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Abstract: Since digital communication signals are widely used in radio and underwater acoustic
systems, the modulation classification of these signals has become increasingly significant in various
military and civilian applications. However, due to the adverse channel transmission characteristics
and low signal to noise ratio (SNR), the modulation classification of communication signals is
extremely challenging. In this paper, a novel method for automatic modulation classification of
digital communication signals using a support vector machine (SVM) based on hybrid features,
cyclostationary, and information entropy is proposed. In this proposed method, by combining the
theory of the cyclostationary and entropy, based on the existing signal features, we propose three other
new features to assist the classification of digital communication signals, which are the maximum
value of the normalized cyclic spectrum when the cyclic frequency is not zero, the Shannon entropy
of the cyclic spectrum, and Renyi entropy of the cyclic spectrum respectively. Because these new
features do not require any prior information and have a strong anti-noise ability, they are very
suitable for the identification of communication signals. Finally, a one against one SVM is designed
as a classifier. Simulation results show that the proposed method outperforms the existing methods
in terms of classification performance and noise tolerance.

Keywords: modulation classification; digital communication signals; cyclostationary; information
entropy; SVM

1. Introduction

Automatic modulation classification (AMC) of digital communication signals has now become
an established research area [1]. It plays an important role in many applications. Some of these
applications are for civilian purposes such as signal confirmation and spectrum management.
The others are for military purposes such as surveillance, electronic warfare, and threat analysis.
Therefore, if the types of the enemy signals are recognized, it will be of great significance for us to
analyze and interfere with the enemy information.

Many methods for the modulation recognition of the communication signals have been published
in recent years. In general, these methods can be divided into two categories: one is based
on the decision-theoretic framework and the other is based on the statistical pattern recognition.
The decision-theoretic approach is made by maximizing the probability of a certain modulation being
sent given the received signal. The maximum likelihood algorithm is the most popular algorithm used
in this approach. In the pattern recognition approach, the decision is made based on a set of features
extracted from the intercepted signal, which is widely used in practical engineering. Extracting features
from the intercepted signal is often followed by a pattern recognizer that determines the signal
modulation. The following is an overview of some of these modulation recognition algorithms.
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In [2], Kim et al. develop a modulation recognition method of MPSK signals based on the
decision-theoretic approach. This method is less robust and lots of prior information such as carrier
frequency, initial phase, and symbol rate are all assumed to be available to the classifier. Nandi et al. [3]
follow the statistical pattern recognition approach and use the instantaneous features to discriminate
the communication signals. These communication signals include 2ASK, 4ASK, 2PSK, QPSK, 2FSK,
4FSK. The classifier is a tree classifier and through simulations, they demonstrate that this recognizer
performed well when the SNR is greater than 15 dB. The success recognition rate is >88% for these
signals at the SNR of 15 dB. This approach is easy to implement and does not need any prior
information, thus making it widely used. However, the features extracted by this method is sensitive
to the noise and interference, and the method also needs to set a fixed decision threshold, which is
often selected empirically. The shortcomings mentioned above have seriously affected the recognition
performance of this method. In [4], three layered deep neural networks have been employed for the
classification of BPSK, QPSK, 8PSK, 16QAM, and 64QAM with 21statistical features. The method
can achieve >90% classification accuracy when the SNR is greater than 10 dB. In [5], Afan Ali et al.
develop a method for automatic modulation classification using the deep learning architecture in a
combination of the In-phase and Quadrature constellation points of the received signal as the training
example. The recognition rate of BPSK, 4QAM, 16QAM, 64QAM by this method is >90% when the
SNR is greater than 5 dB. In [6], Weihua Jiang et al provide a modulation recognition method of
non-cooperation underwater acoustic communication signals using principal component analysis and
an artificial neural network. The recognition rate of the BPSK, QPSK, MFSK by this method is >91%
when the SNR is greater than 5 dB. Although this method has good performance, it cannot distinguish
between 2FSK and 4FSK. In [7], the modulation of the communication signals is recognized by the
wavelet transform. The percentage of correct identification for PSK signals is >80% when SNR > 6 dB,
and the percentage of correct identification for FSK signals is >80% when SNR > 12 dB. Although this
method is a good tool to identify PSK and FSK, how to choose the appropriate wavelet function is a
difficult problem to solve. Although many methods of modulation recognition have been proposed in
the past [1–15], as far as we know, the methods to identify BPSK, QPSK, 2FSK, 4FSK and MSK signals
have been rarely proposed so far. Therefore, this paper will focus on the identification of these signals.

