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Abstract: The reliability-based sensitivity analysis requires to recursively evaluate a multivariate
structural model for many failure probability levels. This is in general a computationally intensive
task due to irregular integrations used to define the structural failure probability. In this regard,
the performance function is first approximated by using the multiplicative dimensional reduction
method in this paper, and an approximation for the reliability-based sensitivity index is derived based
on the principle of maximum entropy and the fractional moment. Three examples in the literature
are presented to examine the performance of this entropy-based approach against the brute-force
Monte-Carlo simulation method. Results have shown that the multiplicative dimensional reduction
based entropy approach is rather efficient and able to provide reliability estimation results for the
reliability-based sensitivity analysis of a multivariate structural model.

Keywords: multiplicative dimensional reduction method; reliability-based sensitivity analysis;
fractional moments; the principle of maximum entropy

1. Introduction

In recent years, advanced computational technologies allow to develop detailed simulation
models for virtual analysis and design optimization of structural systems. A key issue in this
respect is to identify significant parameters while considering inherent uncertainties associated
with the geometry, the material property, and the structural load variables. A recognized way to
account for the input uncertainty is resorting to the probability theory. This includes the use of the
probability theory to quantify input random variables and the effective algorithm for uncertainty
quantification of the multivariate stochastic model [1,2]. The reliability-based sensitivity analysis that
evaluates the significance input random variables with respect to the structural failure probability has
received considerable attentions [3,4]. Due to computationally demanding cost for the reliability-based
sensitivity analysis with a rather small failure probability, numerical evaluation of the sensitivity
index becomes a challenging task. To this end, the paper presents an effective approach for the
reliability-based sensitivity analysis based on the principle of maximum entropy (MaxEnt) and the
fractional moment.

An accurate estimation for the structural failure probability is a precondition for the
reliability-based sensitivity analysis. In engineering realities, the structural failure probability is
usually defined based on a multivariate performance function g(X), i.e., PF = Pr[g(X) ≤ 0]. Herein,
the input random vector X = [X1, · · · , Xn]T consists of all input random variables, whereas the
failure domain is defined as {∀x : g(x) ≤ 0}. Particulary, a numerical transformation is necessary to
determine statistically independent random variables [5]. Note that the reliability-based sensitivity
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index is mathematically defined as the partial derivative of PF with respect to the mean and the
standard deviation of input random variables, i.e., ∂PF/∂µi and ∂PF/∂σi (as i = 1, · · · , n). Therefore,
a positively defined sensitivity index implies an increase of the distribution parameter will determine
an increased structural failure probability, whereas a negative valued sensitivity index implies an
inverse controlling effect of the distribution parameter on the structural failure probability. Note that
the sensitivity index for the standard deviation is always negative, and an increase of variability of
input random variables will generally increase the variation of a structural response, which further
increases the exceeding probability of the model response quantity with respect to a predefined
response threshold as shown in numerical examples.

Numerical evaluation of the reliability-based sensitivity index depends largely on an accurate
estimation of the structural failure probability. In this regard, the first/second-order reliability method
was developed in the literature for an effective estimation of the structural reliability index [6–8].
In addition, Bucher and Bourgund [9] proposed to approximate g(X) with a regression model to deal
with implicit performance functions. Similar techniques, e.g., the polynomial chaos expansion [10],
the Kriging approximation [11], and the artificial neutral network, etc. were reported in the
literature [12,13]. Once a surrogate model of the structural performance function is analytically
or numerically available, the subsequent reliability and reliability-based sensitivity analysis can be
alternatively realized by the brute-force Monte-Carlo simulation and the response surface model.
However, if the structural reliability result is gradually varied during the design optimization process,
one has to develop new surrogate models for the updated structural reliability result [14]. This motives
the entropy-based approach for the reliability-based sensitivity analysis in this paper.

The reliability-based sensitivity index has been widely used to rank the significance of input
random variables. Specially, the variance-based global sensitivity method was investigated in many
literatures [15,16]. Based on the variance decomposition of a generalized multivariate structural model,
it is possible to express the total output response variance as a combination of variance components that
are related to each group of input random variables and their combinations. Instead, the reliability-based
sensitivity index pays major attention on the relation between distribution parameters and the
structural failure probability. In this respect, the application of the variance-based sensitivity
result will be rather limited, if the response distribution function of a structural model is highly
skewed [17].

To effectively realize the reliability-based sensitivity analysis, Guo and Du [18] proposed to
use the FORM-based approach that is based on a linear approximation of the performance function
at the most probable failure point. Song and Lu [19] investigated the subset simulation and the
variance reduction technique for the probabilistic sensitivity analysis [20]. Since the reliability-based
sensitivity analysis is always limited to a predefined level of the structural failure probability, one
way to determine the overall sensitivity result is to repeat the whole simulation procedure many
times for a various realizations of the structural failure probability value, which is referred to as the
distribution-based sensitivity analysis in the literature [21]. To this end, the paper presents an effective
approach for the reliability-based sensitivity analysis based on the MaxEnt approach. The structural
response distribution is first estimated by using the entropy optimization. Contrary to integer moments
that are used in previous investigations, the fractional moment that is approximated by using the
multiplicative dimensional reduction method is employed to derive probability distribution of a
multivariate structural model for the sensitivity analysis.

