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Abstract: The boundary layer micropolar fluid over a horizontal plate embedded in a non-Darcy
porous medium is investigated in this study. This paper is solely focused on contributions oriented
towards the application of micropolar fluid flow over a stretching sheet. The prime equations are
renewed to ordinary differential equations with the assistance of similarity transformation; they
are then subsequently solved numerically using the spectral quasi-linearization method (SQLM)
for direct Taylor series expansions that can be applied to non-linear terms in order to linearize
them. The spectral collocation approach is then applied to solve the resulting linearized system of
equations. The paper acquires realistic numerical explanations for rapidly convergent solutions using
the spectral quasi-linearization method. Convergence of the numerical solutions was monitored using
the residual error of the PDEs . The validity of our model is established using error analysis. The
impact of different geometric parameters on angular velocity, temperature, and entropy generation
numbers are presented in graphs. The results show that the entropy generation number decelerates
with an increase in Reynolds number and Brinkmann number. The velocity profile increases with
the increasing material parameter. The results indicate that the fluid angular velocity decreases
throughout the boundary layer for increasing values of the material parameter.

Keywords: micropolar fluid; boundary layer flow; quasi-linearization; Chebyshev spectral collocation
method; entropy generation

1. Introduction

Micropolar fluids are those in which the local micro-structure and intrinsic motion of fluid particles
are considered in the flow regimen. Examples of micropolar fluids include industrial collodal fluids,
polymeric suspensions, and liquid crystals. The theory of micropolar fluids, which was championed
by Eringen [1,2], describes fluids that are composed of rigid and randomly oriented particles that are
suspended in a viscous medium [3].

Non-Newtonian fluids, a class of fluids to which micropolar fluids belong, have many applications
in engineering, agriculture, meteorology, industry, and so on. Examples include paints, colloidal fluids,
ferro-liquids, polymeric fluids, exotic lubricants, and many others. The presence of dust in the air and
blood flow in veins, arteries, and capillaries may also be studied using micropolar fluid dynamics.
The usual momentum equations of fluid flow, commonly referred to as Navier–Stokes equations,
are inadequate in fully describing flow of fluids at the nano and micro scale [4]. As a result of this
limitation, the Navier–Stokes equations (also known as momentum equations) are used in conjunction
with an additional model equation that accounts for angular momentum [5].
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Increased interest in micropolar fluids has been demonstrated worldwide in recent years.
Ishak et al. [6] studied dual solutions in the flow of micropolar fluids, while Poulomi et al. [7] analyzed
dual solutions of the heat and mass transfer of a nanofluid over a stretching/shrinking sheet with
thermal radiation. Kameswaran et al. [8] investigated dual solutions of a Casson fluid over, another
example of a non-Newtonian fluid. Other examples of non-Newtonian fluids include a Sutterby fluid,
Carreau-Yasuda fluid, visco-elastic fluid, psuedo-elastic fluid, Ellis fluid, and Williamson fluid, among
others [9].

Tremendous amounts of time and effort have been invested by researchers in the study of
non-Newtonian fluids in recent years. This can largely be attributed to the fact that most regularly
used liquids, be it in the home or in engineering and technology, are to a great extent identifiable as
being non-Newtonian [9].

Many researchers worldwide have focussed great attention on the concept of the boundary
layer, which can be defined as a very thin layer close to the body or surface in which the viscosity of
fluid particles is significant. Boundary layer theory has undoubtedly been responsible for modern
advances in space flight, air travel, ship transport, technological warfare, motor sports, irrigation
systems, biomedical technologies, etc, most of which have a role to play in the pleasures, comforts,
and necessities of modern day life [10].

The phenomena of boundary layer flow over stretching/shrinking surfaces has extensive
engineering applications, such as the cooling process of metallic plates in a cooling bath,
the aerodynamic extrusion of plastic sheets, hot rolling, metal spinning, the condensation process
of a boundary layer along liquid film, artificial fibers, glass-fiber production, paper production,
and drawing of plastic films [11–13].