In recent years, information entropy has been widely used in signal recognition [16,17]. Entropy is
used to measure the uncertainty of signal distribution and represents the complexity degree of
the signal; therefore, information entropy provides a theoretical basis for signal characterization
description [18]. In [17], the Renyi Entropy of the Wigner-Ville distribution (WVD) and the continuous
wavelet transform (CWT), and the singular spectrum entropy are extracted to identify the 2FSK,
BPSK, 16QAM, 32QAM, and MSK signals. The average correct recognition rate of all signals is
>90% when SNR > 5 dB. Although the method performs well at low SNRs, it is sensitive to the
parameters of the WVD and CWT. Because of underlying periodicities due to various periodic signal
processing operations such as sampling, scanning, modulating, multiplexing, and coding, or due
to periodicity in the physical phenomenon that gives rise to the time series, many signals can be
modeled as cyclostationary signals such as communication signals, radar signals, sonar signals and
so on [19–21]. The cyclostationary of a signal is usually reflected by the spectral correlation function,
also known as the cyclic spectrum. According to [20,21], we can see that the power spectra of different
communication signals may be the same, but the cyclic spectra are sometimes significantly different.
Moreover, since the noise does not have the characteristics of the cyclostationary, the cyclic spectrum
has good anti-noise performance. Based on the advantages mentioned above, the cyclic spectrum is
very suitable for identifying communication signals.

In this paper, a novel method for automatic modulation classification of digital communication
signals, using SVM based on hybrid features, cyclostationary, and information entropy, is proposed.
In this proposed method, by combining the theory of the cyclostationary and entropy, based on
the existing signal features, we propose three other new features to assist the classification of
communication signals, which are the maximum value of the normalized cyclic spectrum when
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the cyclic frequency is not zero, the Shannon entropy of the cyclic spectrum, and Renyi entropy of the
cyclic spectrum respectively. Since these new features do not require any prior information and have a
strong anti-noise ability, they are very suitable for the identification of communication signals. Finally,
a one against one SVM is used as a classifier. Simulation results show that the proposed method in this
paper performs well in the low SNR condition.

The rest of the paper is arranged as follows: In Section 2, the mathematical model of the
communication signals to be identified is given. In Section 3, the proposed features for signal
classification in this paper are described in detail. The proposed SVM classifier is given in Section 4.
The simulation results are displayed in Section 5. Finally, conclusions are addressed in Section 6.

2. Signal Model

In this work, the mathematical model of the signals to be recognized is expressed as

y (n) = x (n) + v (n) , (1)

where n = 0, 1, · · · , N − 1, N represents the signal length. y (n), x (n) and v (n) are respective
the transmitted modulation signal, the intercepted signal, and the noise sample at discrete time n.
The transmitted signal {x (n) , n = 0, 1, · · · , N− 1} is drawn from an unknown constellation set Ψ which
in turn belongs to a set of possible modulation formats {Ψ1, Ψ2, · · · , ΨK}. The modulation classification
problem refers to the determination of the constellation set Ψ to which the transmitted signal belong based
on the intercepted signal {y (n) , n = 0, 1, · · · , N− 1}. In this paper, we have considered the following
digital communication signals for classification: BPSK, EPSK, 2FSK, 4FSK and MSK.