To summarize, the objective of this paper is to present an entropy-based approach for
reliability-based sensitivity analysis for a structural model function represented by using multivariate
random variables. The principle of maximum entropy with fractional moment (ME-FM) is used to
determine an accurate estimation result for the structural response distribution. The moment-based
and the distribution- based sensitivity measures are derived to rank the significance of input random
variables. Several examples in the literature are presented to demonstrate potential applications of this
moment and the reliability-based sensitivity method.
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The rest of the manuscript is organized as follows. Section 2 briefly summarizes probability
measures that are used in this paper to rank the significance of an input random variable. With the
multiplicative dimensional reduction method (M-DRM), sensitivity indicators based on the moment
and the reliability results are derived in Section 3. Three examples in the literature are presented in
Section 4 to examine the effectiveness of this approach against the brute-force Monte-Carlo simulation
method, and conclusions are summarized in Section 5.

2. Measures for the Probabilistic Sensitivity Analysis

The section first summarizes the moment-based and the reliability-based measures that are
used for the sensitivity analysis of a structural model with multivariate input random variables.
The procedure based on the brute-force Monte-Carlo simulation approach is assumed to provide
benchmark results for numerical validations.

2.1. The Moment-Based Sensitivity Measure

To begin with, the sensitivity coefficient for a distribution parameter with respect to an αth-order
moment of a multivariate structural model Y = η(x) is generally defined as

∂Mα
Y

∂θi
=

∂

∂θi

∫
X
[η(x)]α fX(x)dx (1)

Herein, Mα
Y denotes an αth-order fractional moment of the structural response quantity, whereas θi

represents the distribution parameter, e.g., the mean or the standard deviation, of the input random
variable Xi.

Introduce the kernel function for various types of the random variable in the Appendix A [22]:

κθi (xi) =
∂ log[ fi(xi)]

∂θi
(2)

The moment-based sensitivity index can be rewritten as [23]

∂Mα
Y

∂θi
=
∫

X
[η(x)]α ·

∂ fX(x)
∂θi

dx =
∫

X
[η(x)]α ·

∂ log[ fi(xi)]

∂θi
· fX(x)dx (3)

which is rewritten in a compact form as

∂Mα
Y

∂θi
= E

{
[η(X)]α · κθi (Xi)

}
(4)

Specially, the brute-force MCS method determines the moment-based sensitivity coefficient
as [24]

∂M̂α
Y

∂θi
=

1
NMCS

NMCS

∑
k=1

{[
η
(
x(k)
)]α · κθi

(
x(k)i

)}
(5)

where, the vector x(k) =
[
x(k)1 , · · · , x(k)n

]T denotes a kth sample of X. The random simulation result
will be used as the benchmark in numerical examples to verify numerical accuracy of the proposed
approach.

2.2. The Reliability-Based Sensitivity Measure

The performance function for structural reliability analysis is usually defined as a multivariate
structural model Y = η(X) and its threshold parameter yc:

g(X) = yc − η(X) (6)
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Herein, the model response quantity can be the structural maximum stress, the deformation, and the
fundamental natural frequency as shown in numerical examples. Therefore, the structural failure
probability can be evaluated as [1]

PF(yc) =
∫

yc≤η(x)
fX(x)dx (7)

The reliability-based sensitivity index is defined as the derivative of the structural failure
probability PF with respect to the distribution parameter of input random variables [25]:

∂PF(yc)

∂θi
=

∂

∂θi

∫
yc≤η(x)

fX(x)dx (8)

Herein, the distribution parameter θi can be the mean µi or the standard deviation σi of an input
random variable.

It is would be rather computationally demanding, if the finite difference method is used to
evaluate the reliability-based sensitivity index [26] :

∂PF(yc)

∂θi
≈ PF(θi + ∆θi; yc)− PF(θi; yc)

∆θi
(9)

where, ∆θi is a small quantity compared to its nominal value of the distribution parameter. In addition
to the numerical stability problem, one has to evaluate 2n times of the structural reliability problem.

Alternatively, the reliability-based sensitivity analysis can be realized by the brute-force
Monte-Carlo simulation method [27] :

∂PF(yc)

∂θi
= E

[
I(X; yc) · κθi (Xi)

]
(10)

where, the indicating function is defined as I(x; yc) = 1 if yc ≤ η(x) and zero otherwise. Therefore,
with Nmcs samples of the input random vector, the small quantity can be numerically estimated as

∂P̂F(yc)

∂θi
=

1
Nmcs

Nmcs

∑
k=1

{
I(x(k); yc) ·

∂ log[ fi(x(k)i )]

∂θi

}
(11)

Note that the approach is employed in this paper to provide benchmark results to check numerical
accuracy of the MaxEnt approach for the reliability-based sensitivity analysis.

With the determined probability distribution function fY(y) of the uncertain response quantity
Y = η(X), the structural failure probability PF can be numerically estimated as

PF(yc) = 1− FY(yc) (12)

which further derives the reliability-based sensitivity index as

∂PF(yc)

∂θi
= −

∂FY(yc)

∂θi
(13)

Therefore, based on an effective estimation of the structural response distribution, the reliability-based
sensitivity analysis can be alternatively realized based on F̂Y(y) and the corresponding threshold value
yc. To this end, an entropy-based procedure for the reliability-based sensitivity analysis is presented
as follows.
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3. An Entropy-Based Approach for the Reliability-Based Sensitivity Analysis

The reliability-based sensitivity analysis needs an accurate estimation result for the structural
response distribution, whereas the gradient-based and the random simulation-based approaches
are computationally demanding in reality [28]. Alternatively, the multivariate structural response
function is first approximated as the product of low-dimensional functions. One direct benefit of
this approximation is able to calculate fraction moments of the structural response Y = η(X). Then,
an effective approach to recover the distribution FY(y) is derived based on the principle of maximum
entropy (MaxEnt) and the fractional moment. To begin with, a brief summary on the multiplicative
dimensional reduction method is presented as follows.

