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Abstract: A recent canonical divergence, which is introduced on a smooth manifold M endowed with
a general dualistic structure (g,∇,∇∗), is considered for flat α-connections. In the classical setting, we
compute such a canonical divergence on the manifold of positive measures and prove that it coincides
with the classical α-divergence. In the quantum framework, the recent canonical divergence is
evaluated for the quantum α-connections on the manifold of all positive definite Hermitian operators.
In this case as well, we obtain that the recent canonical divergence is the quantum α-divergence.

Keywords: information geometry; quantum relative entropy; alpha connections; canonical
divergence; Kullback-Leibler divergence

1. Introduction

Methods of Information Geometry (IG) [1] are ubiquitous in physical sciences and encompass
both classical and quantum systems [2]. The natural object of study in IG is a quadruple (M, g,∇,∇∗)
given by a smooth manifold M, a Riemannian metric g, and a pair of affine connections on M, which
are dual with respect to g,

X g (Y, Z) = g (∇XY, Z) + g (Y,∇∗XZ) , (1)

for all sections X, Y, Z ∈ T (M). The quadruple (M, g,∇,∇∗) is called a statistical manifold whenever
the dual connections are both torsion-free [3]. Actually, the notion of the statistical manifold, introduced
by Lauritzen [4], is usually referred to the triple (M, g, T), where T(X, Y, Z) = g (∇∗XY−∇XY, Z) is a
three-symmetric tensor. However, when ∇ and ∇∗ are both torsion-free connections, the structures
(M, g,∇,∇∗) and (M, g, T) are equivalent [3]. When M is a manifold of probability distributions, g ≡ gF

is the Fisher metric, and ∇ ≡ ∇(e) and ∇∗ ≡ ∇(m) are the exponential and mixture connections [5],
IG has been successfully applied to many fields, such as statistical inference, control systems theory,
and neural networks (see [6] and the references therein for a comprehensive literature on applications
of IG).

The geometric structure of a statistical manifold is encoded by a smooth function D : M×M→ R
such that:

D(p, q) ≥ 0 , and D(p, q) = 0 iff p = q , (2)

for all p, q ∈ M [7]. The dualistic structure (g,∇,∇∗) of M is then recovered in the following way:

gij(p) = − ∂i∂
′
jD(ξp, ξq)

∣∣∣
p=q

= ∂′i∂
′
jD(ξp, ξq)

∣∣∣
p=q

(3)

Γijk(p) = − ∂i∂j∂
′
kD(ξp, ξq)

∣∣∣
p=q

, Γ∗ijk(p) = − ∂′i∂
′
j∂kD(ξp, ξq)

∣∣∣
p=q

. (4)

Entropy 2019, 21, 831; doi:10.3390/e21090831 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6926-697X
http://dx.doi.org/10.3390/e21090831
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/9/831?type=check_update&version=2


Entropy 2019, 21, 831 2 of 14

Here,

∂i =
∂

∂ξ i
p

and ∂′i =
∂

∂ξ i
q

and {ξp := (ξ1
p, . . . , ξn

p)} and {ξq := (ξ1
q , . . . , ξn

q )} are local coordinate systems of p and q, respectively.

Moreover, Γijk = g
(
∇∂i

∂j, ∂k
)
, Γ∗ijk = g

(
∇∗∂i

∂j, ∂k

)
are the symbols of the dual connections ∇ and

∇∗, respectively. The function D is called a divergence or contrast function of the statistical manifold
(M, g,∇,∇∗) [8].

The function D is called a flat divergence if the dualistic structure (g,∇,∇∗) introduced on a
smooth manifold M by Equations (3) and (4) is flat, namely the curvature tensorsR(∇) andR∗(∇∗)
are zero. In this particular case, an attempt to connect IG with physics was established in [9]. There,
the connection between IG and integrable dynamical systems was bridged by a divergence, which
is canonical in some sense. More precisely, for q ∈ M, the gradient flows ξ̇ = −gradξ D(ξq, ·) and
ξ̇ = −gradξ D(·, ξq) converge to the point q along the ∇∗-geodesic and the ∇-geodesic, respectively.
In this context, when M is the manifold of Gaussian distributions with mean µ and variance σ2, the
Kullback-Leibler (KL) divergence induces a dualistic structure given by the Fisher metric and the
(e), (m) connections. In this case, the dynamics of the above-mentioned gradient flows, given now in
terms of the KL divergence, turns out to be the Uhlenbeck-Ornstein process µ = µ0 + v(t + τ) , σ2 =

2 D(t + τ) characterized by the drift coefficient v and diffusion coefficient D [9]. Further connections
between IG and dynamical systems can be found in [10], where certain gradient flows on Gaussian
and multinomial distributions are characterized as completely integrable Hamiltonian systems.