3. Feature Extraction

3.1. Instantaneous Features

In [3], instantaneous features, which contain hidden modulation information in a single domain,
were demonstrated to be suitable for signal classification. According to the considered digital
communication signals in this paper, the following instantaneous features are selected.

(1) σap : the standard deviation of the absolute value of the nonlinear component of the instantaneous
phase in the non-weak segments of the intercepted signal:

σap =

√√√√√ 1
C

 ∑
An(n)>at

φ2
NL (n)

−
 1

C ∑
An(n)>at

|φNL (n)|

2

, (2)

where A(n) denotes the instantaneous amplitude and φ (n) denotes the instantaneous phase of
the intercepted signal both at time instants t = n/ fs. An (n) = A (n) /ma, ma is the average value
of the instantaneous amplitude over one frame, that is

ma =
1
N

N

∑
n=1

A (n) , (3)

φNL (n) is the value of the non-linear component of the instantaneous phase at time instants
t = n/ fs, at is a threshold for A(n) below which the estimation of the instantaneous phase is
very sensitive to the noise, and C is the number of samples in {φNL (n)} for which An(n) > at.
σap is mainly used to distinguish the MPSK signals and it also can differentiate the modulation
schemes of MFSK signals to some extent.
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(2) σa f : standard deviation of the absolute value of the normalized-centered instantaneous frequency
over non-weak segments of the intercepted signal:

σa f =

√√√√√ 1
C

 ∑
An(n)>at

f 2
N (n)

−
 1

C ∑
An(n)>at

| fN (n)|

2

, (4)

where, fN (n) = fc (n) /rs, fc (n) = f (n) − m f , m f = (1/N)∑N
i=1 f (i). σa f can differentiate

between the modulation types without frequency information and the FSK modulation types
and also between 2FSK and 4FSK.

Figures 1 and 2 show the relationship between the features σap and σa f of different modulation
signals with the SNRs. In this simulation, the sampling frequency fs = 10 KHz, the signal length
N = 4096, and the noise v (n) is the white Gaussian noise. According to Figures 1 and 2, it is clear that
although feature σap and feature σa f of different signals are different, and the difference is not obvious
when the SNR is low. Therefore, we need to extract other new features to assist the identification of the
modulation types of these signals in low SNR environments, and these features are introduced in the
next section.
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Figure 1. The relationship between the feature σap of different modulation signals and the SNRs.

−5 0 5 10 15

0.8

1

1.2

1.4

1.6

1.8

2

SNR (dB)

A
m

p
li
tu

d
e

 

 

BPSK
QPSK
2FSK
4FSK
MSK

Figure 2. The relationship between the feature σa f of different modulation signals and the SNRs.
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3.2. Features Based on Cyclostationary and Information Entropy

3.2.1. The Cyclostationary of Communication Signals

A discrete time process x(n) is cyclostationary, if the discrete time cyclic autocorrelation function

Rα
x (k) = lim

N→∞

1
2N + 1

N

∑
n=−N

[
x(n + k)e−iπα(n+k)

] [
x(n)eiπαn

]∗
, (5)

exists and is not identically zero when α 6= 0. A particularly convenient characterization of
cyclostationary is the cyclic spectrum,

Sα
x ( f ) =

∞

∑
k=−∞

Rα
x (k) e−i2π f k, (6)

which is the Fourier series transform of the Rα
x (k). In (5) and (6), i =

√
−1, ∗ denotes the conjugation

operation, α is called the cyclic frequency and f is the spectral frequency. Moreover, it is obvious that the
cyclic autocorrelation function and the cyclic spectrum will reduce to the conventional autocorrelation
function and the power spectral density when the cyclic frequency α = 0.