Pioneering studies on boundary layer flow over solid surfaces were done by Sakiadis [14] and
followed up later by Liao [3,15], who studied flow over stretching permeable or impermeable walls
and solved the system of equations by employing the homotopy analysis method, which is classified
as an analytic method.

RamReddy et al. [16] studied mixed convection of a micropolar fluid over a permeable vertical plate
with convective boundary condition and solved the system using spectral quasi-linearization method
(SQLM). Their findings revealed that dual solutions exist for certain values of mixed convection parameter.

Most real-life phenomena, such as heat and mass transfer, fluid flow, and biological and
engineering processes, are modeled by non-linear partial differential equations. By their nature,
such equations are complex and very difficult to solve exactly [10,17,18]. It is for this reason that
numerical methods, such as the spectral quasi-linearization, finite difference [17], and the Runge–Kutta
method, have to be used to solve these and similar types of problems.

The works reported above and the references contained therein (as well as other works not
reported here) have focussed on the heat transfer aspects of micropolar fluids embedded in a
non-Darcian porous medium with a magnetic field.

Other numerical methods include the finite element method, the Runge–Kutta–Fehlberg
method [19], the Keller-box method [20], and the shooting technique [21]. In this work, we apply the
Chebyshev spectral quasi-linearization method to solve a problem involving the flow of a micropolar
fluid, for the reason that spectral methods are renowned for their accuracy and precision [22].

2. Mathematical Formulations

In this study, a two-dimensional incompressible flow of a micropolar fluid is considered. The fluid
flows steadily over a stretching/shrinking sheet that is impermeable and has the physical properties
uw = a(x + b)m , Tw = T∞ + c(x + b)λ, where the parameters a, b, and m are related to the shrinking
or stretching speed of the surface, while c, b, and λ are related to the temperature of the surface [5].
The x-axis lies in the direction parallel to the surface of the sheet and the y-axis is perpendicular to it
(see Figure 1); u and v are the velocity components in the x and y directions, respectively.
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Figure 1. Schematic diagram of the problem under consideration.

The model equations emanate from the principles mass, linear momentum, angular momentum,
and energy conservation and are given as (refer to [5])

∂u
∂x

+
∂v
∂y

= 0,

u
∂u
∂x

+ v
∂u
∂y

=

(
µ + k

ρ

)
∂2u
∂y2 +

k
ρ

∂N
∂y
−

σB2
0

ρ
u− ν

k
u− Cb√

k
u2,

ρj
(

u
∂N
∂x

+ v
∂N
∂y

)
=

∂

∂y

(
γ

∂N
∂y

)
− k

(
2N +

∂u
∂y

)
,

u
∂j
∂x

+ v
∂j
∂y

= 0,

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 .

(1)

The associated boundary conditions are as follows:

u = uw, v = j = 0, T = Tw, N = −1
2

∂u
∂y

at y = 0,

u→ 0, N → 0, T → T∞ as y→ +∞,
(2)

where N is the angular velocity (also termed the micro-rotation). Note that rotation is in the x − y
plane. j and γ are the micro-inertia density and spin gradient of the fluid, respectively. The parameters
µ, α, and k are the viscosity, the thermal conductivity, and the vortex viscosity of the fluid, respectively.

Let γ = µ(1 + Ω
2 )j, where the material parameter Ω = k

µ represents the dimensionless viscosity
ratio [5]. We note here that Ω = 0 points to the flow of a viscous and incompressible Newtonian fluid.

