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Abstract: We study the scaling behavior of the Berry phase in the Yang-Lee edge singularity (YLES)
of the non-Hermitian quantum system. A representative model, the one-dimensional quantum
Ising model in an imaginary longitudinal field, is selected. For this model, the dissipative phase
transition (DPT), accompanying a parity-time (PT) symmetry-breaking phase transition, occurs when
the imaginary field changes through the YLES. We find that the real and imaginary parts of the
complex Berry phase show anomalies around the critical points of YLES. In the overlapping critical
regions constituted by the (0 + 1)D YLES and (1 + 1)D ferromagnetic-paramagnetic phase transition
(FPPT), we find that the real and imaginary parts of the Berry phase can be described by both the
(0 + 1)D YLES and (1 + 1)D FPPT scaling theory. Our results demonstrate that the complex Berry
phase can be used as a universal order parameter for the description of the critical behavior and the
phase transition in the non-Hermitian systems.

Keywords: Berry phase; Yang-Lee edge singularity; dissipative phase transition; parity-time
symmetry-breaking phase transition

1. Introduction

Motivated by the pioneering work of Berry [1], the Berry phase in quantum mechanics has become
the subject of a variety of theoretical and experimental investigations. It describes a quantum phase
effect arising in a cyclic adiabatic process in the parameter space of a quantum system. Since the Berry
phase is gauge invariant and geometrical, it is an important and powerful concept in physical science.
Application of the Berry phase can be found in broad fields ranging from atomic and molecular to
topological materials [2–7]. In condensed matters, the recent progress of the Berry phase was the
revelation of the close relation between the Berry phase and quantum phase transition (QPT) [8–20].
Besides QPT and classical phase transition, the dissipative phase transition (DPT) of the Yang-Lee
edge singularity (YLES) in the non-Hermitian quantum systems has been studied [21–27]. Different
from QPT, DPT in the non-Hermitian quantum systems is induced by changing the strength of the
dissipation. Although the scaling behavior of the Berry phase in QPT has been extensively studied,
the scaling behavior of the Berry phase in DPT is still unknown.

When involved with the environment, the system is extended to an open quantum system,
which can be characterized by a non-Hermitian Hamiltonian. Some novel physical effects were
revealed [28–32]. In the non-Hermitian quantum systems, the Berry phase has been generalized to
give a geometrical description of the quantum evolution [33–38], and the relationship between the
Berry phase and QPT in the non-Hermitian systems has been found [15]. Since the variation caused
by DPT can be reflected in the geometry of the Hilbert space, the Berry phase of the non-Hermitian
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system can capture these changes, as well as the critical behaviors of DPT. Therefore, it is expected
that the Berry phase can be exploited as a universal indicator to characterize the scaling behaviors of
both QPT and DPT. On the other hand, since DPT is characterized by the spontaneous parity-time (PT)
symmetry-breaking phase transition, the non-Hermitian quantum Hamiltonian provides a prototype
to study the PT symmetry-breaking phase transition [39–43]. Given the importance of PT symmetric
quantum mechanics, it is interesting to study the scaling behaviors of the complex Berry phase in
the YLES.

In this paper, we firstly develop a gauge-independent numerical method to calculate the complex
Berry phase in the one-dimensional quantum system. This method is applied to a representative
example, the one-dimensional quantum Ising model in an imaginary longitudinal field. In this model,
an overlapping region exists, which is constituted by the (0 + 1)-dimension ((0 + 1)D) YLES and the
(1 + 1)D ferromagnetic-paramagnetic phase transition (FPPT) critical regions. We find that the real
and imaginary parts of the Berry phase can be scaled by both the (0 + 1)D YLES and the (1 + 1)D FPPT
critical exponents. Our results demonstrate that the complex Berry phase can be the universal indicator
of the DPT for both the PT symmetry and PT symmetry-breaking states. The remainder of the paper
is organized as follows. In Section 2, the Berry phase of the one-dimensional quantum Ising model
in an imaginary longitudinal field is established. Numerical investigation is presented in Section 3.
A summary is given in Section 4.