The cyclic spectrum can be calculated directly through the double limit of the time smoothed
cyclic periodogram,

Sα
x ( f ) = lim

T→∞
lim

∆t→∞
Sα

xT
(n, f )∆t , (7)

where
Sα

xT
(n, f )∆t = 〈XT (n, f + α/2) X∗T (n, f − α/2)〉∆t , (8)

XT (n, f ) is called the complex demodulate of x(n) and is the complex envelop of a narrow-band
band-pass component of x(n) centered at f with bandwidth ∆ f ≈= 1/T,

XT (n, f ) =
n+T/2

∑
m=n−T/2

x(m)e−i2π f m, (9)

where ∆ f and ∆t are called the frequency and time resolutions of the estimation. The time smoothed
cyclic periodogram is used to estimate the cyclic spectrum point by point.

When x(n) is the MPSK signal, the mathematical model of x(n) can be described as

x (n) = A cos (2π fcn/ fs + φ (n)) , (10)

and

φ (n) =
∞

∑
m=−∞

θmq (n−mT0) , (11)

where fc denotes the carrier frequency, A denotes the signal amplitude, θm ∈
{2kπ/M, k = 0, 1, · · · , M− 1} is phase of the transmitted MPSK symbol, T0 denotes the symbol
period. Here, q (n) is a rectangle pulse,

q (n) =

{
1, |n| ≤ T0 fs/2

0, |n| > T0 fs/2
, (12)

and therefore

Q ( f ) =
sin (π f T0)

π f
. (13)
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When M = 2 , x (n) is a BPSK signal, then based on (6) the cyclic spectrum of the BPSK signal can
be obtained

Sα
x ( f ) =



1
4T0

[
Q
(

f − fc +
α
2
)

Q∗
(

f − fc − α
2
)

+Q
(

f + fc +
α
2
)

Q∗
(

f + fc − α
2
)]

, α = p/T0
1

4T0
Q
(

f − fc +
α
2
)

Q∗
(

f + fc − α
2
)

, α = 2 fc + p/T0
1

4T0
Q
(

f + fc +
α
2
)

Q∗
(

f − fc − α
2
)

, α = −2 fc + p/T0

0, else

, (14)

For all integers p. Similarly, when M ≥ 4, the cyclic spectrum of the MPSK signal can be written as

Sα
x ( f ) =



1
4T0

[
Q
(

f − fc +
α
2
)

Q∗
(

f − fc − α
2
)

+ Q
(

f + fc +
α
2
)

Q∗
(

f + fc − α
2
)]

, α = p/T0

0, else

. (15)

According to (14) and (15), we can see that the cyclic spectra of the BPSK signals have large values,
when α = p/T0 and α = ±2 fc + p/T0. However, the cyclic spectra of the MPSK (M ≥ 4) signals only
have nonzero values at α = p/T0.

Similarly, the type of FSK signals can be expressed as

x (n) = cos
[

2π fcn/ fs +
∞

∑
r=−∞

M

∑
m=1

δm (r) [2π fm (n/ fs − rT0) +θm (r)] q (n− rT0)

]
, (16)

where the M frequencies { fc + fm, m = 1, 2, · · · , M} are keyed randomly. When the phase sequences
θm are constant

θr (n) = φm, (17)

then the FSK is called clock phase coherent FSK and the MSK signal belong to this type of signal.
Simultaneously, (16) can be written as

x (n) =
∞

∑
r=1

M

∑
m=1

δm (r) qm (n− rT0), (18)

where
qm (n) = cos [2π ( fc + fm) n/ fs + φm], (19)

and therefore

Qm ( f ) =
sin [π ( f − fc − fm) T0] ejφm

2π ( f − fc − fm)
+

sin [π ( f + fc + fm)] e−jφm

2π ( f + fc + fm)
, (20)
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then based on (6) the cyclic spectrum of (18) can be given by

Sα
x ( f ) =

1
MT0

M

∑
m=1

Qm ( f + α/2) Q∗m ( f − α/2)−

1
M2T0

[
M

∑
m=1

Qm ( f + α/2)

] [
M

∑
n=1

Qn ( f − α/2)

]∗

·
[

1− 1
T0

∞

∑
n=−∞

δ ( f + α/2− n/T0)

]
, α = p/T0

, (21)

Letting f
′
m = fc + fm, it can be shown that |Sα

x ( f )| has its maximum values at f = ± f
′
m, and if

f
′
mT0 are integers, there are additional peaks at α = ± f

′
m and f = 0. There are also secondary maxima,

down by the factor M− 1 from the primary maximum, at ±α = f
′
m ± f

′
n and ± f = ( f

′
m ∓ f

′
n)/2.