The Kullback-Leibler divergence has been effectively employed to quantify the complexity of
a system described by a probability distribution p in terms of its deviation from an exponential
family of probability distributions [11]. The quantum version of the KL divergence, namely the
quantum relative entropy, induces on the manifold of quantum states a dually flat structure given by
a quantum version of the Fisher metric tensor and two flat connections, also called the mixture and
the exponential connections, which are dual in the sense of Equation (1) [12]. Moreover, the quantum
relative entropy has been used to quantify the many-party correlations of a composite quantum state ρ

as the deviation of it from a Gibbs family of quantum states [13]. The utility of the quantum relative
entropy as a measure of the complexity for quantum states was shown in [14], where algorithms for its
evaluation were studied. Furthermore, in that context, the many-party correlations were related to the
entanglement of quantum systems as defined in [15].

A generalization of the flat structures induced by the Kullback-Leibler divergence on the finite
classical systems and by the quantum relative entropy on the finite quantum states is provided by the
classical α-divergence and the quantum α-divergence, respectively. Both generate a one-parameter
family of connections, the α-connections, which are dual with respect to the Fisher metric in the
classical case [1], whereas in the quantum case, they are dual with respect to the Wigner-Yanase-Dyson
metric [16].

From a physical viewpoint, it is worth remarking that the Boltzmann-Gibbs distribution in
statistical physics is an exponential family such that an invariant flat structure is given to the
underlying manifold in terms of the (e)-connection [6]. Tsallis generalized the concept of the
Boltzmann-Gibbs distribution by introducing a generalized entropy, called the q-entropy, for studying
various phenomena not included in the conventional Boltzmann-Gibbs framework [17,18]. Actually,
the α-geometry, which is induced by the α-divergence, covers the geometry of q-entropy physics [19].
Therefore, the α-divergence can be understood as a generalization of the classical KL divergence
also from a physical standpoint. In the quantum case, the geometry of q-entropy physics has been
successfully employed for carrying out a criterion that detects the critical frontier, which has separable
states on one side and quantum entangled ones on the other [20].

The purpose of the present article is to consider a recent canonical divergence, introduced by Ay
and Amari in [21], as a tool for unifying classical and quantum information geometry. In particular, we
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aim to prove that this canonical divergence is the classical α-divergence when computed on the space
of positive measures, as well as the quantum α-divergence if evaluated on the manifold of positive
definite Hermitian operators.

2. Canonical Divergence and the Inverse Problem in Information Geometry

The inverse problem within information geometry concerns the search for a divergence function
D, which recovers a given dual structure (g,∇,∇∗) of a smooth manifold M according to Equations (3)
and (4). The solution to this problem was provided by Matumoto, who showed that such a divergence
always exists for any statistical manifold [22]. Nonetheless, this solution is not unique, and infinitely
many divergences can be defined on M, which gives the same dualistic structure. For this reason,
seeking a divergence that can be considered as the most natural is of utmost importance. To this
end, Amari and Nagaoka defined a Bregman-type divergence on dually flat manifolds [1]. This one
has relevant properties such as the generalized Pythagorean theorem and the geodesic projection
theorem, and it is commonly assessed as the natural solution of the inverse problem in information
geometry for dually flat manifolds. This is exactly why the Amari and Nagaoka divergence is referred
to as the canonical divergence of dually flat statistical manifolds. However, the need for a general
canonical divergence, which applies to any dualistic structure, is a very crucial issue, as pointed out
in [23]. According to the theory developed in [3], a divergence function D of a statistical manifold
(M, g,∇,∇∗) is called canonical if:

• D generates the dualistic structure (g,∇,∇∗) based on Equations (3) and (4);

• D is one half of the squared Riemannian distance, i.e., D(p, q) =
1
2

d(p, q)2, when the statistical

manifold is self-dual, namely when ∇ = ∇∗ coincides with the Levi–Civita connection of g;
• D is the canonical divergence of the Bregman type when (M, g,∇,∇∗) is dually flat.

Ay and Amari recently defined a divergence for a general dualistic structure in terms of geodesic
integration of the inverse exponential map [21]. It turns out that such a divergence satisfies all the
above-mentioned requirements. Therefore, it can be viewed as a canonical divergence for a general
dualistic structure. For p, q ∈ M, consider the ∇-geodesic γ̃(t) (0 ≤ t ≤ 1) connecting q with p,
the recent canonical divergence introduced in [21] is then defined by:

D(p, q) :=
∫ 1

0

〈
Xt(p), ˙̃γ(t)

〉
γ̃(t) dt , Xt(p) := exp−1

γ̃(t)(p) . (5)

The ∇-exponential map, exp : TM → M, is defined by exp(X) = γX(1) whenever the ∇-geodesic
γX(t), satisfying γ̇X(0) = X, exists on an interval of t containing [0, 1]. Therefore, if γ : [0, 1] → M
is the ∇-geodesic such that γ(0) = p and γ(1) = q, the inverse at p of the exponential map is
given by exp−1

p (q) := γ̇(0). According to this definition, for every t ∈ [0, 1], we can consider the
∇-geodesic γt(s) such that γt(0) = p and γt(1) = γ(t) and then define the ∇-velocity vector at p by
Xp(γ(t)) := exp−1

p (γ(t)) = γ̇t(0). In this way, the vector field Xt(p) of Equation (5) turns out to be
given by Xt(p) = Pγ(t) Xp(γ(t)) = t γ̇(t). Here, P : TpM→ Tγ(t)M is the ∇-parallel transport from p
to γ(t). In light of all this, the divergence D(p, q) assumes the following useful expression:

D(p, q) =
∫ 1

0
t ‖γ̇(t)‖2 dt . (6)

Analogously, the dual function of D(p, q) is defined as the ∇∗-geodesic integration of the inverse
of the ∇∗-exponential map [21]. Therefore, we have for the dual divergence D∗ a similar expression as
Equation (6) for the canonical divergence D:

D∗(p, q) =
∫ 1

0
t ‖γ̇∗(t)‖2 dt , (7)
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where γ∗(t) (0 ≤ t ≤ 1) is the ∇∗-geodesic connecting p with q.
The canonical divergence given by Equation (6) has been recently proposed as a tool for unifying

classical and quantum information geometry [24]. In particular, it has been considered on the simplex
of probability measures:

S :=

{
p = ∑

i
pi δi ∈ Rn | pi > 0 for all i, and ∑

i
pi = 1

}
, (8)

as well as on the manifold of quantum finite states,

S :=
{

ρ : H → C | ρ = ρ† > 0, Trρ = 1
}

, (9)

whereH denotes a finite-dimensional Hilbert space and ρ is any Hermitian operator onH. The natural
dualistic structure on the simplex S is given, in classical information geometry, in terms of the Fisher
metric gF and two flat connections, the mixture ∇(m) and the exponential ∇(e) ones, which are dual
with respect to gF in the sense of Equation (1) [5]. Very remarkably, the Fisher metric is the only
monotone Riemannian metric (up to a positive factor) on the class of finite probability simplices [25].
The quantum version of a monotone Riemannian metric on the manifold of quantum finite states
S is given in terms of the notion of stochastic mapping [26]. More precisely, let A be the set of all
Hermitian operators on the Hilbert space H; a linear mapping T : A → A is said to be stochastic if
T(S) ⊂ S and T is completely positive [27]. Furthermore, a family {〈〈 , 〉〉ρ | ρ ∈ S} of inner products
on A is said to be monotone if 〈〈A, A〉〉ρ ≥ 〈〈T(A), T(A)〉〉T(ρ) for any arbitrary stochastic map T and
for every ρ ∈ S [26]. Due to Petz, there are infinitely many monotone inner products onH. Therefore,
the quantum analogue of the Fisher metric is not unique [28]. However, when the flat connections are
required to be torsion-free, a natural dualistic structure on the manifold of quantum states S is the one
induced by the Bogoliubov-Kubo-Mori (BKM) inner product [12]. Furthermore, it turns out that the
only monotone metrics that make the mixture connection ∇(m) and the exponential connection ∇(e)

dual are the scalar multiples of the BKM metric [29]. When the canonical divergence (6) is computed
on the simplex S , it is shown to be the Kullback-Leibler divergence,

D(p, q) =
n

∑
i=1

pi log
(

pi
qi

)
, p, q ∈ S , (10)

which proves that D(p, q) recovers the natural dualistic structure on S given by the Fisher metric
gF and the dually flat connections ∇(m) and ∇(e) [24]. Analogously, when D is considered on the
manifold of quantum states S, it has been proven that:

D(ρ, σ) = Tr ρ (log ρ− log σ) , ρ, σ ∈ S , (11)

where Tr denotes the trace operator on the finite-dimensional Hilbert space of density matrices [24].
The function on the right-hand side of Equation (11) is called the quantum relative entropy, and it
recovers the dual structure of S given by the metric induced by the BKM inner product and the flat
connections ∇(m) and ∇(e) [1].

In this article, we aim to investigate the canonical divergence (6) on the manifold of positive
measures, as well as on the space of positive definite Hermitian operators for the more general
α-connections. In the classical information geometry, the one-parameter family of the α-connections is
defined on the manifold of positive measures by the linear combination of the mixture and exponential
connections [6],

∇α =
1− α

2
∇(m) +

1 + α

2
∇(e) . (12)
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It turns out that ∇α and ∇−α are dual with respect to the Fisher metric gF in the sense of
Equation (1). In quantum information geometry, α-connections appeared also in terms of the Amari
α-embeddings [30]. While in the classical information geometry, the two definitions coincide, this is no
longer true in quantum information geometry [31]. In the present paper, we consider the definition
of the quantum α-connections by means of the Amari α-embedding, which excludes that they can
be obtained by the convex mixture of ∇(m) and ∇(e) connections. The natural inner product that
makes the quantum α-connections dual in the sense of Equation (1) is the Wigner-Yanase-Dyson (WYD)
metric, which appeared for the first time in the context of quantum information geometry in the work
of Hasegawa [32]. Actually, it turns out that this is the only monotone metric (up to a scalar multiple)
that makes the quantum ∇α and ∇−α dual [16].