2. The Berry Phase of the One-Dimensional Quantum Ising Model in An Imaginary
Longitudinal Field

We employ a model of the quantum Ising chain in an imaginary longitudinal field to study the
scaling behavior of the Berry phase in the YLES. This model possesses several exotic scaling behaviors
in the YLES, such as the divergence of the order parameter, the negative correlation-length exponent
in low dimension, and the hybridized Kibble-Zurek scaling (HKZS) mechanism [25–27], which can
serve as a typical and universal prototype to investigate the scaling behaviors in YLES [23,44,45].
The Hamiltonian reads [44]:

H = −
L

∑
n=1

σz
nσz

n+1 − λ
L

∑
n=1

σx
n − ih

L

∑
n=1

σz
n, (1)

where σx
n and σz

n are the Pauli matrices at the n site in the x and z directions, respectively, λ and h are
the external fields along the transverse and longitudinal directions, and L is the lattice size. It is worth
stressing that the longitudinal field is imaginary. It has been shown that the imaginary longitudinal
field plays the same role as the real field, and as a result, Model (1) has an ordinary FPPT point at
(gc, hc) = (0, 0) for L = ∞, where g ≡ λ− λc and λc = 1 [46,47]. Besides this FPPT point, there are also
critical points for YLES at (gL

YL, hL
YL) for g > 0 [44,48], and these YLES points can appear at finite lattice

size, while their locations vary with L [26]. Accompanied by DPT around the YLES point, the system
undergoes a PT symmetry-breaking phase transition. For fixed g and h < hL

YL (or g > gL
YL with

a fixed h), the system is in the PT symmetry phase with real spectra of the ground state. Meanwhile,
for h > hL

YL with fixed g (or g < gL
YL with a fixed h), the system is in the PT symmetry-breaking phase

with the ground state energy being complex, and the real part’s energy degenerates with that of the
first exited state [23,44,45].

Before going into the details, here, we firstly give a brief remark on the computation of the Berry
phase in 1D quantum systems. In the previous studies of the Berry phase in the 1D spin systems,
the Hamiltonian was often generalized by applying a rotation to each spin. This rotation spans a 1D
parameter space to make the Berry phase well defined [8,9]. Then, by performing a standard procedure
based on the Jordan-Wigner transformation and Bogoliubov transformation [49], the generalized
Hamiltonian could be diagonalized, and the analytical expression of the Berry phase could be obtained.
However, due to the lack of an analytic solution in our model, we have to resort to a numerical
calculation. It is checked that if we apply only one type of rotation and directly calculate the Berry
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phase as Equation (3) (see below), the result will suffer from the gauge problem. To overcome
the gauge-dependent nature in Equation (3), we introduce a second parameter through another
unequivalent spin rotation. After these manipulations, a gauge-independent formula of the complex
Berry phase can be deduced in the 2D parameter space (see Equation (4)).

The transformed Hamiltonian is:

H = U(θ)U(η)HU+(η)U+(θ), (2)

where U(θ) = ∏L
n=1 eiθσz

n/2 is the rotation of θ around the z direction and U(η) = ∏L
n=1 eiησx

n /2 is the
rotation of η around the x direction. These unitary transformations span a 2D parameter space, which
can be applied to the gauge-independent formula of the Berry phase. In addition, the critical behaviors
are independent of the parameters θ and η, because the spectrum of the family of Hamiltonians is not
affected by the unitary transformations.

The Berry phase for the non-Hermitian systems was firstly studied by Garrison and Wright [33],
which is defined as:

βn =
∮

c
〈Ψ̃n(λ)|∇a|Ψn(λ)〉dλa, (3)

where |Ψn(λ)〉 and 〈Ψ̃n(λ)| are the normalized right and left eigenvectors of the non-Hermitian
Hamiltonian, satisfying H(λ)|Ψn(λ)〉 = En(λ)|Ψn(λ)〉, 〈Ψ̃n(λ)|H(λ) = En(λ)〈Ψ̃n(λ)|, and
∑m |Ψm(λ)〉〈Ψ̃m(λ)| = 1. For the non-Hermitian system, the right and left eigenvectors form
a biorthonormal basis 〈Ψ̃m(λ)|Ψn(λ)〉 = δmn.

In the 2D parameter space, the complex Berry phase of the ground state ofH can be written as:

βg =
∫∫

χ(θ, η)dθdη (4)

= i
∫∫

dθdη ∑
m( 6=g)

〈ψ̃g|∂θH|ψm〉〈ψ̃m|∂ηH|ψg〉 − (θ ↔ η)

(Eg − Em)2

= βR + iβ I ,

where the Berry curvature χ(θ, η) is defined, ∂θ = ∂/∂θ, ∂η = ∂/∂η, |ψm〉 is the eigenstate of H,
and specifically, |ψg〉 is the ground state as indicated by the subscript. βR and β I are the real and
imaginary parts of the Berry phase. Although the expression has the same form as the Berry phase in
the Hermitian system, we emphasize that the energy Em is a complex number in general.