3.1. A Brief Summary on the Multiplicative Dimensional Reduction Method

The key idea of the multiplicative dimensional reduction method is to represent a multivariate
performance function as the product of a series low-dimensional function with an increasing
dimensions [29,30]. In this regard, the univariate approximation for a general response function
η(x) is given as

η(x) ≈ [η(c)]1−n ·
n

∏
i=1

η(c1, · · · , ci−1, xi, ci+1, · · · , cn) (14)

Herein, the constant vector c is defined as c = [c1, · · · , cn]T.
Besides the univariate approximation, a bivariate result can be used to improve the accuracy of

the approximation to some extents [31]:

η(x) ≈

[η(c)]
(n−1)(n−2)

2 ·
n−1

∏
i=1

n

∏
j=i+1

η(c1, · · · , ci−1, xi, ci+1, · · · , cj−1, xj, cj+1, · · · , cn)

n

∏
i=1

[
η(c1, · · · , ci−1, xi, ci+1, · · · , cn)

]n−2
(15)

where, the bivariate component function η(c1, · · · , ci−1, xi, ci+1, · · · , cj−1, xj, cj+1, · · · , cn) is defined
for bivariate input random variables Xi and Xj (∀i, j = 1, · · · , n and i 6= j). More details on an S-variate
approximation of the M-DRM approach, the readers are directed to the literature [32].

3.2. Fractional Moments and the MaxEnt Distribution

Similar to the integer moment, the fractional moment of a structural response quantity is defined as

Mα
Y =

∫
X
[η(x)]α fX(x)dx (16)

Herein, the moment exponent α is a real number.
Following the multivariate Gaussian quadrature method, numerical result for the fractional

moment can be obtained as [33]

Mα
Y '

N1

∑
i1=1

w(i1)
1

N2

∑
i2=1

w(i2)
2 · · ·

Nn

∑
in=1

w(in)
n

[
η
(

x(i1)1 , x(i2)2 , · · · , x(in)n

)]α
(17)

where, w(ik)
i and x(ik)i represent an ikth Gaussian weight and abscissa used uniquely for the input

random variable Xi. Note that there are totally ∏n
i=1 Ni combinations of the integration grid{

x(i1)1 , · · · , x(in)n
}

. The multivariate Gaussian-quadrature rule, hence, will be particularly expensive as
the dimensional parameter n ≥ 3. This motives a mathematical approach to approximate a multivariate
mechanistic model η(·) as the product of univariate and/or bivariate component functions in this paper.
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Once the fractional moment of a structural response quantity is numerically or analytically
available, the principle of maximum entropy (MaxEnt) can be used to determine an estimation of the
response distribution:

f̂Y(y) = exp
(
−

m

∑
k=0

λkyαk

)
(18)

in which,

α0 = 0, and λ0 = log
[ ∫

Y
exp

(
−

m

∑
k=1

λkyαk

)
dy
]

Herein, unknown parameters α and λ in the entropy distribution can be determined by the following
optimization procedure [34]:

Find: λ and α

Minimize: I(λ, α) = log

[ ∫
Y

exp
(
−

m

∑
k=1

λkyαk

)
dy

]
+

m

∑
k=1

λk Mαk
Y

(19)

in which, Mαk
Y is an αth

k order fractional moment, which can be efficiently calculated by using the
M-DRM approach as follows. Note that the parameter m represents the total number of fractional
moments that are used for an estimation of the unknown probability distribution with the MaxEnt
approach. In numerical examples, the parameter m = 3 is used to recover the distribution function.

Note that the fractional moment provides much more information for an inference of the unknown
probability distribution than that of integer moments [35–37]. Therefore, the probability distribution
determined by maximizing the entropy under the fractional moment constraints is given the most
rational choice for fY(y). With the multiplicative dimensional reduction method to efficiently calculate
the fraction moment, results in numerical examples will demonstrate the effectiveness the fractional
moment based MaxEnt approach in estimating the probability distribution of a general structural
response function.

3.3. The Proposed M-DRM Approach for the Moment-Based Sensitivity Index

The estimation for probability distribution of a generic multivariate structural response model
Y = η(X) depends largely on the availability of fractional moments Mα

Y. Numerical evaluation of
the multivariate moment integral can be realized by the standard Gaussian quadrature scheme in
Equation (17), which is embeded the curse of the dimensionality problem for multivariate cases. In this
regard, the univariate M-DRM approximation is used in this paper to derive an effective approximation
for the fractional moment result as follows.

