(m5) = 0.2325

Step 3-1. Adjust the weight of each piece of evidence.

W(m1) = 0.0410

W(m2) = 0.0112

W(m3) = 0.0497

W(m4) = 0.0547

W(m5) = 0.0491
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Step 3-2. Normalize the modified weight of each piece of evidence.

W∗(m1) = 0.1991

W∗(m2) = 0.0546

W∗(m3) = 0.2416

W∗(m4) = 0.2660

W∗(m5) = 0.2387

Step 3-3. Generate the modified evidence.

m∗({A}) = 0.5113

m∗({B}) = 0.1743

m∗({C}) = 0.0652

m∗({A, C}) = 0.2082

Step 3-4. Use the classical DS combination rule to fuse the modified evidence four times, and the result
is shown in Table 2.

4.3. Analysis

According to Table 1, m2 shows great conflict with the four other pieces of evidence, which assigns
most of the belief on B, while the remaining four pieces of evidence all support A. In this case, the major
belief after fusing should be allocated on A since the m2 is modeled from an abnormal sensor. The
fusing results of the proposed method and other existing combination rules are presented in Table 2
and Figure 2.

As shown in Table 2, classical DS combination rule is disturbed by the abnormal evidence and
assigns most of its belief on C wrongly. The remaining combination rules all present the reasonable
results and majorly support A. The incredible evidence m2 appears on the first time fusion and
misguides the fusing process to recognize C, but as the later credible pieces of evidence join the fusion
process, these combination methods all turn to assign their beliefs mainly on A. However, in the real
situation, a slight increase of accuracy is significant to improve the performance of the system [54–56].
Comparatively, the proposed method achieves the highest accuracy of 0.9874 for identifying A among
these combination rules. Therefore, the proposed method is relatively effective because it takes two
important factors of evidence—the credibility and information volume—into consideration, so that the
weight of the incredible evidence is controlled more strictly.
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Table 2. Fusing results by different methods in the example.

Method m1,2 m1,2,3 m1,2,3,4 m1,2,3,4,5

DS [38]
m(A) = 0.0000
m(B) = 0.8969
m(C) = 0.1031

m(A) = 0.0000
m(B) = 0.6575
m(C) = 0.3425

m(A) = 0.0000
m(B) = 0.3321
m(C) = 0.6679

m(A) = 0.0000
m(B) = 0.1422
m(C) = 0.8578

Yager [47]

m(A) = 0.0000
m(B) = 0.2610
m(C) = 0.0300

m(A, C) = 0.0000
m(Θ) = 0.7090

m(A) = 0.4112
m(B) = 0.0679
m(C) = 0.0105

m(A, C) = 0.2481
m(Θ) = 0.2622

m(A) = 0.6508
m(B) = 0.0330
m(C) = 0.0037

m(A, C) = 0.1786
m(Θ) = 0.1339

m(A) = 0.7732
m(B) = 0.0167
m(C) = 0.0011

m(A, C) = 0.0938
m(Θ) = 0.1152

Murphy [52]

m(A) = 0.0964
m(B) = 0.8119
m(C) = 0.0917

m(A, C) = 0.0000

m(A) = 0.4619
m(B) = 0.4497
m(C) = 0.0794

m(A, C) = 0.0090

m(A) = 0.8362
m(B) = 0.1147
m(C) = 0.0410

m(A, C) = 0.0081

m(A) = 0.9620
m(B) = 0.0210
m(C) = 0.0138

m(A, C) = 0.0032

Deng et al. [53]

m(A) = 0.0964
m(B) = 0.8119
m(C) = 0.0917

m(A, C) = 0.0000

m(A) = 0.4974
m(B) = 0.4054
m(C) = 0.0888

m(A, C) = 0.0084

m(A) = 0.9089
m(B) = 0.0444
m(C) = 0.0379

m(A, C) = 0.0089

m(A) = 0.9820
m(B) = 0.0039
m(C) = 0.0107

m(A, C) = 0.0034

Sun et al. [50]

m(A) = 0.0937
m(B) = 0.5330
m(C) = 0.1214

m(A, C) = 0.0000
m(Θ) = 0.2519

m(A) = 0.4544
m(B) = 0.2639
m(C) = 0.1107

m(A, C) = 0.1124
m(Θ) = 0.0585

m(A) = 0.6907
m(B) = 0.1324
m(C) = 0.0636

m(A, C) = 0.1088
m(Θ) = 0.0045

m(A) = 0.8202
m(B) = 0.0711
m(C) = 0.0309

m(A, C) = 0.0760
m(Θ) = 0.0018

Li et al. [51]