3. Numerical Results

In this section, the static behavior of the Berry phase around the YLES is studied, and the critical
region close to the (1 + 1)D FPPT phase transition point is selected. As sketched in Figure 1, the critical
region around the (0 + 1)D YLES can appear at finite lattice size, and the (1 + 1)D FPPT critical region
appears around the (1 + 1)D critical point with lattice size L = ∞. However, at large L and small
g, the critical regions of (0 + 1)D YLES and (1 + 1)D FPPT overlap unavoidably with each other in
such a region. According to the HKZS, both the (0 + 1)D YLES and (1 + 1)D FPPT critical theories are
applicable simultaneously in this overlapping region, and the coexistence of these two scaling theories
can result in a constraint on the scaling functions [27].

To demonstrate the relation between the Berry phase and DPT around the YLES, the real
and imaginary parts of the Berry phase as a function of the Hamiltonian parameters g and h
are plotted in Figure 2a,b. The lattice size is L = 6, and the YLES points lies approximately
along the line of hL

YL = 0.14gL
YL + 0.027, which is determined by the order parameters defined as

MR = Re[〈ψ̃|M̂|ψ〉/〈ψ̃|ψ〉] and MI = Im[〈ψ̃|M̂|ψ〉/〈ψ̃|ψ〉] with M̂ = ∑L
n σz

n/L [24–27]. From
Figure 2a,b, we can see that both βR and β I show anomalies around the YLES points, which
demonstrates that the complex Berry phase can detect DPT.
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Figure 1. Critical regions near the ferromagnetic-paramagnetic phase transition (FPPT) critical point
(origin). The yellow region is the critical region of the FPPT, and the blue cone, which thrusts into the
yellow region, is the critical region of the (0 + 1)D Yang-Lee edge singularity (YLES). Critical points
(gL

YL, hL
YL) of the (0 + 1)D YLES link up the red-boldface curve inside the blue cone.

g

0
0.05

10

0.035
0.03

20

0.032

30

0.01 0.029

0
0.05

10

0.035
0.03

20

0.032

30

0.0290.01

h

g

β
R

h

(a) (b)β
I

Figure 2. The real part of the complex Berry phase βR (a) and the imaginary part β I (b) as a function of
Hamiltonian parameters h and g. Both βR and β I show anomalies around the YLES points, and the
lattice size is L = 6.

To further understand the relation between the Berry phase and DPT, we investigate the scaling
behaviors of βR and β I . Near the YLES critical points, the numerical study finds that βR and β I
diverge as:

βR(h− hL
YL) ∝ |h− hL

YL|
1

δ0 ,

β I(h− hL
YL) ∝ |h− hL

YL|
1

δ0 , (5)

with δ0 = −2 being the value of the (0 + 1)D YLES critical exponent. Figure 3 plots βR and β I as
a function of |h− hL

YL| around hL
YL with L = 8. In the double logarithmic coordinates, the curves of

βR and β I versus |h− hL
YL| are straight lines, which indicates that the relation between them satisfies

a power law. The fitting results show that the exponents of βR and β I versus |h− hL
YL| are −0.4997

and −0.5001 respectively, which confirms Equation (5). This result is consistent with the (0 + 1)D YLES
scaling theory [24,25], indicating that the scaling behavior of the Berry phase is well described by the
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(0 + 1)D YLES critical theory. For Figure 3a, h < hL
YL, and the Berry Phase is defined in the PT symmetry

phase; while for Figure 3b, h > hL
YL, and the Berry Phase is defined in the PT symmetry-breaking

phase with complex spectra of the ground state. Therefore, this result also demonstrates that the
Berry phase could be a universal order parameter in describing both the PT symmetry phase and the
PT symmetry-breaking phase. It should be noted that the critical exponent in the scaling functions
Equation (5) is the same as that of the scaling functions of order parameters defined in [24–27],
indicating that the scaling behavior of the complex Berry phase is identical to that of MR and MI .
It could provide a novel way to experimentally detect the Berry phase.
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Figure 3. (a) The curves of the real part of the complex Berry phase βR versus |h− hL
YL| and the fitted

line. (b) The curves of the imaginary part of the complex Berry phase β I versus |h− hL
YL| and the fitted

line. The lattice size is L = 8, and the YLES point is (gL
YL, hL

YL) = (0.02, 0.0180782). The power law
fitting result shows that the exponents are −0.4997 for (a) and −0.5001 for (b).