When the phase sequence {θm (r) , m = 1, 2, · · · , M} = θn is independent and identically
distributed with uniform fraction of time distribution over (−π, π], x (n) in (16) is called phase
incoherent FSK and the 2FSK/4FSK signal belong to this type of signal, and (16) can be re-written as

x (n) =
∞

∑
r=−∞

M

∑
m=1

ar (n) q (n− rT0), (22)

and
ar (n) = cos [2π ( fc + f (r)) n/ fs + θr], (23)

where

f (r) =
M

∑
m=1

δm (r) fm, (24)

For a purely stationary f (r) with discrete M-ary fraction of time distribution {Pm}M
1 , the cyclic

spectrum of (22) can be expressed as

Sα
x ( f ) =

1
4T0

M

∑
m=1

Pm

[
Q
(

f + f
′
m +

α

2

)
Q∗
(

f + f
′
m −

α

2

)
+Q

(
f − f

′
m +

α

2

)
Q∗
(

f − f
′
m −

α

2

)]
, α = p/T0

. (25)

Comparing (21) with (25), we can see that there are no impulses in (18), and there are no peaks at
α = ±2 f

′
m for phase incoherent FSK.

Figure 3 shows the cyclic spectra of different communication signals under different SNR
environments. The noise is the additive white Gaussian noise (AWGN). From Figure 3, it is clear that
the cyclic spectra (α > 0) of these communication signals are not only distinct but also have strong
noise immunity, which means the cyclic spectrum is a very good tool for identifying these signals.
In this simulation, fs = 10 KHz, N = 4096.
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Figure 3. The cyclic spectra of five different modulation signals under different SNRs, the figures from
top to bottom show the cyclic spectra of BPSK, QPSK, 2FSK, 4FSK, MSK. The figures in the left, middle
and right columns correspond to 0 dB, 5 dB, and 10 dB respectively.
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3.2.2. The Feature of the Cyclic Spectrum

From Figure 4 and the theory mentioned in Section 3.2.1, we can obtain that the maximum Hc of
the normalized cyclic spectrum is a good characteristic to distinguish the communication signals, Hc is
defined as:

Hc = max
{∣∣∣Sα>0

x ( f )
∣∣∣}. (26)

where max {} denotes taking the maximum value, || represents taking the amplitude. The relationship
between the feature Hc of different modulation signals and the SNR is shown in Figure 4. The signal
propagation channel is AWGN. It can be seen from Figure 4 that the feature Hc of different modulation
signals varies significantly, which means Hc is a good feature to distinguish them.
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Figure 4. The relationship between the feature Hc of different modulation signals and the SNRs.

3.2.3. The Information Entropy Features of the Cyclic Spectrum

The information entropy was first proposed by Shannon, which was used to measure the
uncertainty of signal distribution and represents the complexity degree of the signal. Therefore,
information entropy provides a theoretical basis for the signal characterization description. Presently,
entropy is applied many subjects [22–28]. Because of the symmetry of the cyclic spectrum, that is

|Sα
x ( f )| =

∣∣S−α
x ( f )

∣∣. (27)

Then according to [17], the Shannon entropy of the cyclic spectrum can be defined as

Hs = −∑
f

∑
α>0

Pα
x ( f ) log2 (Pα

x ( f )), (28)

where

Pα
x ( f ) =

|Sα
x ( f )|

∑ f ∑α |Sα
x ( f )| , α > 0. (29)

From (28), the entropy Hs has several important properties:

(I) Symmetry: when the order of each component Pα
x ( f ) changed, the Hs will not be changed, which

means the entropy is only related to the whole statistical properties of the data set. According to
this property, we can obtain that the entropy Hs is robust to the signal modulation parameters
such as carrier frequency, code rate, etc.
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(II) Non-negative property: the entropy Hs is a non-negative value, that is

Hs ≥ 0. (30)

(III) Extreme property: when each component in data set existed in equal probability, the entropy Hs

will get its maximum value. that is
Hs 6 log2Ω, (31)

where Ω represents the number of the Pα
x ( f ).