m(A) = 0.1453
m(B) = 0.6829
m(C) = 0.1718

m(A, C) = 0.0000

m(A) = 0.4711
m(B) = 0.3007
m(C) = 0.1266

m(A, C) = 0.1016

m(A) = 0.6925
m(B) = 0.1350
m(C) = 0.0650

m(A, C) = 0.1074

m(A) = 0.8210
m(B) = 0.0719
m(C) = 0.0314

m(A, C) = 0.0757

Li and Guo [89]

m(A) = 0.1453
m(B) = 0.6829
m(C) = 0.1718

m(A, C) = 0.0000

m(A) = 0.4801
m(B) = 0.2821
m(C) = 0.1512

m(A, C) = 0.0866

m(A) = 0.7480
m(B) = 0.0850
m(C) = 0.0630

m(A, C) = 0.1040

m(A) = 0.8558
m(B) = 0.0425
m(C) = 0.0267

m(A, C) = 0.0750

Jiang et al. [54]

m(A) = 0.2849
m(B) = 0.5306
m(C) = 0.1845

m(A, C) = 0.0000

m(A) = 0.8295
m(B) = 0.0680
m(C) = 0.0854

m(A, C) = 0.0171

m(A) = 0.9531
m(B) = 0.0074
m(C) = 0.0292

m(A, C) = 0.0103

m(A) = 0.9867
m(B) = 0.0008
m(C) = 0.0089

m(A, C) = 0.0036

Zhang et al. [55]

m(A) = 0.0964
m(B) = 0.8119
m(C) = 0.0917

m(A, C) = 0.0000

m(A) = 0.5681
m(B) = 0.3319
m(C) = 0.0929

m(A, C) = 0.0084

m(A) = 0.9142
m(B) = 0.0395
m(C) = 0.0399

m(A, C) = 0.0083

m(A) = 0.9820
m(B) = 0.0034
m(C) = 0.0115

m(A, C) = 0.0032

Lin et al. [56]

m(A) = 0.0964
m(B) = 0.8119
m(C) = 0.0917

m(A, C) = 0.0000

m(A) = 0.5382
m(B) = 0.3599
m(C) = 0.0927

m(A, C) = 0.0076

m(A) = 0.8949
m(B) = 0.0558
m(C) = 0.0413

m(A, C) = 0.0080

m(A) = 0.9792
m(B) = 0.0057
m(C) = 0.0119

m(A, C) = 0.0032

Proposed
method

m(A) = 0.2751
m(B) = 0.5446
m(C) = 0.1803

m(A, C) = 0.0000

m(A) = 0.8213
m(B) = 0.0738
m(C) = 0.0890

m(A, C) = 0.0159

m(A) = 0.9550
m(B) = 0.0063
m(C) = 0.0281

m(A, C) = 0.0106

m(A) = 0.9874
m(B) = 0.0006
m(C) = 0.0082

m(A, C) = 0.0037
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(a) Fusing by DS rule (b) Fusing by Yager’s method

(c) Fusing by Murphy’s method (d) Fusing by Deng’s method

(e) Fusing by Sun’s method (f) Fusing by Li et al.’s method

(g) Fusing by Li and Guo’s method (h) Fusing by Jiang et al.’s method

(i) Fusing by Zhang et al.’s method (j) Fusing by Lin et al.’s method

(k) Fusing by proposed method

Figure 2. Fusing results by different combination methods in the example.
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5. Application

5.1. Problem Statement

An automobile system was excessively used and it caused shortage of power. According to
the records in the database, there were three possible faults that may lead to this problem: low oil
pressure, air leakage in the intake system and a stuck solenoid valve, which are denoted as F1, F2 and F3,
respectively. Five sensors, denoted as S1, S2, S3, S4 and S5, were placed at different positions to measure
the parameters including the air displacement, maximum power, maximum torsion, compression ratio
and maximum rotation speed of the power system. After all the sensors finished measuring, the central
controlling system then modeled the parameters detected from sensors to BPAs, which are presented
in Table 3, where Θ = {F1, F2, F3} is the frame of discernment and mi is the evidence modeling from Si
(i = 1, 2, 3, 4, 5). In this application, S5 was broken because the engine speed accidentally exceeded its
upper limitation and could not function normally as the four other sensors. The objective is to judge
which type of fault has occurred in the automobile system according to these pieces of evidence.

Table 3. BPAs after modeling from sensors.