To implement, the univariate M-DRM approximation in Equation (14) is first used to approximate
the structural model function η(·). This approximates the fractional moment result as

Mα
Y ≈

∫
X

{
[η(c)]1−n ·∏n

i=1 η(xi, c−i)
}α fX(x)dx (20)

With independent input random variables, one has fX(x) = ∏n
i=1 fi(xi), and the M-DRM

approximation for the fractional moment can be further rewritten as

Mα
Y ≈ [η(c)]α−αn ·

n

∏
i=1

Ei
{[

η(Xi, c−i)
]α} (21)
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Combined with the Gaussian-quadrature scheme in the literature [33] to deal with the univariate
integration, the one-dimensional integrations in the moment estimation procedure can be numerical
realized as

Ei
{[

η(Xi, c−i)
]α} ' Nk

∑
k=1

w(k)
i
[
η
(
x(k)i , c−i

)]α (22)

where, w(k)
i and x(k)i represent a kth Gauss-weight and abscissa of an ith input random variable,

respectively.
Following the univariate M-DRM procedure, a result of the moment-based sensitivity index

∂Mα
Y/∂θi derived in Equation (4) can be further approximated as

∂Mα
Y

∂θi
=
∫

X
[η(x)]α · κθi (xi) · fX(x)dx

≈
∫

X

[
η1−n(c) ·∏n

j=1 η(xj, c−j)
]α · κθi (xi) · fX(x)dx

=[η(c)]α−αn ·Ei

{[
η(Xi, c−i)

]α · κθi (xi)
}
·

n

∏
j=1,j 6=i

Ej

{[
η(Xj, c−j)

]α
} (23)

Denote the univariate integration as follows:{
ρi(α) = Ei

{
[η(Xi, c−i)]

α
}

βi(α) = Ei
{
[η(Xi, c−i)]

α · κθi (Xi)
} (24)

together with the corresponding Gaussian-quadrature based approximation results:
ρi(α) ≈

Nk

∑
k=1

{
w(k)

i · [η(c1, · · · , ci−1, x(k)i , ci+1, · · · , cn)]
α
}

βi(α) ≈
Nk

∑
k=1

{
w(k)

i · [η(c1, · · · , ci−1, x(k)i , ci+1, · · · , cn)]
α · κθi (x(k)i )

} (25)

This finally determines the M-DRM approximation for the moment-based sensitivity index in
Equation (23) as

∂M̂α
Y

∂θi
= [η(c)]α−αn ·

n

∏
j=1,j 6=i

ρj(α) · βi(α) (26)

which implies the total number of functional evaluations (FEs) for the univariate M-DRM based
moment sensitivity analysis will be

FEuiv = 1 +
n

∑
i=1

Ni (27)

This number is much smaller than that of the standard tensor product rule in Equation (17), i.e.,
∏n

i=1 Ni.

3.4. The Proposed Approach for the Reliability-Based Sensitivity Analysis

Analytical derivation for the response distribution function of a general multivariate structural
model is seldom applicable in engineering realities. Therefore, with the M-DRM approximation result
for fractional moments, an estimation of the unknown distribution fY(y) is possibly determined by
using the principle maximum entropy (MaxEnt) and the fractional moment, and the corresponding
reliability-based sensitivity results are further derived to rank the significance of distribution
parameters as follows.



Entropy 2019, 21, 649 8 of 21

To begin with, the MaxEnt approximation for the cumulative distribution function FY(y) of the
structural response model Y = η(X) is determined as

F̂Y(y) =
∫ y

0
f̂Y(z)dz =

∫ y

0
exp

(
−

m

∑
i=0

λizαi

)
dz (28)

With a threshold parameter yc in defining the structural performance function in Equation (6),
the structural failure probability can be determined as

PF(yc) = 1− F̂Y(yc) =
∫ +∞

yc
exp

(
−

m

∑
i=0

λiyαi

)
dy (29)

Note that the MaxEnt parameters λ = [λ0, λ1, · · · , λm]T and α = [α1, · · · , αm]T were numerically
optimized with the procedure in Equation (19).

Therefore, with the reliability estimation result in Equation (29), the reliability-based sensitivity
index ∂PF(yc)/∂θk is derived as

∂PF(yc)

∂θk
=

∂

∂θk

∫ +∞

yc
exp

(
− λ0 −

m

∑
i=1

λiyαi
)

dy (30)

Considering the moment-based sensitivity index in Equation (23), the reliability-based sensitivity
index can be further rewritten as [38]

∂PF(yc)

∂θk
=

m

∑
j=0

∂PF(yc)

∂λj

(
m

∑
i=1

∂λj

∂Mαi
Y
·

∂Mαi
Y

∂θi

)
(31)

Herein, the sensitivity coefficient ∂PF/∂λj is expressed as

∂PF(yc)

∂λj
= −

∫ +∞

yc
yαj exp

(
−

m

∑
i=0

λi yαi
)

dy (32)

To determine the partial derivatives ∂λj/∂Mαi
Y , we consider an αth

i order fractional moment:

Mαi
Y =

∫
Y

yαi · exp
(
− λ0 −

m

∑
i=1

λiyαi
)

dy (33)

which has the following partial derivative result:

∂Mαi
Y

∂λj
=

∂

∂λj

∫
Y

yαi exp
(
− λ0 −

m

∑
i=1

λiyαi
)

dy = −M
αi+αj
Y (i = 1, · · · , m; j = 0, · · · , m; α0 = 0) (34)

which is expressed as an (αi + αj) th-order fractional moment of the structural response quantity.
Specially, the mean-value based partial derivative results for the Lagrange multiplier are given as

∂µY

∂λj
=

∂M1
Y

∂λj
= −M

1+αj
Y (j = 0, · · · , m; α0 = 0) (35)
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Therefore, one has the following squared matrix for partial derivatives ∂Mαi
Y /∂λj:

[
∂Mα

Y
∂λ

]
(m+1)×(m+1)

=



∂µY

∂λ0

∂µY

∂λ1
· · ·

∂µY

∂λm
∂Mα1

Y
∂λ0

∂Mα1
Y

∂λ1
· · ·

∂Mα1
Y

∂λm
...

... · · ·
...