For the (1 + 1)D FPPT, since the imaginary field has the same dimension as the real field, βR and
β I near the FPPT satisfy relations similar to the real longitudinal-field case:

βR(g, h, L) = Ls f1(gL
1
ν , hL

βδ
ν ),

β I(g, h, L) = Ls f2(gL
1
ν , hL

βδ
ν ), (6)

where β = 1/8, δ = 15, and ν = 1 are the usual critical exponents for the 2D classical Ising universality
class, s is the (1 + 1)D FPPT critical exponent for the Berry phase, and f1 and f2 are scaling functions.
However, from Equation (5), one finds that βR = ∞ and β I = ∞ at the YLES points (gL

YL, hL
YL), due to

δ0 being negative. That is, at the YLES points, the scaling functions of Equation (6) become:

Ls f1(gL
YLL

1
ν , hL

YLL
βδ
ν ) = ∞,

Ls f2(gL
YLL

1
ν , hL

YLL
βδ
ν ) = ∞. (7)

Since s should be a finite constant, one finds that f1,2(gL
YLL

1
ν , hL

YLL
βδ
ν ) = ∞, which means the

variables gL
YLL

1
ν and hL

YLL
βδ
ν should have a relation as:

gL
YL = L−

1
ν f3(hL

YLL
βδ
ν ). (8)

Equation (8) indicates that gL
YL and hL

YL of YLES points are bound together with an FPPT critical
exponent in the overlapping region. Such a relation could be seen as the constraint between the
(0 + 1)D YLES and (1 + 1)D FPPT critical theories. To confirm Equation (8) numerically, the curve of



Entropy 2019, 21, 836 6 of 9

gL
YL versus L with fixed hL

YLL
βδ
ν = 1.1248 and the fitted curve are plotted in Figure 4. By a power-law

fitting, it is found that the curve satisfies gL
YL ∝ L−0.9499, which agrees with Equation (8).
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gL YL
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 data
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Figure 4. The curve of gL
YL versus L and the fitted curve with fixed hL

YLL
βδ
ν = 1.1248. The fitted curve is

gL
YL = 0.4232L−0.9499.

From Equation (8), one finds that hL
YLL

βδ
ν should be a constant for different lattice size, if gL

1
ν is

fixed. Therefore, by fixing gL
1
ν and (h− hL

YL)L
βδ
ν , the scaling function of Equation (6) becomes:

βR,I(L) ∝ Ls. (9)

By a power law fitting, we find that s ' 0.8716. We numerically confirm these scaling functions
of Equation (6) in Figure 5. In Figure 5a1,b1, βR and β I versus h for different lattice size L with
gL1/ν = 0.02 are plotted. After rescaling by using the (1 + 1)D YLES exponents, the rescaled curves of
βRL−s and β I L−s versus hLβδ/ν collapse onto each other, as shown in Figures 5a2,b2. These results
demonstrate that the behaviors of both the real and imaginary parts of the Berry phase can be well
described by the usual FPPT scaling theories.
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Figure 5. For fixed gL1/ν = 0.02, the curves of βR versus h for different L in (a1) match with each other
in (a2) after rescaling according to Equation (6). The corresponding curves for β I are shown in (b1)
and (b2).
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The numerical results of Figures 3 and 5 confirm that the complex Berry phase could be a good
indicator to characterize the scaling behaviors of DPT. Because of the universality of the Berry phase
in quantum mechanics, the studies on the scaling behavior of the Berry phase can give knowledge
independent of the concrete physical model. It can be easily related to the realistic model by writing
the order parameter in terms of the Berry phase, e.g., magnetic moment [8,9], electric polarization [50],
or conductance [5].

4. Summary

In summary, we developed a gauge-independent Berry phase formula for one-dimensional
non-Hermitian quantum systems and applied it to the quantum Ising chain in an imaginary
longitudinal field. The scaling behaviors of the complex Berry phase around the YLES of the model
were studied. In the overlapping critical regions constituted by the critical regions of the (0 + 1)D
YLES and (1 + 1)D FPPT, we showed that both the real and imaginary parts of the Berry phase have
anomalies around the YLES points, and their behaviors can be described by both the (0 + 1)D YLES and
(1 + 1)D FPPT scaling theories. These results demonstrate that the complex Berry phase could be the
universal indicator to detect DPT in the non-Hermitian system. By using the gauge-independent Berry
phase formula proposed here, the Berry phase of nonequilibrium states can be calculated, and the
complex Berry phase can be applied to study the scaling behaviors of the dynamical phase transition
of the non-Hermitian quantum systems. It is also noticed that exotic topological phases were unveiled
in the non-Hermitian quantum systems [32], and the Berry phase had a close relation to the topological
phase transition [51]. Therefore, the complex Berry phase is expected to characterize the topological
phase transition in non-Hermitian systems.

Recently, by measuring the quantum coherence of a probe spin in an Ising bath, the YLES was
experimentally found [52,53], and the ground state Berry phase of the Heisenberg XY spin model was
also experimentally detected [16]. Therefore, it is expected that the scaling behaviors of the Berry
phase of the non-Hermitian systems can be measured, and the results obtained in this paper can be
detected therein.
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DPT dissipative phase transition
HKZS Hybridized Kibble-Zurek scaling
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