3. Classical Flat Alpha-Divergence

We represent measures on the set {1, . . . , n} as elements of Rn. In this representation, the Dirac
measures δi, i = 1, . . . , n form the canonical basis of Rn. The n-dimensional cone of positive measures
on the set {1, . . . , n} is then defined by:

M+ := Rn
+ =

{
p =

n

∑
i=1

pi δi ∈ Rn | pi > 0 for all i

}
. (13)

The very natural Riemannian metric onM+ is the Fisher metric [6], which is defined by:

gF
p(X, Y) =

n

∑
i=1

1
pi

Xi Yi , (14)

for all p ∈ M+ and X, Y ∈ TpM+. Here, TpM+ denotes the tangent space to M+ at p. Given
the mixture and the exponential connections, we can define the α-connection on M+ by using
Equation (12). Recalling that TpM+ ≡ Rn, we can write any X ∈ TpM+ with respect to the canonical
basis of Rn. Hence, the (m)-connection onM+ reads as follows:

∇(m)
X Y

∣∣∣
p
=

n

∑
i=1

∂Yi
∂X

(p) δi , (15)

for all vector fields X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) onM+. Here, ∂/∂X denotes the derivative
in the direction X ∈ TpM+. On the contrary, the (e)-connection is given by:

∇(e)
X Y

∣∣∣
p
=

n

∑
i=1

(
∂Yi
∂X

(p)− 1
pi

Xi Yi

)
δi . (16)

Therefore, by applying Equation (12), we can describe the α-connection for the manifold M+ as
follows,

∇α
XY|p =

1− α

2
∇(m)

X Y
∣∣∣

p
+

1 + α

2
∇(e)

X Y
∣∣∣

p

= ∇(m)
X Y

∣∣∣
p
+

1 + α

2

(
∇(e)

X Y
∣∣∣

p
− ∇(m)

X Y
∣∣∣

p

)
=

n

∑
i=1

(
∂Yi
∂X

(p)− 1 + α

2
Xi Yi

pi

)
δi , (17)

for all vector fields X, Y onM+. It turns out that the dualistic structure (gF,∇α,∇−α) is dually flat,
i.e., the Riemannian curvature tensors of ∇α and ∇−α are zero [6]. Furthermore, very naturally, such
an α-flat dualistic structure is induced onM+ by the α-divergence D(α), which is commonly assessed
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as the canonical solution of the inverse problem for recovering the dually flat α-structure (gF,∇α,∇−α)

onM+ [6]. Given p, q ∈ M+, the α-divergence between p and q is given by:

D(α)(p, q) =
n

∑
i=1

(
2

1− α
qi +

2
1 + α

pi −
4

1− α2 q
1+α

2
i p

1−α
2

i

)
. (18)

The flat α-divergence (18) has been deeply studied, and its features have been widely discussed in
the literature (see [3,6] for more details). In particular, we point out that D(α) is a continuous function
of the parameter α, and the limit α→ −1 gives the well-known Kullback-Leibler divergence on the
manifold of positive measures,

lim
α→−1

D(α)(p, q) =
n

∑
i=1

(
qi − pi − pi log

qi
pi

)
, p, q ∈ M+ , (19)

whereas the limit α→ +1 gives:

lim
α→+1

D(α)(p, q) =
n

∑
i=1

(
pi − qi − qi log

pi
qi

)
, p, q ∈ M+ .

Let us observe that, if we restrict (19) to the simplex of probability distributions, namely when
n

∑
i=1

pi =
n

∑
i=1

qi = 1, then we obtain the function (10). At this point, it is worth mentioning the close

connection between the α-divergence (18) and the Tsallis relative entropy, or q-divergence, on the
manifold of positive measures. The q-divergence onM+ is defined by (see [33] for more details):

Dq(p, q) =
1

1− q

n

∑
i=1

(
q pi + (1− q) qi − pq

i q1−q
i

)
, p, q ∈ M+ . (20)

By setting α = 1 − 2q, we can easily verify that the flat α-divergence (18) and the Tsallis
q-divergence (20) coincide up to a scaling factor. Further, the limit q→ 1, that is α→ −1, recovers the
Kullback-Leibler divergence,

lim
q→1

Dq(p, q) = lim
α→−1

1− α

2
D(α)(p, q) =

n

∑
i=1

(
qi − pi − pi log

qi
pi

)
, p, q ∈ M+ .

In this section, we aim to compute the canonical divergence (6) onM+ for the α-connections
given by (17). In order to achieve this result, we need to consider the geodesic with respect to the
∇α-connection. Let p, q ∈ M+, a curve γ : [0, 1]→M+ from p to q is an α-geodesic iff ∇α

γ̇γ̇ = 0 and
γ(0) = p, γ(1) = q. From Equation (17), we then obtain the following geodesic equations:

γ̈i −
1 + α

2
γ̇2

i
γi

= 0, i = 1, . . . , n , γ(0) = p, γ(1) = q , (21)

where γ(t) = (γ1(t), . . . , γn(t)). Hence, the solution of (21) is the α-geodesic from p to q, and it is
given by:

γ(α)(t) =
(
(1− t) p

1−α
2 + t q

1−α
2

) 2
1−α , t ∈ [0, 1] . (22)
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At this point, we can apply Equation (6) to compute the canonical divergence D(p, q) on the manifold
M+ of positive measures. From Equation (14), we obtain:

‖γ̇(α)(t)‖2
γ(α)(t) = gF

γ(α)(t)

(
γ̇(α)(t), γ̇(α)(t)

)
=

n

∑
i=1

(
γ̇
(α)
i

)2

γ
(α)
i

=
n

∑
i=1

4
(1− α)2

(
(1− t) p

1−α
2 + t q

1−α
2

)2 1+α
1−α

(
(1− t) p

1−α
2 + t q

1−α
2

) 2
1−α

(
q

1−α
2 − p

1−α
2

)2

=
n

∑
i=1

4
(1− α)2

(
(1− t) p

1−α
2 + t q

1−α
2

) 2 α
1−α

(
q

1−α
2 − p

1−α
2

)2
.