F1 F2 F3 Θ

m1 0.70 0.10 0 0.20
m2 0.70 0 0 0.30
m3 0.65 0.15 0 0.20
m4 0.75 0 0.05 0.20
m5 0 0.20 0.80 0

5.2. Fuse Evidences by the Proposed Method

Step 1-1. Calculate the arithmetical average BPA.

ma(F1) = 0.5600

ma(F2) = 0.0900

ma(F3) = 0.1700

ma(Θ) = 0.1800

Step 1-2. Calculate the BJS divergence between each piece of evidence and ma.

BJS(m1, ma) = 0.0632

BJS(m2, ma) = 0.1016

BJS(m3, ma) = 0.0646

BJS(m4, ma) = 0.0557

BJS(m5, ma) = 0.3782

Step 1-3. Calculate the similarity degree of each piece of evidence.

Sim(m1, ma) = 0.9387

Sim(m2, ma) = 0.9034

Sim(m3, ma) = 0.9374

Sim(m4, ma) = 0.9459

Sim(m5, ma) = 0.6851



Entropy 2019, 21, 611 14 of 22

Step 1-4. Calculate the weight of credibility.

Wc(m1) = 0.2128

Wc(m2) = 0.2048

Wc(m3) = 0.2125

Wc(m4) = 0.2145

Wc(m5) = 0.1553

Step 2-1. Calculate the belief entropy of each piece of evidence.

E∗d(m1) = 1.4297

E∗d(m2) = 1.3937

E∗d(m3) = 1.5518

E∗d(m4) = 1.2647

E∗d(m5) = 0.5158

Step 2-2. Adjust the information volume of each piece of evidence.

IV1 = 4.1775

IV2 = 4.0299

IV3 = 4.7201

IV4 = 3.5420

IV5 = 1.6750

Step 2-3. Calculate the weight of information volume.

Wiv(m1) = 0.2302

Wiv(m2) = 0.2221

Wiv(m3) = 0.2601

Wiv(m4) = 0.1952

Wiv(m5) = 0.0923

Step 3-1. Adjust the weight of each piece of evidence.

W(m1) = 0.0490

W(m2) = 0.0455

W(m3) = 0.0553

W(m4) = 0.0419

W(m5) = 0.0143

Step 3-2. Normalize the modified weight of each piece of evidence.

W∗(m1) = 0.2379

W∗(m2) = 0.2208

W∗(m3) = 0.2683

W∗(m4) = 0.2033

W∗(m5) = 0.0696
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Step 3-3. Generate the modified evidence.

m∗(F1) = 0.6480

m∗(F2) = 0.0780

m∗(F3) = 0.0659

m∗(Θ) = 0.2082

Step 3-4. Use the classical DS combination rule to fuse the modified evidence four times, and the result
is shown in Table 4.

5.3. Discussion

Table 4 and Figure 3 show the results of fusing five BPAs by applying the proposed method,
together with the other existing combination rules. Here, a threshold 4 = 0.70 is set based on [54].
After fusing by the combination method, if m(Fi) ≥ 0.70, it means that the method recognizes fault Fi
successfully; otherwise, this combination rule cannot identify what kind of fault and “unknown” is
marked in Table 4.

In this application, S1, S2, S3, and S4 all work well, and the pieces of evidence after transforming
their detected data are greatly consistent, which all assign most of their beliefs to F1 according to
Table 3. However, S5 is broken and the evidence after modeling the data collected from S5 intensively
conflicts with the other four pieces of evidence, which assigns most of the belief to F3 wrongly. Based
on these considerations, F1 is judged as the fault in the automobile system. The ideal result after fusing
by these combination methods is to recognize fault F1 accurately, ignoring the disturbing effect of S5.