∂Mαm
Y

∂λ0

∂Mαm
Y

∂λ1
· · ·

∂Mαm
Y

∂λm


= −


µY M1+α1

Y · · · M1+αm
Y

Mα1
Y M2α1

Y · · · Mα1+αm
Y

...
... · · ·

...
Mαm

Y Mαm+α1
Y · · · M2αm

Y

 (36)

Considering that each element
∂λj

∂M
αi
Y

= −M
−(αi+αj)

Y and
∂λj
∂µY

= −M
−(1+αj)

Y (as i = 1, · · · , m; j =

0, · · · , m; α0 = 0), the gradient matrix [∂λ/∂Mα
Y] can be finally obtained as

[
∂λ

∂Mα
Y

]
(m+1)×(m+1)

=



∂λ0

∂µY

∂λ0

∂Mα1
Y
· · ·

∂λ0

∂Mαm
Y

∂λ1

∂µY

∂λ1

∂Mα1
Y
· · ·

∂λ1

∂Mαm
Y

...
... · · ·

...
∂λm

∂µY

∂λm

∂Mα1
Y
· · ·

∂λm

∂Mαm
Y


= −


µ−1

Y M−(1+α1)
Y · · · M−(1+αm)

Y

M−α1
Y M−2α1

Y · · · M−(α1+αm)
Y

...
... · · ·

...

M−αm
Y M−(αm+α1)

Y · · · M−2αm
Y


T

(37)

To summarize, the proposed approach for the reliability-based sensitivity analysis includes: (a) the
optimization for the MaxEnt distribution of the structural response quantity in Equation (18); (b) the
M-DRM approximation for the moment-based sensitivity index in Equation (23); (c) the calculation
of the gradient matrix for the Lagrange multiplier in Equation (37); and (d) the estimation of the
reliability-based sensitivity index in Equation (31). Specially, the reliability-based sensitivity coefficient
is evaluated for an arbitrary realization of the threshold parameter yc. It is easy to determine the
distribution-based sensitivity index based on one-round simulation of the structural model, instead
of repeated evaluating the structural failure probability for various realizations of the parameter yc.
In this regard, the proposed approach is much superior than that of the FORM-based approach in the
literature [39].

4. Numerical Examples

Engineering applications of the proposed approach for the moment-based and the reliability-based
sensitivity analysis are illustrated by three examples in this section. Numerical examples presented
in Sections 4.1 and 4.2 are explicitly defined with respect to the input random variables, whereas the
natural frequency function of a vehicle frame structure in Section 4.3 is defined as an implicit function
of geometry and material random variables. Compared with benchmark results provided by the
brute-force Monte-Carlo simulation method, the performance of this MaxEnt approach is examined as
follows.

To rank the importance of each distribution parameter, the following sensitivity indices in the
literature [40] are used in this paper:

Moment-based sensitivity index:
∂M̂α

Y
∂µi

=
∂Mα

Y
∂µi
· σi;

∂M̂α
Y

∂σi
=

∂Mα
Y

∂σi
· σi;

Reliability-based sensitivity index:
∂P̂F

∂µi
=

∂PF

∂µi
· σi;

∂P̂F

∂σi
=

∂PF

∂σi
· σi;

(38)
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where, µi and σi are the mean and the standard deviation of an ith input random variable, and Mα
Y

denotes an αth order moment of the structural response function Y = η(X). Specially, results for the
reliability-based sensitivity index are dimensionless by multiplying with the standard deviation of the
input random variable, and only results for the mean-value based moment sensitivity indices (α = 1),
i.e., ∂µ̂Y/∂µi and ∂µ̂Y/∂σi are presented in numerical examples for the sake of brevity.

4.1. Reliability-Based Sensitivity Analysis A Cantilever Tube Structure

This example considers the reliability-based sensitivity analysis of a cantilever tube structure
depicted in Figure 1. The performance function is defined as

g(X) =
Sy

σmax(X)
(39)

where, Sy denotes the material yield strength, and σmax represents the structural maximum stress.
Failure events of the cantilever tube structure are specified as {∀x ∈ Rn : g(x) ≤ 1.0}.

F1 F2

L1

L2

T

P

β
2

β
1

Figure 1. Example of a cantilever tube: β1 = 15◦ and β2 = 25◦.

With external forces F1, F2, P, and T, the maximum von-Mises stress on the top surface of the tube
is given as

σmax =
√

σ2
x + 2τ2

zx (40)

Herein, the torsion stress is defined as τzx = Td
4I , whereas the normal stress σx is given as

σx =
P + F1 sin(β1) + F2 sin(β2)

A
+

Mc
I

(41)

Specially, the parameters are given as A = π
4
[
d2 + (d − 2t)2], c = d/2, I = π

64
[
d4 − (d − 2t)4].

Therefore, the bending moment M is determined as

M = F1L1 cos(β1) + F2L2 cos(β2)

Note that d and t represent the outside diameter and the thickness of the tube, respectively. The
probabilistic characteristic of input random variables are summarized in Table 1.

Figure 2 depicts the moment-based sensitivity result for the performance function in Equation (39).
It is observed that distribution parameters µ1, µ2 and µ9 influence the performance function negatively,
where other mean-value parameters, i.e., µi (i = 3, · · · , 8) have shown positive sensitivity results.
Moreover, X2 is identified as the most significant uncertain factor among all input variables to
manipulate the mean-value response of the performance function, which is also justified by the
reliability-based sensitivity result as follows.



Entropy 2019, 21, 649 11 of 21

Table 1. Probabilistic characteristic of random variables for the cantilever tube example.