Now, we can compute the integral in (6) by performing an integration by parts:

D(p, q) =
n

∑
i=1

∫ 1

0
t

4
(1− α)2

[(
(1− t) p

1−α
2

i + t q
1−α

2
i

) 2 α
1−α

(
q

1−α
2

i − p
1−α

2
i

)] (
q

1−α
2

i − p
1−α

2
i

)
dt

=
n

∑
i=1

{[
t

4
(1− α)2

1− α

1 + α

(
(1− t) p

1−α
2

i + t q
1−α

2
i

) 1+α
1−α

]1

0

(
q

1−α
2

i − p
1−α

2
i

)

−
∫ 1

0

4
(1− α)2

1− α

1 + α

(
(1− t) p

1−α
2

i + t q
1−α

2
i

) 1+α
1−α
(

q
1−α

2
i − p

1−α
2

i

)
dt

}

=
n

∑
i=1

4
1− α2

{
q

1+α
2

i

(
q

1−α
2

i − p
1−α

2
i

)
−
∫ 1

0

(
(1− t) p

1−α
2

i + t q
1−α

2
i

) 1+α
1−α
(

q
1−α

2
i − p

1−α
2

)
dt

}

=
n

∑
i=1

4
1− α2

(
qi − p

1−α
2

i q
1+α

2
i

)
− 4

1− α2
1− α

2

[(
(1− t) p

1−α
2

i + t q
1−α

2
i

) 2
1−α

]1

0

=
n

∑
i=1

{
4

1− α2 qi −
4

1− α2 p
1−α

2
i q

1+α
2

i − 2
1 + α

qi +
2

1 + α
pi

}
.

This proves that:

D(p, q) =
n

∑
i=1

(
2

1− α
qi +

2
1 + α

pi −
4

1− α2 q
1+α

2
i p

1−α
2

i

)
, (23)

that is the canonical divergence (6) coincides with the α-divergence (18) on the manifold M+ of
positive measures.

4. Quantum Flat Alpha-Divergence

The goal of this section is to compute the canonical divergence of Equation (6) on the manifold of
positive definite Hermitian operators endowed with the quantum α-connections. In the classical case,
the definition of the α-connection ∇α can be equivalently given by Equation (12) or by means of the
well-known Amari α-embedding [6]. In the quantum setting, by exploiting the linear structure of the
manifold, we can introduce the quantum mixture connection ∇(m) on the space of positive definite
Hermitian operators. On the other hand, the quantum exponential connection ∇(e) is introduced by
relying on the linear structure of logarithms of the manifold. Both connections, ∇(m) and ∇(e), are flat.
Furthermore, they turn out to be dual in the sense of Equation (1) with respect to the metric induced
by the BKM inner product [12]. Actually, this metric is (up to a scalar multiple) the only one that
makes ∇(m) and ∇(e) dual on the manifold of positive definite Hermitian operators. A generalization
of these two natural connections is provided by the quantum α-connections, which, on the manifold
under consideration, are flat ones, as well. In our approach, these α-connections are introduced in
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terms of the Amari α-embeddings, and then, they cannot be obtained by the convex combination of the
mixture and the exponential connections as in the classical setting [16]. It turns out that for α ∈ [−3, 3],
the connections ∇α and ∇−α are torsion-free and dual with respect to the WYD metric [34]. However,

the target spaces of our approach are Lr, with r =
2

1− α
, and then, we restrict our discussion to the

range α ∈ (−1, 1).
Recall that in order to compute the canonical divergence (6), we need to get the α-geodesic

γα between any two positive Hermitian operators ρ1 and ρ2. To do this, we shall describe the
α-connections in terms of the∇α-parallel transport, which is introduced very naturally on the manifold
of positive Hermitian operators. Given B(H), the algebra of linear operators on an N-dimensional
complex Hilbert spaceH, the subspace of Hermitian operators is an N2-dimensional real vector space
defined by:

A := {ρ ∈ B(H) | ρ = ρ†} , (24)

where ρ† = ρ̄t and t, here, denotes the transpose matrix. Therefore, the manifold of all positive definite
Hermitian operators, or more simply, quantum operators, is given by:

M+ := {ρ ∈ A | ρ > 0} . (25)

The α-embedding:

lα : M+ → A, lα(ρ) :=
2

1− α
ρ

1−α
2 , (26)

maps the manifold of quantum operators into the vector space A for all α ∈ (−1, 1) [1]. Furthermore,
for ρ ∈ M+, we have that TρM+ = TρA = A. Hence, the α-embedding supplies a useful representation
of the tangent bundle of M+. In fact, by considering the subspace of A given by:

A(α) :=
{

A ∈ A |Tr
(

ρ
1−α

2 A
)
= 0

}
, ρ ∈ M+ , (27)

we can then define the isomorphism:

(lα)∗(ρ) : TρM+ → A(α), (lα)∗(ρ) (X) := (lα ◦ γ)′ (0) , (28)

where γ : (−ε, ε) → M+ is a curve such that γ′(0) = X. This isomorphism provides the
α-representation of the tangent space TρM+ [16]. In particular, if

{
ξ1, . . . , ξn

}
is a coordinate system

for M+, then the α-representation of the basis
{

∂

∂ξ1 , . . . ,
∂

∂ξn

}
of TρM+ is

{
∂lα
∂ξ1 , . . . ,

∂lα
∂ξn

}
, where

n = N2. Finally, for any vector field X ∈ T (M+), we have that its α-representation is defined by:

(X)(α)(ρ) := (lα)∗(ρ) Xρ . (29)

From Equation (26), we may observe that the lα(ρ) ∈ M+ for all ρ ∈ M+. Now, since TρM+ = A,
we can simply define the α-parallel transport on M+ by:

Π(α)
ρ1,ρ2 : Tρ1M+ → Tρ2M+, Π(α)

ρ1,ρ2(X) := (lα)−1
∗(ρ2)

(
(lα)∗(ρ1)

(X)
)

, ∀ , ρ1, ρ2 ∈ M+ . (30)

Therefore, we find that the α-representation of the covariant derivative ∇α associated with Π(α) is:

(
∇α

∂i
∂j

)(α)
=

∂2 lα(ρ)
∂ξ i∂ξ j , (31)
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where {ξ1, . . . , ξn} is an arbitrary coordinate system for M+ and n = N2 is the topological dimension
of the tangent space TρM+ = A. In order to show that M+ is ∇α-flat, consider a basis {A1, . . . , An} of

A. Then, there exist real numbers {θ1, . . . , θn} such that we can write ρ
1−α

2 ∈ A as follows:

2
1− α

ρ
1−α

2 = θ1 A1 + . . . + θn An ,

for every ρ ∈ M+. We can see from Equation (31) that:(
∇α

∂i

∂

∂θ j

)(α)

=
∂2lα(ρ)
∂θi∂θ j =

∂Aj

∂θi = 0 .

This proves that {θ1, . . . , θn} is a ∇α-affine coordinate system for M+, and then, M+ is ∇α-flat [16].
As a consequence, for any couple of points ρ1, ρ2 ∈ M+, we can write the α-geodesic from ρ1 to ρ2 in
these ∇α-affine coordinates as follows:

γα(t) =
2

1− α

(
t ρ

1−α
2

2 + (1− t) ρ
1−α

2
1

)
. (32)

In order to perform the computation of the integral (6), we need to calculate the norm ‖γ̇α(t)‖2
γα(t).

To do this, we have to specify a suitable metric on the tangent space TM+. As discussed above, we
select the metric induced by the WYD inner product because this metric is the only one (up to a scalar
multiple) that makes the quantum flat α-connections dual in the sense of Equation (1) [29]. For any
X, Y vector fields on M+, this metric turns out to be defined by:

gα
ρ (X, Y) = Tr

(
X(α) Y(−α)

)
, X, Y ∈ TρM+ , (33)

where X(α) denotes the α-representation of the tangent vector X, and it is given by Equation (29) [35].
It is worth noticing that the limit lim

α→±1
gα gives the metric induced by the BKM inner product on the

manifold of density operators [12].
In order to write the WYD metric with respect to the∇α-affine coordinate system {θ1, . . . , θn}, we

may observe that:
∂lα(ρ)

∂θi = Ai , (34)

where Ai is a vector of the basis {A1, . . . , An} ⊂ A. This implies that, with this coordinate system,
the (α)-representation X(α) of a vector field X ∈ T (M+) is the vector field X itself. In addition, we
also have that:

l−α =
1 + α

2
ρ

1+α
2 =

(
2

1 + α

)(
1− α

2

) 1+α
1−α

l
1+α
1−α
α . (35)

Therefore, in the α-affine coordinate system {θ1, . . . , θn}, the components of the metric tensor (33) are
given by:

gα
ij(θ) = Tr

(
∂ lα
∂θi

∂ l−α

∂θ j

)
=

2
1− α

(
1− α

2

) 1+α
1−α

Tr
(

∂ lα
∂θi l

2α
1−α
α

∂ lα
∂θ j

)
.
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The quantum dually flat structure (gα,∇α,∇−α) for the manifold of positive definite Hermitian
operators (or quantum operators) so far described can be also obtained through Equations (3) and (4)
when the following divergence is considered,

D(α)(ρ1, ρ2) :=
4

1− α2 Tr
(

1− α

2
ρ1 +

1 + α

2
ρ2 − ρ

1−α
2

1 ρ
1+α

2
2

)
, ρ1, ρ2 ∈ M+ (36)

This function is called the quantum α-divergence, and it has been introduced on M+ as the
generalization of the α-divergence (18) of the positive measures [36]. Carrying on this line of reasoning,
we can introduce a q-divergence on the manifold of positive Hermitian operators, as well. In analogy
with the classical case, we can set α = 1− 2 q in the argument of the trace Tr in Equation (36), and then,
we can write the following expression,