As shown in Table 4, the classical DS combination rule successfully recognizes fault F1 after fusing
the first four pieces of evidence, but, when the incredible evidence m5 joins, it drastically reassigns
most of the beliefs to the fault F3 wrongly. Therefore, classical DS combination rule fails to fuse the
highly conflicting evidence. Yager’s method reallocates the conflicting degree to the unknown space
and it cannot identify which type of fault. Sun et al.’s method, Li and Guo’s method and Li et al.’s
method do not reach the threshold4 = 0.70. As a result, they cannot distinguish the targeted type
of fault. Deng’s method, Jiang’s method, Zhang’s method, Lin et al.’s method and the proposed
method all recognize the fault F1 successfully. Deng introduced a combination method based on the
distances among evidences and it presents 99.33% recognition accuracy comparing with 99.34% of
the proposed method, which indicates that Deng’s method can deal with the conflicting evidence.
However, in Deng’s method, the sizes of its distance matrix and similarity matrix are both n × n,
while the sizes of divergence vector and information volume vector are both 1× n in the proposed
method. Therefore, the proposed method presents better accuracy of targeted type of fault with a lower
computational complexity algorithm comparing with Deng’s method. It is worth noting that a slight
increase of accuracy is significant to improve the performance of the system in the real application
[54–56]. When the conflicting evidence m5 joins the fusion, Lin et al.’s method shows a slight decrease
from 98.99% to 98.94% and Jiang et al.’s method climbs from 98.95% to 99.14%, while the proposed
method increases from 98.91% to 99.34%. This means that the proposed method can overcome the
influence of incredible evidence better and maintain the degree of increase as more pieces of evidence
join. Overall, the proposed method can diagnosis the targeted type of fault more accurately than
other combination rules as it assigns the highest belief of 0.9934 to the fault F1. The reason is that the
proposed method not only makes use of Belief Jenson–Shannon function to measure the credibility of
the evidence, but also considers their information volume by applying belief entropy before allocating
the final weight to each piece of evidence. Since the conflicted evidence m5 has not only low credibility
but small information volume, its weight is declined, so that the influence of fault evidence is controlled
more strictly in comparison with the other proposed combination rules.
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Table 4. Fusing results of the application.

Method m1,2 m1,2,3 m1,2,3,4 m1,2,3,4,5 Recognized Fault

DS [38]

m(F1) = 0.9032
m(F2) = 0.0323
m(F3) = 0.0000
m(Θ) = 0.0645

m(F1) = 0.9598
m(F2) = 0.0249
m(F3) = 0.0000
m(Θ) = 0.0153

m(F1) = 0.9906
m(F2) = 0.0053
m(F3) = 0.0008
m(Θ) = 0.0033

m(F1) = 0.0000
m(F2) = 0.3443
m(F3) = 0.6557
m(Θ) = 0.0000

Unknown

Yager [47]

m(F1) = 0.8400
m(F2) = 0.0300
m(F3) = 0.0000
m(Θ) = 0.1300

m(F1) = 0.7530
m(F2) = 0.0195
m(F3) = 0.0000
m(Θ) = 0.2275

m(F1) = 0.7243
m(F2) = 0.0039
m(F3) = 0.0006
m(Θ) = 0.2721

m(F1) = 0.0000
m(F2) = 0.0013
m(F3) = 0.0024
m(Θ) = 0.9963

Unknown

Murphy [52]

m(F1) = 0.9032
m(F2) = 0.0296
m(F3) = 0.0000
m(Θ) = 0.0672

m(F1) = 0.9598
m(F2) = 0.0241
m(F3) = 0.0000
m(Θ) = 0.0161

m(F1) = 0.9899
m(F2) = 0.0058
m(F3) = 0.0008
m(Θ) = 0.0035

m(F1) = 0.9715
m(F2) = 0.0055
m(F3) = 0.0222
m(Θ) = 0.0008

F1

Deng et al. [53]

m(F1) = 0.9032
m(F2) = 0.0296
m(F3) = 0.0000
m(Θ) = 0.0672

m(F1) = 0.9597
m(F2) = 0.0243
m(F3) = 0.0000
m(Θ) = 0.0160

m(F1) = 0.9899
m(F2) = 0.0058
m(F3) = 0.0008
m(Θ) = 0.0035

m(F1) = 0.9933
m(F2) = 0.0030
m(F3) = 0.0028
m(Θ) = 0.0008

F1

Sun et al. [50]

m(F1) = 0.8826
m(F2) = 0.0330
m(F3) = 0.0000
m(Θ) = 0.0844

m(F1) = 0.8789
m(F2) = 0.0348
m(F3) = 0.0000
m(Θ) = 0.0863

m(F1) = 0.8897
m(F2) = 0.0187
m(F3) = 0.0036
m(Θ) = 0.0880

m(F1) = 0.4028
m(F2) = 0.0660
m(F3) = 0.1247
m(Θ) = 0.4028

Unknown

Li et al. [51]

m(F1) = 0.3364
m(F2) = 0.1185
m(F3) = 0.4250
m(Θ) = 0.1201

m(F1) = 0.9003
m(F2) = 0.0375
m(F3) = 0.0000
m(Θ) = 0.0623

m(F1) = 0.9125
m(F2) = 0.0207
m(F3) = 0.0040
m(Θ) = 0.0629

m(F1) = 0.5580
m(F2) = 0.0910
m(F3) = 0.1718
m(Θ) = 0.1793

Unknown

Li and Guo [89]