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 . (3)

Let ψ denote the stream function such that u = ∂ψ
∂y and v = − ∂ψ

∂x and introduce the following
dimensionless variables:
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ξ =

√
a(1 + m)

2ν
(x + b)

m−1
2 y, θ(ξ) =

T − T∞

c(x + b)λ
,

ψ = a

√
2ν

a(1 + m)
(x + b)

m−1
2 F(ξ), N = a

√
a(1 + m)

2ν
(x + b)(3m−1)/2h(η),

j =
2ν

a(1 + m)
(x + b)1−mg(ξ),

(4)

where ν denotes the kinematic viscosity of the fluid and a 6= 0 and a(m + 1) > 0.
Applying variables (4) in Equations (2)–(4) and Equation (3), the system becomes

(1 + Ω)F′′′ + FF′′ + Ωh′ − 2m
1 + m

(F′)2 −MF′ − k1F′ − F∗F′2 = 0,(
1 +

Ω
2

)
(gh′′ + g′h′) +

(
Fh′ − (1 +

Ω
2
)F′h

)
−Ω(2h + F′′) = 0,

(1−m)F′g− 1 + m
2

Fg′ = 0,

θ′′ + Pr
(

Fθ′ − 2λ

1 + m
F′θ
)
= 0,

(5)

where M =
σB2

0
ρa (x + b)1−m is the magnetic field parameter, k1 = ν(x+b)1−m

k is the porous parameter,

F∗ = Cb(x+b)√
k

is the local inertia co-efficient, and Pr = ν
α is the Prandtl number.

The boundary conditions for Equation (5) are

F(0) = 0, θ(0) = 1, g(0) = 0, h(0) = −1
2

F′′(0),

F′(0) = 1, θ(∞) = 0, F′(∞) = 0, h(∞) = 0.
(6)

The above physical quantities of interest are C f , Nux, Mw, which denote the local skin friction
coefficient, the local Nusselt number, and the local couple stress at the surface, respectively. They are
defined below as

C f =
τw
ρu2

w
2

, Nux =
(x + b)qw

k(Tw − T∞)
, Mw = γ

(
∂N
∂y

)
y=0

. (7)

Here, τw and qw, which respectively represent the surface shear stress and the surface heat flux, are
given by

τw =

[
(µ + k)

∂u
∂y

+ kN
]

y=0
, qw = −k

(
∂T
∂y

)
y=0

. (8)

Using the similarity variables in (4), we obtain

0.5C f Re0.5
x = ±

√
0.5|1 + m|(1 + 0.5Ω)F′′(0) (9)

NuxRe0.5
x = −

√
0.5|1 + m|θ′(0), (10)

M/µuw(x)m−1 = (1/2C)(1 + m)(1 + 0.5Ω)h′(0), (11)

where Rex = |uw(x + b)/ν| gives the local Reynolds number.

3. Numerical Solution

Equation (5) forms a coupled system. We solve this system by firstly linearizing this pair of
equations. We do this by utilizing the quasi-linearization technique and then by subsequently applying
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the Chebyshev spectral collocation method to solve the resulting system. A background theory of
these procedures is given in the next subsection.

3.1. Quasi-Linearization

Consider a system of n non-linear differential equations which we write, without loss of
generality, as

Γ1[H1, H2, ..., Hn] = 0 (12)

Γ2[H1, H2, ..., Hn] = 0 (13)
...=

Γn[H1, H2, ..., Hn] = 0, (14)

where

H1 = { f1(η), f ′1(η), f ′′1 (η), ..., f (p)
1 (η)} (15)

H2 = { f2(η), f ′2(η), f ′′2 (η), ..., f (p)
2 (η)} (16)

...=

Hn = { fn(η), f ′n(η), f ′′n (η), ..., f (p)
n (η)}. (17)

Here, p denotes the order of differentiation, while fk(η) and Γk denote the solutions of the system
and the non-linear operators containing all the spatial derivatives of fk(η) for k = 1, 2, ..., n, respectively.

It is assumed that the solution can be approximated using the Lagrange interpolation polynomial
of the form

fk(η) =
Nη

∑
j=0

fk(ηj)Lj(η), (18)

for k = 0, 1, ..., n where

Lj(η) =
Nη

∏
j=0
j 6=k

η − ηk
ηj − ηk

(19)

and

Lj(η) =

{
0, j 6= k,
1, j = k.