Dq(ρ1, ρ2) :=
1

1− q
Tr
[
q ρ1 + (1− q) ρ2 − ρ

q
1 ρ

1−q
2

]
, ρ1, ρ2 ∈ M+ , (37)

which corresponds to the quantum α-divergence up to the same scalar factor as in the classical case.
It is worth noting that this function is different from the extensions of the Tsallis relative entropy to the
positive operators in the literature. For example, in [37], the quantum q-divergence was introduced in
the following way,

D̃q(ρ1, ρ2) :=
Tr[ρ1]− Tr

[
ρ

q
1 ρ

1−q
2

]
1− q

, ρ1, ρ2 ∈ M+ , (38)

for all q ∈ [0, 1). However, both functions, Dq and D̃q, reduce to the Tsallis relative entropy when
restricted to the manifold S of density operators,

Dq(ρ1, ρ2) :=
1− Tr

[
ρ

q
1 ρ

1−q
2

]
1− q

, ρ1, ρ2 ∈ S .

Analogously, we can restrict the quantum α-divergence (36) to the set of density operators, and since
Tr ρ1 = Tr ρ2 = 1, we can easily verify that (36) becomes:

D(α)(ρ1, ρ2) =
4

1− α2

(
1− Tr

[
ρ

1−α
2

1 ρ
1+α

2
2

])
, ρ1, ρ2 ∈ S . (39)

Again, we can see that, on the manifold of density operators, the quantum α-divergence coincides
(up to a scalar factor) with the Tsallis relative entropy when we set α = 1 − 2 q. The quantum
α-divergence (39) was introduced and studied by Hasegawa in [32], and it turns out to be a continuous
function of the parameter α. In particular, we have that:

lim
α→−1

D(α)(ρ1, ρ2) = Tr [ρ1 (log ρ1 − log ρ2)] ,

that is the quantum relative entropy D(ρ1, ρ2) as previously given in Equation (11). Furthermore,
the limit α→ +1 gives lim

α→+1
D(α)(ρ1, ρ2) = D(ρ2, ρ1).

At this point, we have in our hands all the ingredients necessary to compute the
canonical divergence defined in (6) between ρ1 and ρ2 on the manifold M+ of positive definite
Hermitian operators,

D(ρ1, ρ2) :=
∫ 1

0
t ‖γ̇α(t)‖2

γα(t) dt , (40)
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where γα(t) is the ∇α-geodesic from ρ1 to ρ2. In the ∇α-affine coordinates {θ1, . . . , θN}, this reads as
in Equation (32). Here, the norm ‖ · ‖2 is induced by the WYD metric given in Equation (33). Hence,
in this case, the canonical divergence (40) can be written as:

D(ρ1, ρ2) =
∫ 1

0
t Tr

(
(γ̇α(t))(α) (γ̇α(t))(−α)

)
dt , (41)

where (γ̇α(t))(α) and (γ̇α(t))(−α) denote the (α) and the (−α) representations of γ̇(t). In order to
compute the α representations of γ̇(t), we consider Equation (29) together with Equations (34) and (35).
This yields:

(γ̇α(t))(α) = γ̇α(t)

(γ̇α(t))(−α) =
2

1− α

(
1− α

2

) 1+α
1−α 1 + α

1− α
(γα(t))

2α
1−α γ̇α(t)

=

(
1− α

2

) 2α
1−α

(γα(t))
2α

1−α γ̇α(t) .

We can plug these expressions in Equation (41). Hence, by performing an integration by parts, we get:

D(ρ1, ρ2) =

(
1− α

2

) 2α
1−α

∫ 1

0
t Tr

(
γ̇α(t) (γα(t))

2α
1−α γ̇α(t)

)
dt

=

(
1− α

2

) 2α
1−α

Tr
(∫ 1

0
t γ̇α(t) (γα(t))

2α
1−α γ̇α(t)dt

)
=

(
1− α

2

) 2α
1−α

Tr

([
tγ̇α(t)

1− α

α + 1
(γα(t))

1+α
1−α

]1

0
− 1− α

α + 1

∫ 1

0
γ̇α(t) (γα(t))

1+α
1−α dt

)

=

(
1− α

2

) 2α
1−α

Tr

([
tγ̇α(t)

1− α

1 + α
(γα(t))

1+α
1−α

]1

0
− 1− α

1 + α

1− α

2

[
(γα(t))

2
1−α

]1

0

)
.

At this point, we can use Equation (32) to obtain:

D(ρ1, ρ2) =

(
1− α

2

) 2α
1−α

Tr

(
2

1− α

(
ρ

1−α
2

2 − ρ
1−α

2
1

)
1− α

1 + α

(
2

1− α

) 1+α
1−α

ρ
1−α

2
1+α
1−α

2

−1− α

1 + α

1− α

2

(
2

1− α

) 2
1−α
(

ρ
1−α

2
2

1−α
2 − ρ

1−α
2

2
1−α

1

))

=
4

1− α2 Tr
((

ρ
1−α

2
2 − ρ

1−α
2

1

)
ρ

1+α
2

2

)
− 1− α

1 + α

2
1− α

Tr (ρ2 − ρ1)

=
4

1− α2 Trρ2 −
2

1 + α
Trρ2 +

2
1 + α

Trρ1 −
4

1− α2 Tr
(

ρ
1−α

2
1 ρ

1+α
2

2

)
=

2
1 + α

Trρ1 +
2

1− α
Trρ2 −

4
1− α2 Tr

(
ρ

1−α
2

1 ρ
1+α

2
2

)
.