m(F1) = 0.8890
m(F2) = 0.0335
m(F3) = 0.0000
m(Θ) = 0.0775

m(F1) = 0.8917
m(F2) = 0.0394
m(F3) = 0.0000
m(Θ) = 0.0689

m(F1) = 0.9027
m(F2) = 0.0226
m(F3) = 0.0043
m(Θ) = 0.0704

m(F1) = 0.6472
m(F2) = 0.0732
m(F3) = 0.0717
m(Θ) = 0.2079

Unknown

Jiang et al. [54]

m(F1) = 0.9032
m(F2) = 0.0910
m(F3) = 0.1718
m(Θ) = 0.1793

m(F1) = 0.9593
m(F2) = 0.0247
m(F3) = 0.0000
m(Θ) = 0.0035

m(F1) = 0.9895
m(F2) = 0.0062
m(F3) = 0.0008
m(Θ) = 0.0035

m(F1) = 0.9914
m(F2) = 0.0035
m(F3) = 0.0042
m(Θ) = 0.0009

F1

Zhang et al. [55]

m(F1) = 0.9032
m(F2) = 0.0296
m(F3) = 0.0000
m(Θ) = 0.0672

m(F1) = 0.9597
m(F2) = 0.0242
m(F3) = 0.0000
m(Θ) = 0.0161

m(F1) = 0.9899
m(F2) = 0.0058
m(F3) = 0.0008
m(Θ) = 0.0035

m(F1) = 0.9825
m(F2) = 0.0045
m(F3) = 0.0122
m(Θ) = 0.0008

F1

Lin et al. [56]

m(F1) = 0.9032
m(F2) = 0.0296
m(F3) = 0.0000
m(Θ) = 0.0159

m(F1) = 0.9597
m(F2) = 0.0244
m(F3) = 0.0000
m(Θ) = 0.0159

m(F1) = 0.9899
m(F2) = 0.0058
m(F3) = 0.0008
m(Θ) = 0.0035

m(F1) = 0.9894
m(F2) = 0.0037
m(F3) = 0.0061
m(Θ) = 0.0008

F1

Proposed
method

m(F1) = 0.9031
m(F2) = 0.0303
m(F3) = 0.0000
m(Θ) = 0.0667

m(F1) = 0.9586
m(F2) = 0.0257
m(F3) = 0.0000
m(Θ) = 0.0157

m(F1) = 0.9891
m(F2) = 0.0061
m(F3) = 0.0007
m(Θ) = 0.0035

m(F1) = 0.9934
m(F2) = 0.0033
m(F3) = 0.0025
m(Θ) = 0.0008

F1
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(a) The result of DS rule (b) The result of Yager’s method

(c) The result of Murphy’s method (d) The result of Deng’s method

(e) The result of Sun’s method (f) The result of Li et al.’s method

(g) The result of Li and Guo’s method (h) The result of Jiang et al.’s method

(i) The result of Zhang et al.’s method (j) The result of Lin et al.’s method

(k) The result of proposed method

Figure 3. Fusing results by different combination methods in the application.
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6. Conclusions

Dempster–Shafer evidence theory is widely used in information fusion field due to its efficiency
in handling uncertainty and imprecision. However, some counter-intuitive results occur when the
evidence is highly in conflict. To address this shortcoming, a novel multi-source combination method is
proposed in this paper based on BJS divergence measure and the improved Deng entropy. Not only the
credibility but also the information volume of the evidence is taken into consideration to allocate the
weight on the original evidence before fusing the modified evidence, so that the influence of untruthful
evidence is controlled more seriously, resulting in the higher attention on the credible evidence when
fusing. Next, the proposed method is compared with other existing combination rules in a numerical
example. The result shows that the proposed method achieves the highest accuracy of 99.74% among
these combination rules. Furthermore, the proposed method is applied in an application of fault
diagnosis to identify the type of fault in an automobile system. Among the combination rules which
successfully recognized the correct type of fault, the proposed method shows the highest degree of
accuracy of 99.34% with lower computational complexity since the sizes of two vectors are both 1× n
rather than n× n. In summary, this study provides a promising way to deal with the multi-source
data fusion problems. In the near future, to make the proposed method more applicable in the real
environment, how to generate BPAs more properly from different sources will be further considered.
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