(20)

The grid points ηj for j = 0, 1, ..., n which are considered in this study are termed
Chebyshev–Gauss–Lobatto grid points and are defined as

{ηj} = cos
(

π j
Nη

)
. (21)

The system of the n-non-linear differential equations under consideration is then linearized by
using the quasi-linearization technique, which is outlined in great detail by Bellman and Kalaba [23].
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Thus, applying the quasi-linearization technique leads one to obtain a coupled system n linear of
ordinary differential equations given as follows:

p

∑
s=0

a[1]1,s,r(η) f (s)1,r+1(η) +
p

∑
s=0

a[1]2,s,r(η) f (s)2,r+1(η) + ... +
p

∑
s=0

a[1]n,s,r(η) f (s)n,r+1(η) = R1(η) (22)

p

∑
s=0

a[2]1,s,r(η) f (s)1,r+1(η) +
p

∑
s=0

a[2]2,s,r(η) f (s)2,r+1(η) + ... +
p

∑
s=0

a[2]n,s,r(η) f (s)n,r+1(η) = R2(η) (23)

...=
p

∑
s=0

a[n]1,s,r(η) f (s)1,r+1(η) +
p

∑
s=0

a[n]2,s,r(η) f (s)2,r+1(η) + ... +
p

∑
s=0

a[n]n,s,r(η) f (s)n,r+1(η) = Rn(η), (24)

where a[k]n,s,r(η) =
∂Γk

∂ f (s)n,r

, where s = 0, 1, 2, ..., p are the variable coefficients of f (s)n,r+1 that correspond to

the kth equation for k = 1, 2, ..., n.
The right hand side of the kth equation is given by

Rk(η) =
p

∑
s=0

a[k]1,s,r(η) f (s)1,r (η) +
p

∑
s=0

a[k]2,s,r(η) f (s)2,r (η) + ... +
p

∑
s=0

a[k]n,s,r(η) f (s)n,r (η)− Γk[H1,r, H2,r, ..., Hn,r]. (25)

By following the above procedures, the linearized system of (5) becomes(
1 +

Ω
2

)
F′′′ + Fr+1F′′r+1 − 2

2m
1 + m

F′r F′r+1 + F′′r Fr+1 = R1,

− 2λ

1 + m
PrθrF′r+1 + Prθ′rFr+1 + θ′′r+1 + PrFrθ′r+1 = R2,

(26)

where R1 = − 2m
1+m (F′r)2 + Fr′′Fr and R2 = − 2λ

1+m PrθrF′r + Prθ′rFr, and the associated boundary
conditions are

Fr+1(0) = 0, θr+1(0) = 1, F′r+1(0) = 1, θr+1(∞) = 0, F′r+1(∞) = 0. (27)

3.2. Spectral Collocation

We solve the linearized systems (22) to (24) by evaluating at Chebyshev–Gauss–Lobatto grid
points ηi, for i = 0, 1, ..., Nη .

The values of the derivatives at the grid points are defined as

d fn

dη

∣∣∣
(ηi)

=
Nη

∑
ω=0

Diω fn(ηω), (28)

where Diω fn(ηω) =
dLω(ηj)

dη .
Higher order derivatives are defined as

dp fn

dηp

∣∣∣
(ηi)

= DpFn, (29)

where DpFn = ∑
Nη

ω=0 Dp
iω fn(ηω) and Fn = [ fn(η0), fn(η1), ..., fn(ηNη )]

T , and T denotes the transpose
of the matrix.

It must be noted that before we apply Chebyshev spectral collocation to our linearized system
of equations, we must change the domain of the problem from η = [a, b] to z = [−1, 1] by using the
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transformation η = a + b−a
2 (z + 1), where a = 0 and b represents the value of η at infinity. For the

purpose of our study, we used b = 10 for convenience.
As a result of the above transformation, we obtain the transformed Chebyshev derivative matrices

as follows:

(D1)iω = 2 ∗ Diω, (30)

(D2)iω = (D1)iω ∗ D1iω, (31)

(D3)iω = (D2)iω ∗ D1iω. (32)

We select the initial guesses so that they satisfy the boundary conditions of our system. We chose
the initial guesses for our system of two equations as F0(η) = 1− e−η and θ0 = e−η), and h0(η) =

− 1
2 F′′(0)e−η . The system is initially solved by the spectral quasi-linearization method and then the

solution for h(η) is deduced from the solution for F.
For a more detailed treatment of spectral methods, we refer you to Canuto et al. [24], Trefethen [25],

RamReddy [16], and Motsa et al. [26].