Variable Symbol Unite Distribution Mean COV

t X1 mm Normal 5.0 0.10
d X2 mm Normal 42.0 0.10
L1 X3 mm Normal 120.0 0.10
L2 X4 mm Normal 50.0 0.10
F1 X5 kN Lognormal 3.0 0.10
F2 X6 kN Lognormal 3.0 0.10
P X7 kN Lognormal 12.0 0.10
T X8 kN Lognormal 100.0 0.10
Sy X9 MPa Lognormal 220.0 0.10
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(a) Moment-based sensitivity result: ∂µ̂g
∂µi
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(b) Moment-based sensitivity result: ∂µ̂g
∂σi

Figure 2. Results of the moment-based sensitivity index(Boxplot: 103 rounds simulation with 103

samples in each).

To derive probability distribution of structural performance function g(X), the procedure
summarized in Equation (19) was implemented. Results for the MaxEnt parameter are summarized in
Table 2, whereas Figure 3 presents simulation results for the probability distribution. With three-order
fractional moments of the structural performance function i.e., m = 3, an accurate result for the
probability distribution of g(X) is determined as shown in Figure 3. With the determined result for the
probability of exceedance, the structural failure probability is estimated as PF = 1.1914× 10−2, which
is fairly close to the benchmark result 1.2035× 10−2.

Figure 4 presents results for the reliability-based sensitivity analysis of the cantilever tube example.
The simulation result is determined based on 103 rounds brute-force Monte-Carlo simulations with 103

samples in each. Estimation results for ∂P̂F/∂µi and ∂P̂F/∂σi (i = 1, · · · , 9) are agreed well with the
benchmark result. The Gaussian quadrature scheme was employed to evaluate low-variate integrals
for the fractional moment and the moment-based sensitivity analysis. The total number of functional
evaluations is 42 = 1 + (5− 1)× 4 + 5× 5 in this example, which is rather small as compared to that
of the brute-force Monte-Carlo simulation based on 105 samples.
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Table 2. Parameters for the MaxEnt distribution of g(X).

Entropy k 0 1 2 3

−0.5490 λk −45.85 8.729 78.74 −39.35
αk −− −0.8505 0.6785 0.9621

Moment Mαk
Y MCS −− 1.7565 0.6615 0.5620

M-DRM −− 1.7565 0.6515 0.5621

MCS: The Monte-Carlo simulation with 105 samples; M-DRM: Multiplicative dimensional reduction method.
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Figure 3. Results for the MaxEnt distribution of g(X) and the structural failure probability (The MCS
approach with 105 samples determines PF = 1.2035× 10−2).
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(a) Reliability-based sensitivity analysis: ∂P̂F
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(b) Reliability-based sensitivity analysis: ∂P̂F
∂σi

Figure 4. Results for the reliability-based sensitivity index of the cantilever tube example (Boxplot: 103

rounds simulation with 103 samples in each).

4.2. Reliability-Based Sensitivity Analysis of a Cracked Membrane

A thermal introduced crack is observed in a membrane due to variations of temperature in
a heating environment. The membrane is heated with a permanent uniform temperature field T0,
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whereas the temperature is reduced to the ambient temperature T during a maintenance procedure.
The heat drop implies the tension and the open of a mode I crack. In this regard, the stress intensity
factor KIC of the crack produced by the heat variation can be evaluated as [41]

KIC(X) = −cE(T − T0)

√
πa

cos(πa/4B)

[
1− 1

40

( a
2B

)2
+

3
50

( a
2B

)4
]

(42)

Note that the probability distribution of the stress intensity factor KIC(X) is estimated based on
the MaxEnt procedure in Equation (19). Therefore, with the material toughness parameter KC, the
performance function for reliability analysis of the membrane can be defined as

g(X) = KC − KIC(X) (43)

and the probability of exceedance of the cracked membrane is determined as

POE(KC) = Pr
[
KIC(X) > KC

]
Herein, the probabilistic characteristic of input random variables are listed in Table 3.

Table 3. Random variables of thermal-induced stress intensity factor.

Name Variable Symbol Distribution Mean COV

Initial temperature T0 X1 Lognormal 100 ◦C 0.10
Amphibian temperature T X2 Lognormal 20 ◦C 0.10
The size of crack a X3 Lognormal 10 mm 0.10
Width B X4 Normal 200 mm 0.10
Young’s modules E X5 Lognormal 210 GPa 0.10
Thermal expansion Coef. c – Deterministic 12.5× 10−6 ◦C−1 —

Figure 5 depicts numerical results for the mean-value based sensitivity index of the cracked membrane
structure. Compared to benchmark results for ∂µ̂KIC/∂µi and ∂µ̂KIC/∂σi provided by the brute-force
Monte-Carlo simulation, it is observed the high numerical accuracy of this proposed approach.
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(a) Moment-based sensitivity analysis:
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(b) Moment-based sensitivity analysis:
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Figure 5. Results of the moment-based sensitivity index (Boxplot: 103 rounds simulation with 103

samples in each).
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With the MaxEnt optimization and the fractional moment approach, the probability distribution
for the stress intensity factor KIC(X) of the membrane structure is depicted as shown in Figure 6,
whereas results for the MaxEnt parameters, i.e., λ and α are listed in Table 4. Compared to the
benchmark result provided by the brute-force MCS with 106 samples, it has highlighted numerical
accuracy of this fractional moment based entropy approach in estimating the probability distribution
for the multivariate intensity factor function.
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Figure 6. Probability distribution of the stress intensity factor (ME-FM: MaxEnt with fractional moment;
MCS: The Monte-Carlo simulation with 106 samples).