Similarly, according to [17], the two-dimensional Renyi entropy of the cyclic spectrum can be
defined as follows:

Hβ =
1

1− β
log2 ∑

f
∑
α>0

(Pα
x ( f ))β

, (32)

where β is the order of the Renyi entropy of the cyclic spectrum, and β ≥ 0, β 6= 1. Compared with
Shannon entropy, the Renyi entropy can better reflect the difference between two different
distributions [29].

The relationship between the information entropy Hs and Hβ of different modulation signals
and the SNR is shown in Figures 5 and 6. In these simulations, the sampling frequency fs = 10 KHz,
the signal length N = 4096, and without loss of generality, the order β is set to 5. The noise v (n) is the
white Gaussian noise. From Figure 5, it is clear that the entropy Hs is a good feature to distinguish
2FSK, 4FSK, and MSK in a low SNR environment. Similarly, the entropy Hβ is a good feature to
distinguish between BPSK and QPSK, 4FSK and 2FSK, 4FSK and MSK when the SNR is low.
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Figure 5. The relationship between the entropy feature Hs of different modulation signals and the SNRs.
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Figure 6. The relationship between the entropy feature Hβ of different modulation signals and the SNRs.

4. The Proposed SVM Classifier

The traditional artificial neural networks (ANNs) often encounter problems such as overfitting
and local minimization. Meanwhile, the large amount of sample data needed for full training of an
ANN cannot be guaranteed in practical applications [30–32]. The SVM based on the structural risk
minimization criterion cannot only minimize the classification error but also improve the generalization
ability and has outstanding small sample learning ability. Therefore, based on the mentioned
above, this paper will use the SVM to design the classifier to automatically identify the types of
the modulation signals.

Given a training set of instance-label pairs (xi, yi) , i = 1, 2, · · · , l where xi ∈ Rn is the input vector
and yi ∈ {1,−1}l represents two classes label. Then the mathematical model for the two classes of
SVM classifiers can be defined as follows:

min
w,b,ξ

1
2
‖w‖2 + D

l

∑
i=1

ξi

s.t yi

(
wTΦ (xi) + b

)
> 1− ξi

, (33)

where i = 1, 2, · · · , l ,w is the vector of weight coefficient, ξi > 0 is the slack variable for the errors,
D > 0 is the penalty parameter of the error term, a larger D corresponding to assigning a higher
penalty to errors.

Each xi is then mapped to a Φ (xi) in the kernel-induced feature space, which is related to the
kernal function

K
(

xi, xj
)
= Φ (xi)

T Φ
(
xj
)
. (34)

Then the standard SVM tries to find a hyperplane wTΦ (x) + b that has a large margin and small
training error. The kernel function has many types, such as linear function, polynomial function,
radial basis function (RBF), and sigmoid function. The expressions of these functions are given as
follows [33]:

(I) The linear kernel function:
K
(
xi, xj

)
= γxT

i xj. (35)

(II) The polynomial kernel function:

K
(
xi, xj

)
=
(

γxT
i xj + r

)d
. (36)
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(III) The RBF kernel function:

K
(

xi, xj
)
= e−γ‖xi−xj‖2

. (37)

(IV) The sigmoid kernel function:

K
(

xi, xj
)
= tanh

(
γxT

i xj + r
)

. (38)

where γ is the reciprocal of the number of signal types to be classified. Obviously, in this paper
γ = 1/5. The effect of these kernel functions on the classification performance of SVM is discussed
in detail in the next section.