4. Entropy Generation Analysis

Entropy generation is dependent on the reversibility of a specified procedure. In an isolated
system, entropy tends to increase with time, but remains steady for reversible reactions. As a result of
the increasing application of nanofluids and nanoparticles in engineering and medical applications, it
is imperative to investigate and study the impact of these nanoparticles on entropy generation in real
life. This study focused on entropy generation along the sheet of magneto-micropolar nanofluids.

The volumetric rate of local entropy generation S′′′gen for two-dimensional flow is given below:

S′′′gen =
k f

T2
∞

(∂T
∂y

)2

︸ ︷︷ ︸
Sth

+
(µ + K)

T∞

(∂u
∂y

)2

︸ ︷︷ ︸
Sdis

+
γ

T∞

(∂N
∂y

)2

︸ ︷︷ ︸
Srot

. (33)

Equation (33) reveals that the entropy generation is a contribution of six sources. The first source
is caused by heat transfer or thermal radiation, heat transfer irreversibility (HTI), (Sth); the fourth
is caused by micro-rotation (Srot); and the fifth and sixth terms are caused by mass transfer (Sdi f ).
Therefore, the volumetric rate of local entropy generation is obtained as a linear combination of
(Sth), (Sdis), (Srot), such that

S′′′gen = (Sth) + (Sdis) + (Srot). (34)

It is suitable to write the entropy generation number (NG) as a ratio between (S′′′gen) and a rate of
entropy generation (S′′′0 ) where S′′′0 is given as

S′′′0 =
k f (Tw − T∞)2

T2
∞(x + b)2 . (35)

The characteristic entropy generation rate S′′′0 demonstrates the optimal entropy generation at
which the thermodynamic performance of a system is optimized. Finding S′′′0 requires solving an
optimization problem which is constrained by the irreversible operations of the system. The physical
characteristics of the system is varied until a minimum entropy generation is found.

The entropy generation number NG can be obtained as

NG =
S′′′gen

S′′′0
= Reθ′

2
+

ReBr
Ω

(
(1 + K) f ′′

2
+ (1 + K/2)h′

2
)

, (36)
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where χ is the concentration difference, and Br and Ω are the Brinkman number and the temperature
difference, respectively. These can be expression as

Br =
µ2u2

w(x)
k f ∆T

, Ω =
∆T
T∞

=
Tw − T∞

T∞
, (37)

where R is the ideal gas. In Equation (36), there are five irreversibility sources that contribute to the
entropy generation number, hence NG may be re-written as NG = Sth + Sdis + Srot, where

Sth = Reξ−1(1 + Nr)θ′
2
, Sdis =

ReBrξ−1(1 + K) f ′′
2

Ω
,

Srot =
ReBrξ−2(1 + K/2)h′

2

Ω
. (38)

The fraction of irreversibility from each source can be obtained by dividing the irreversibility source
by the total irreversibility leading to non-dimensional parameters, such as

γth =
Sth
NG

, γdis =
Sdis
NG

, γrot =
Srot

NG
, (39)

where γth is the fraction of irreversibility due to thermal diffusion, γdis is the fraction of irreversibility
due to viscous dissipation, and γrot is the fraction of irreversibility due to micro-rotation.