Table 4. Parameters for the MaxEnt distribution of the stress intensity factor KIC(X).

Entropy k 0 1 2 3

3.2455 λk −54.306 1.1317 250.04 128.02
αk −− 0.8691 −0.6979 −0.6836

Moment Mαk
Y MCS −− 23.129 0.0815 0.0858

M-DRM −− 23.128 0.0815 0.0858

MCS: The Monte-Carlo simulation with 106 samples; M-DRM: Multiplicative dimensional reduction method.

Figure 7 further depicts results for the reliability-based sensitivity analysis of the cracked
membrane provided by the proposed entropy approach. The mean-values of input random variables
X1, X3 and X5 contribute positively to the structural failure failure, whereas a minimization of the
temperature difference, i.e., (T − T0) is able to reduce the structural failure probability. Similar
observations for the moment-based sensitivity result are presented in Figure 5. Besides, the utility of
the multiplicative dimensional reduction method needs 25 functional evaluations in total. This has
demonstrated the high numerical efficiency of this approach as well.
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Figure 7. Reliability-based sensitivity analysis of the cracked membrane (ME-FM: The MaxEnt with
fractional moment; MCS: Monte-Carlo simulation with 106 samples).

4.3. Probabilistic Sensitivity Analysis for Fundamental Natural Frequency of a Vehicle Frame

The example considers the probabilistic sensitivity analysis of a vehicle frame that is depicted
by a finite element model. The total length (L) of the vehicle frame is equally spaced as six segments,
i.e., d = L/6. The shell element with the thickness t is used to develop the finite element model for
natural frequency analysis of the vehicle structure. The simulation model contains 2820 quadratic
elements with 15, 335 degrees of freedom. The probabilistic characteristic of input random variables are
summarized in Table 5, whereas the mean-value of X determines the fundamental natural frequency
of the vehicle frame as 31.29 rad/s.

Table 5. Probability information of random variables of the vehicle frame structure.

Random Variable Symbol Unit Distribution Mean COV

Geometric L X1 mm Normal 3600 0.10
dimension W X2 mm Normal 750 0.10

w X3 mm Normal 90 0.10
t X4 mm Normal 6 0.10
H X5 mm Normal 200 0.10

Material ν X6 – Lognormal 0.3 0.10
property E X7 MPa Lognormal 2.10× 105 0.10

ρ X8 kg/m3 Lognormal 7.89× 103 0.10

Figure 8 first presents the sensitivity results for the fundamental natural frequency of the vehicle
frame. It has observed that an increase of mean-values µ4 and µ7 is able to increase the mean value
response for the fundamental natural frequency of this vehicle frame. However, an increment of
parameters µ1 and µ2 will reduce the mean-value natural frequency result. In this regard, distribution
parameters, i.e., µi and σi of the input random variable can be used to manipulate the response moment
results for fundamental natural frequency of the vehicle frame structure.
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Figure 8. Sensitivity on mean-value of the fundamental frequency ( Boxplot: 103 rounds simulation
with 103 samples in each).

To determine the response distribution of the structural natural frequency, the multiplicative
dimensional reduction method is first used to determine fractional moments, whereas the MaxEnt
optimization procedure is followed to determine an estimation for the probability distribution function
for the natural frequency result, and the distribution parameters are summarized in Table 6. Compared
to the benchmark result provided by the brute-force Monte-Carlo simulation method, results depicted
in Figure 9 have confirmed the high accuracy of this entropy approach in estimating the response
distribution of the structural natural frequency.

Table 6. Parameters for the MaxEnt distribution of the structural fundamental natural frequency.

Entropy k 0 1 2 3

3.2303 λk −517.8 541.9 163.5 19.1
αk −− −0.3063 0.1639 0.2442

Moment Mαk
Y MCS −− 0.3453 1.7689 2.3401

M-DRM −− 0.3453 1.7689 2.3401

MCS: The Monte-Carlo simulation with 106 samples; M-DRM: Multiplicative dimensional reduction method.

Figure 10 presents the reliability-based sensitivity result of the vehicle frame represented by
various allowable threshold value of the fundamental natural frequency results. A close agreement
between the estimation results of the probability distribution and the sensitivity curves has demonstrate
the high accuracy of the proposed approach for probabilistic sensitivity analysis of the vehicle frame.
Specially, the mean values of random variables X4 and X7 increase the natural frequency result
positively, whereas X1, X2, X6 and X8 change the natural frequency result negatively. Specially,
X3 and X5 almost contribute fairly small for the uncertain natural frequency result, and they can
be further treated as deterministic parameters to reduce the dimension of input random variables.
Therefore, based on the probability-based sensitivity result, it is possible to locate controlling variables
to increase/decrease the structural fundamental natural frequency result to avoid potential failures
(e.g., the resonance) of the vehicle frame structure in engineering realities.
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Figure 9. The result of probability distribution of fundamental frequency of the vehicle frame (ME-FM:
MaxEnt with fractional moment; MCS: The Monte-Carlo simulation with 106 samples).
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Figure 10. Reliability-based sensitivity analysis on fundamental frequency of the vehicle frame (ME-FM:
MaxEnt with fractional moment; MCS: The Monte-Carlo simulation with 106 samples).