Finally, we can conclude that:

D(ρ1, ρ2) =
4

1− α2 Tr
(

1− α

2
ρ1 +

1 + α

2
ρ2 − ρ

1−α
2

1 ρ
1+α

2
2

)
, ρ1, ρ2 ∈ M+ , (42)

which corresponds to the α-canonical divergence on the manifold of positive definite matrices.
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5. Conclusions

The present article is a follow-up of the recently published paper [24]. In the latter one, the
authors showed that the canonical divergence defined in Equation (6) provides a powerful tool for
unifying classical and quantum information geometry. In particular, such a divergence was proven
to coincide with the Kullback-Leibler divergence on the simplex of probability distributions and
with the quantum relative entropy on the manifold of quantum states. The effectiveness of the
Kullback-Leibler divergence was ascribed in the context of complex systems for quantifying how
much a probability measure deviates from the non-interacting states that are modeled by exponential
families of probabilities [11]. On the other hand, the quantum relative entropy turned out to be relevant
for providing a measure of the many-party correlations of a quantum state from a Gibbs family [13],
which in turn was related to the entanglement of quantum systems as defined in [15].

The α-divergence (18) is a generalization of the relative entropy (10). Moreover, the flat α-geometry
induced by the α-divergence on the manifold of positive measures constitutes a generalization of
the dually flat structure given by the Fisher metric and the mixture and exponential connections.
Very remarkably, the α-geometry covers the geometry of q-entropy physics [19]. This bridges a very
nice connection between the α-geometry and the generalized statistical mechanics established by
Tsallis [17,18]. On the quantum side, the α-divergence (36) was introduced as the generalization of
the α-divergence (18) of the positive measures [36]. The quantum α-geometry of the manifold of
positive definite matrices is flat, as well, and turns out to be a generalization of the quantum geometry
given by the quantum Fisher metric and the quantum mixture and exponential connections induced
on the manifold of quantum states by the BKM inner product [16]. In the quantum setting as well,
the connection between the α-geometry and the q-entropy physics by Tsallis provides a physical
interpretation of the α-divergence. Indeed, a conditional form of the q-entropy was employed for the
exact calculation, on some systems, of the separable-entangled separatrix [17].

In this article, we computed the canonical divergence (6) for flat α-connections on the manifold of
positive measures, as well as on the manifold of positive definite Hermitian operators. Therefore, we
proved that the divergence introduced by Ay and Amari in [21] reduces to the classical α-divergence (18)
and to the quantum α-divergence (36). Actually, the equivalence between the canonical divergence (6)
and the classical α-divergence was primarily shown in [21]. There, the derivation of D(α) was grounded
on the idea of a squared distance function associated to the α-connections through the vector field
Xt(p) given in Equation (5). However, the α-divergence D(α) does not share all the properties of
a squared distance function, unless α = 0. For this reason, in the present paper, we obtained the
equivalence between D and D(α) in a different way, by considering the α-divergence as a function of a
more general structure.

The present paper is conceived within a project that aims to characterize a general canonical
divergence for a given dualistic structure (g,∇,∇∗) of a smooth manifold M. This project started
with the work by Ay and Amari [21] and later developed in [3], where the concept of the “canonical
divergence” was clearly depicted. A considerable effort towards the definition of a general canonical
divergence was put forward in [38], where a divergence function was introduced through an extensive
investigation of the geodesic geometry of the dualistic structure (g,∇,∇∗). Actually, this latter
divergence turns out to coincide with the divergence (6) when the dualistic structure (g,∇,∇∗) is flat.
Further work around this topic was presented in [39], where the very recent divergence was compared
with other divergence functions present in the literature. It is commonly accepted that the α-divergence
on the simplex is obtained by restricting (18) to the set of normalized positive measures (see [1,6] for
more details). Then, the α-divergence of probability distributions in the simplex reads as follows,

D(α)(p, q) =
n

∑
i=1

(
1− 4

1− α2 p
1−α

2
i q

1+α
2

i

)
. (43)
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One can easily verify that for α = 0, this divergence is closely related to the Hellinger distance, which
is the distance in the ambient spaceM+ [3]. However, when α = 0, the α-connection is the Levi–Civita
connection of the Fisher metric. Therefore, in this case, the canonical divergence has to be one half
the square of the Fisher distance, as discussed in Section 2, which is different from D(0) [3]. It would
be interesting to evaluate the very recent divergence introduced in [38] on the simplex of probability
distributions, which is not α-flat, and to compare it with the α-divergence (43).

On the quantum side, an intriguing work within the above-mentioned project is to consider
that very recent divergence function, introduced in [38], on the manifold of pure quantum states,
where a dually flat structure does not exist [23]. This will constitute the object of study of a
forthcoming investigation.
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