5. Results and Discussion

We investigated the effect of certain parameters on the flow in order to gain a better understanding
of the flow dynamics. The results are depicted graphically in the figures below. Table 1 shows the
numerical results for the Nusselt number and a comparison is made with previously published work;
they are found to be in good agreement. Figure 2 is plotted to discuss the behavior of the velocity
profiles for different values of material parameters Ω. It is clear from this figure that an increase in
the value of the material parameter leads to an increase in the velocity profile due to the effect of the
micropolar fluid. Figure 3 shows the behavior of the angular velocity profiles for different values
of material parameters Ω. It can be clearly noted from Figure 3 that the angular velocity decreases
when 0 ≤ η ≤ 4, and becomes constant far from the stretching sheet. Figure 4 states the variation of
the temperature profiles for various values of Prandtl number Pr. From this figure, it is seen that the
temperature decreases with the increasing values of Prandtl number Pr in the boundary layer when
η ≥ 1. From this plot, it is evident that the temperature in the boundary layer falls very quickly for
large values of Prandtl number; this is because the thickness of the boundary layer decreases with the
increase in the value of the Prandtl number. When 0 ≤ η ≤ 1, the temperature profile overshoots for
higher values of Prandtl number.

Table 1. Comparison of values of Nu/Rex
1
2 .

Ω m Pr λ Ref. [5] Present Results
HAM Method Spectral Quasi-Linearization Method (SQLM)

0 −0.2 0.72 1 0.846583 0.845874
0 −0.2 1 1 1.018910 1.018823
0 −0.2 3 1 1.856360 1.855748
0 −0.2 0.72 0 0.382401 0.383021

The residual error measures the extent to which the numerical solution approximates the true
solution. To gain further understanding of the accuracy of the spectral quasi-linearization method, we
calculated the residual errors, as shown in Figures 5 and 6. These are calculated for various values of
the porous parameter k1 and Prandtl number Pr. In most instances, all the solutions converged with
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an absolute residual error ||Res|| ≈ 10−10 after the third iteration. Accurate solutions were achieved
with the least number of iterations.

η
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Figure 2. Effect of material parameter Ω on the velocity profile.
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Figure 3. Effect of material parameter Ω on the angular velocity profile.
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1
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Figure 4. Effect of Prandtl number Pr on the temperature profile.
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Iterations
0 5 10 15

||
R
e
s
(f
(η
))
||
∞

10
-10
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-5

10
0

10
5

k
1
= 1

k
1
= 2

k
1
= 3

k
1
= 4

Figure 5. Residual error ||Res( f (η))||∞ against the number of iterations, for different values of the
porous parameter k1.

Iterations

0 5 10 15

||
R
e
s
(θ
(η
))
||
∞

10
-15

10
-10

10
-5

10
0

Pr = 0.7

Pr =   2

Pr =  10

Pr =  14

Figure 6. Residual error ||Res( f (η))||∞ against the number of iterations, for different values of Prandtl
number Pr.

Entropy generation, which is an important attribute of the flow, is discussed below. The entropy
generation is influenced by the quantum and changes in the physical characteristics of the fluid and
the porous medium, as can be seen in Equation (36). We consider how physical parameters such
as the Reynolds number and the Brinkman number Br impact on entropy generation; the results
of this are presented in Figures 7 and 8, respectively. The Reynolds number has a positive impact
on entropy generation. The importance of viscous dissipation and fluid conduction are determined
by the Brinkman number Br. With increasing Br, viscous dissipation produces more heat which
is manifested in the graphs of the temperature profiles. As Brinkman number increases, entropy
generation increases. Because entropy generation is responsible for the irreversibility, and our analysis
has shown that in that neighborhood of the sheet, the entropy generation is substantially higher in
comparison with the other regions, it can be concluded that the sheet is a strong source of irreversibility
and thermodynamic imperfections.
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Figure 7. Effect of the Reynolds number Re on the entropy generation profiles.
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Figure 8. Effect of the Brinkman number Br on the entropy generation profiles.

6. Conclusions

This paper considers the steady and incompressible flow phenomena of a micropolar fluid in
which a shrinking or stretching sheet is considered. The effects of radiation on the flow were also
taken into account. The spectral quasi-linearization method was used to numerically solve the coupled
system of partial differential equations and the results were presented graphically and analyzed. From
the discussion above, we can conclude that:

1. There is convergence after a certain number of iterations, demonstrating that the spectral
quasi-linearization method is robust and very efficient computationally;

2. The entropy generation increases with increasing Reynolds and Brinkman numbers.
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