5. Conclusions

The paper presents a numerical method for the moment-based and the reliability-based sensitivity
analysis of a structural model represented by multivariate random variables. In this regard, the
structural performance function is first approximated as the product of low-variate component
functions, and the utility of the Gaussian quadrature scheme has overcome the curse of dimensionality
problem rested in conventional moment calculation procedures. A quasi-analytical expression for
the structural response distribution is derived based on the principle of maximum entropy and the
fractional moments. There examples are presented to demonstrate potential applications of this
approach to rank the significance of input random variables. A rather small number of functional
evaluations (≤50 in this paper) were involved in calculating the probability based sensitivity result,
which was used to identify controlling variables for response moment and reliability of a multivariate
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structural model. The sensitivity algorithm was realized based on one-round design of experiment
of an investigated structural model. This guarantees numerical efficiency of this approach in reality.
Besides, a close agreement of the estimation and the benchmark results has also confirmed its numerical
accuracy. To summarize, the principle of maximum entropy and the fractional moment method is able
to provide reliable estimation for the reliability-based sensitivity result of a multivariate structural
model in general.
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Appendix A. The Kernel Function of Random Variables

Appendix A.1. The Normal Random Variable

Normal distribution could be represented by the mean-value and its standard deviation as

fX(x) =
1√
2πσ

exp
[
− (x− µ)2/(2σ2)

]
(A1)

Therefore, the kernel function of X w.r.t. µ and σ could be directly computed as{
κµ(X) = (X− µ)/σ2

κσ(X) = (X2 − 2Xµ + µ2 − σ2)/σ3
(A2)

Appendix A.2. The Lognormal random Variable

PDF of the Lognormal distribution is

fX(x) =
1√

2π ζ x
exp

[
− (log x− λ)2/(2ζ2)

]
(A3)

where, the value of λ and ζ could be calculated with the mean-value and standard deviation of X asλ = log µ− 1/2 log(1 + δ2
X)

ζ =
√

log(1 + δ2
X)

(A4)

where, δX = σ/µ is the coefficient of variation (COV). Therefore, with the chain rule of differentiation,
the kernel functions are 

κµ(X) =
∂ log

[
fX(x)

]
∂λ

·
∂λ

∂µ
+

∂ log
[

fX(x)
]

∂ζ
·

∂ζ

∂µ

κσ(X) =
∂ log

[
fX(x)

]
∂λ

·
∂λ

∂σ
+

∂ log
[

fX(x)
]

∂ζ
·

∂ζ

∂σ

(A5)
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where, {
∂ log

[
fX(x)

]
/∂λ = (λ− log X)/ζ2

∂ log
[

fX(x)
]
/∂ζ =

[
(log X− λ2)− ζ2]/ζ3

(A6)

and,{
∂λ/∂µ = (µ2 + 2σ2)/

[
µ(µ2 + σ2)

]
; ∂ζ/∂µ = σ2/

[
µ(µ2 + σ2)

√
log(µ2 + σ2)− 2 log µ

]
∂λ/∂σ = −σ/(µ2 + 2σ2); ∂ζ/∂σ = σ/

[
(µ2 + σ2)

√
log(µ2 + σ2)− 2 log µ

] (A7)

Appendix A.3. The Weibull Random Variable

Two-parameter Weibull distribution with the pdf of

fX(x) = a/b(x/b)a−1 exp[−(x/b)a] (x ≥ 0) (A8)

where, a > 0 and b > 0 denote the shape and scale parameters, respectively. And the mean-value and
standard deviation of X are {

µ = bΓ(1 + 1/a)

σ = b
√

Γ(1 + 2/a)− Γ2(1 + 1/a)
(A9)

Then, the Jacobian matrix of µ and σ in terms of a and b can be determined as
∂µ

∂a
∂µ

∂b
∂σ

∂a
∂σ

∂b

 =

[
−bΨ(1 + 1/a)Γ(1 + 1/a)/a2 Γ(1 + 1/a)

b2[Ψ(1 + 1/a)Γ2(1 + 1/a)−Ψ(1 + 2/a)Γ(1 + 2/a)
]
/
[
a2σ
]

σ/b

]
(A10)

in which, Ψ[·] is the digamma function, defined as the logarithmic derivative of Gamma function

Ψ(x) = d log[Γ(x)]/dx = Γ′(x)/Γ(x) (A11)

Therefore, the kernel function of Weibull distribution also could be derived through the chain
rule w.r.t. the shape and scale parameters

κµ(X) =
∂ log

[
fX(x)

]
∂a

·
∂a
∂µ

+
∂ log

[
fX(x)

]
∂b

·
∂b
∂µ

κσ(X) =
∂ log

[
fX(x)

]
∂a

·
∂a
∂σ

+
∂ log

[
fX(x)

]
∂b

·
∂b
∂σ

(A12)

where, {
∂ log

[
fX(x)

]
/∂a =

[
1 + a log(X/b)− a log(X/b)(X/b)a]/a

∂ log
[

fX(x)
]
/∂b =

[
a(X/b)a − a

]
/b

(A13)

and, the derivatives of a and b w.r.t. µ and σ could be evaluated through the inverse of Jacobian matrix
in Equation (A10), i.e.,

∂a
∂µ

∂b
∂µ

∂a
∂σ

∂b
∂σ

 =

[
−bΨ(1 + 1/a)Γ(1 + 1/a)/a2 Γ(1 + 1/a)

b2[Ψ(1 + 1/a)Γ2(1 + 1/a)−Ψ(1 + 2/a)Γ(1 + 2/a)
]
/
[
a2σ
]

σ/b

]−1

(A14)
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