SVM was originally only used for two types of classification problems, in order to achieve
multi-classification problems a multiclass SVM comprising ten two-class sub-SVMs is designed.
The number of sub-SVMs is U(U − 1)/2, where U is the number of the signal types. Figure 7 shows
the classification procedure structure of the multiclass SVM proposed in this paper.

Multidimensional feature 
extraction

Sub-SVM1
BPSK vs. QPSK

Sub-SVM2
BPSK vs. 2FSK

Sub-SVM3
BPSK vs. 4FSK

Sub-SVM4
BPSK vs. MSK

Sub-SVM5
QPSK vs. 2FSK

Sub-SVM6
QPSK vs. 4FSK

Sub-SVM7
QPSK vs. MSK

Sub-SVM8
2FSK vs. 4FSK

Sub-SVM9
2FSK vs. MSK

Sub-SVM10
4FSK vs. MSK

Multiclass SVM classifier

The results of modulation types classification

Figure 7. The structure of multiclass SVM classifier based on ten sub-SVMs using the one-versus-one
algorithm.

5. Simulation Results

This section shows the simulation results of the proposed method for the classification of
the considered digital modulation signals {BPSK, QPSK, 2FSK, 4FSK, MSK}, and the feature set
adopted in these tests is {σap, σa f , Hc, Hs, Hβ}. The sampling frequency fs = 10 KHz, and the signal
length N = 4096. The noise is the additive white Gaussian noise and was added according to SNRs
{−5 dB,−4 dB, · · · , 20 dB}. Each modulation type has 2000 realizations and half of the realizations with
SNRs of −5 dB, 0 dB, 5 dB, 15 dB, and 20 dB are used for training. Simulations results have been given
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in figures and tables, and we use the accuracy metric to test the recognition performance. Furthermore,
we have given some confusion matrixes for particular experiments that are considerable.

5.1. Classification in AWGN Channel

Tables 1–3 show the confusion matrixes over the AWGN channel of the proposed methods under
different SNRs. The kernel function used here is the RBF function. From these tables, we can obtain
that the overall accuracy of the proposed method for different modulation signals can reach 85.92%,
when the SNR = 0 dB, and the overall accuracy will be greater than 99% when the SNR ≥ 6 dB.

Table 1. The confusion matrix over AWGN channel, SNR = 0 dB.

Actual Modulation Type
Predicted Modulation Type

BPSK QPSK 2FSK 4FSK MSK

BPSK 912 0 0 4 128
QPSK 0 954 0 0 0
2FSK 2 0 856 130 76
4FSK 0 0 4 786 8
MSK 86 46 140 80 788

Overall Accuracy 85.92%

Table 2. The confusion matrix over AWGN channel, SNR = 6 dB.

Actual Modulation Type
Predicted Modulation Type

BPSK QPSK 2FSK 4FSK MSK

BPSK 1000 0 0 0 15
QPSK 0 998 0 0 0
2FSK 0 2 1000 4 7
4FSK 0 0 0 996 0
MSK 0 0 0 0 978

Overall Accuracy 99.44%

Table 3. The confusion matrix over AWGN channel, SNR = 12 dB.

Actual Modulation Type
Predicted Modulation Type

BPSK QPSK 2FSK 4FSK MSK

BPSK 1000 0 0 0 3
QPSK 0 1000 0 0 0
2FSK 0 0 1000 2 0
4FSK 0 0 0 998 0
MSK 0 0 0 0 997

Overall Accuracy 99.9%

To evaluate the performance of different kernel functions for multiclass SVM. Table 4 shows the
overall accuracy of the proposed method when using different kernel functions, and the SNR = 6 dB.
According to Table 4, it is obvious that for the method proposed in this paper, the RBF function has the
best performance, and the Sigmoid function has the worst performance. Therefore, the RBF function is
recommended for the kernel function of the SVM classifier designed in this paper.

In practical applications, the complexity of the algorithm is an important consideration. Then,
in order to measure the computational complexity of the proposed method in this paper, the recognition
time of each sub-SVM is shown in Table 5. The simulation is implemented on a computer with a
CPU of Intel Core 2.6 GHz i5-3230M and 4-Gb RAM, under the 64-bit Windows 7 system (Microsoft,
Redmond, WA, USA). The multiclass SVM is accomplished via MATLAB2011b (MathWorks, Natick,
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MA, USA). In practice, it is easy to find DSP with similar performance, such as TMS320C6678 and so
on. Since the proposed SVM classifier in this paper uses a parallel structure, the time spent by the SVM
classifier is equal to the maximum time spent by one of the sub-SVMs. From Table 5, we can obtain
that the maximum time of the sub-SVMs is 35.708 µs, which is acceptable in practical applications.

To show the superiority of the method proposed in this paper, the performance of the proposed
method is investigated by making comparisons with the existing methods in [7,17]. Figure 8 shows
the overall accuracy of different methods under different SNRs. The test uses 1000 Monte Carlo
experiments. According to Figure 8, we can obtain that when the SNR < 5 dB, the recognition
performance of the method proposed in this paper is better than that of the methods in [7,17], and when
the SNR ≥ 5 dB, the recognition performance of the method proposed in this paper is comparable to
that of the method in [17].

Table 4. Comparison of different kernel functions for overall accuracy over AWGN channel, SNR = 6 dB.

Kernel Function Overall Accuracy

Linear function 98.65%
Polynomial function 99.32%

RBF 99.44%
Sigmoid 89.6%

Table 5. Each sub-SVM recognition time in the real-time recognition system.

Sub-SVM Time (µs)

BPSK vs. QPSK 9.4673
BPSK vs. 2FSK 1.4247
BPSK vs. 4FSK 4.9047
BPSK vs. MSK 35.708
QPSK vs. 2FSK 3.05
QPSK vs. 4FSK 1.0533
QPSK vs. MSK 1.6783
2FSK vs. 4FSK 2.2073
2FSK vs. MSK 2.494
4FSK vs. MSK 1.0521

Maximum time 35.708
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Figure 8. The overall accuracy of different methods under different SNRs.
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5.2. Classification in Fading Channel

In practical environments, the propagation of signals is often affected by the channels. Table 6
shows the performance of the proposed method when the channel is the Rayleigh channel, and the
SNR = 6 dB. It is assumed that there are two channels of multipath signals, the delay of multipath
signals is 0.005 s and 0.01 s respectively, and the frequency deviation of multipath signals is 5 Hz
and 10 Hz respectively. From Table 6 we can see that the overall accuracy is 99.22% on this occasion,
which is comparable to that shown in Table 2. This is because since the multipath effect will affect the
amplitude of the cyclic spectrum but not the shape of the cyclic spectrum, the multipath effect has little
influence on the entropy characteristics proposed in this paper, so at this point, the performance of the
method presented in this paper will not be seriously affected.

Table 6. The confusion matrix over Rayleigh channel, SNR = 6 dB.

Actual Modulation Type
Predicted Modulation Type

BPSK QPSK 2FSK 4FSK MSK

BPSK 975 6 0 0 4
QPSK 17 994 0 0 0
2FSK 0 0 999 2 1
4FSK 0 0 0 998 0
MSK 8 0 1 0 995

Overall Accuracy 99.22%

6. Conclusions

Since digital communication signals are widely used in various military and civilian applications,
it is important to improve the recognition rate of digital communication signals. In this paper, a novel
signal classification method using SVM based on hybrid features, cyclostationary, and information
entropy is proposed. The method combines the theory of the cyclostationary and entropy and uses a
one against one SVM as a classifier. Simulation results show that the proposed method has a good
recognition performance for the signals considered in this paper when in low SNR environments and
fading channels.
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