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Abstract: In recent years, a quantum information theoretic framework has emerged for incorporating
non-classical phenomena into fluctuation relations. Here, we elucidate this framework by exploring
deviations from classical fluctuation relations resulting from the athermality of the initial thermal
system and quantum coherence of the system’s energy supply. In particular, we develop Crooks-like
equalities for an oscillator system which is prepared either in photon added or photon subtracted
thermal states and derive a Jarzynski-like equality for average work extraction. We use these equalities
to discuss the extent to which adding or subtracting a photon increases the informational content
of a state, thereby amplifying the suppression of free energy increasing process. We go on to derive
a Crooks-like equality for an energy supply that is prepared in a pure binomial state, leading to a
non-trivial contribution from energy and coherence on the resultant irreversibility. We show how the
binomial state equality fits in relation to a previously derived coherent state equality and offers a
richer feature-set.

Keywords: fluctuation relation; Crooks equality; quantum thermodynamics; coherence; athermality;
photon added thermal state; photon subtracted thermal state; binomial states; generalised
coherent states

1. Introduction

Thermodynamics, a theory of macroscopic systems at equilibrium, is vastly successful with
a diverse range of applications [1–6]. This is perhaps somewhat surprising given the prevalence
of non-equilibrium states and processes in nature. Underpinning this success is the second law of
thermodynamics, an inequality that holds for all equilibrium and non-equilibrium processes alike [7].
However, the implication of an irreversible flow in the dynamics belies the “arrow of time”, since
the underlying laws of motion generally define no preferred temporal order [8]. A resolution to
this seeming discrepancy arose in the form of fluctuation theorems, which derive the irreversibility
beginning from time-reversal invariant dynamics [8–12].

The challenge of generalising fluctuation relations to quantum systems has attracted significant
attention in recent years. The simplest approach defines the work done on a closed system as the change
in energy found by performing projective measurements on the system at the start and end of the
non-equilibrium process [10,13–17]. Extensions to this simple protocol have focused on formulations in
terms of quantum channels [18–20], generalisations to open quantum systems [21,22] and alternative
definitions for quantum work including those using quasi-probabilities [23,24], the consistent histories
framework [25] and the quantum jump approach [26–28]. However, these approaches tend to be limited
to varying degrees by the unavoidable impact of measurements on quantum systems. By defining
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quantum work in terms of a pair of projective measurements or continual weak measurements, the role
of coherence is attenuated.

A new framework for deriving quantum fluctuation relations has recently emerged [29–32] which
aims to fully incorporate non-classical thermodynamic effects into fluctuation relations by drawing on
insights from the resource theory of quantum thermodynamics [33–39]. This framework considers an
energy conserving and time reversal invariant interaction between an initially thermal system and a
quantum battery, that is the energy source which supplies work to, or absorbs work from, the system.
This framework can be taken as the starting point to derive Crooks-like relations for a harmonic
oscillator battery prepared in coherent, squeezed and Schrödinger cat states [40]. These new equalities
are used both to discuss coherence induced corrections to the Crooks equality and to propose an
experiment to test the framework. Furthermore, the fluctuation relations give way to an interpretation
involving coherent work states, a generalisation of Newtonian work for fully quantum dynamics.
It was proved that the energetic and coherent properties of the coherent work is totally captured in
this fluctuation setting [41].

In this paper, we use this new framework to explore deviations from classical fluctuation
relations resulting from athermality of the initial thermal system and quantum coherence of the
battery. In particular, we start by exploring the effects of athermality by developing Crooks equalities
for a quantum harmonic oscillator system which is prepared in a photon added and photon subtracted
thermal state. These states have received interest in quantum optics owing to their non-Gaussian and
negative Wigner functions [42–44] along with their producibility in lab settings [42,45–47]. Furthermore,
they have been suggested as useful resources in quantum key distribution [48], metrology [49] and
continuous variable quantum computing [50,51], and there is growing interest in their thermodynamic
properties [46,47].

We then proceed to investigate the role of coherence by deriving a Crooks equality for a battery
prepared in pure binomial states. Binomial states can be viewed as analogues of coherent states
for finite dimensional systems rather than infinite dimensional oscillators [52,53], leading to highly
non-classical properties [54,55]. While binomial states are harder to produce in lab settings, there have
been proposals [56,57]. The derived equality effectively generalises the coherent state Crooks equality
of Holmes et al. [40], incorporating finite sized effects and leading to the coherent state equality in
the appropriate limit. Moreover, binomial states quantify a smooth transition between semi-classical
regimes and deep quantum regimes by encapsulating both coherent state and multi-qubit fluctuation
relations in a single framework.

2. Background

2.1. Classical Fluctuation Relations

A system S is initially in thermal equilibrium with respect to Hamiltonian Hi
S at temperature T.

It is then driven from equilibrium by a variation of Hamiltonian Hi
S to H f

S , doing work W with
probability PF(W) in the process. This forwards process is compared to a reverse process in which a
system thermalised with respect to H f

S is pushed out of equilibrium by changing H f
S to Hi

S, doing work
−W with probability PR(−W). The ratio of these two probabilities is known as the Crooks equality [9],

PF(W)

PR(−W)
= exp (β(W − ∆F)) , (1)

where ∆F is the equilibrium Helmholtz free energy difference and β is the inverse temperature 1/kBT.
The Crooks equality is a generalisation of the second law of thermodynamics. As a corollary to

Crooks equality, one can derive the Jarzynski equality [12], which reads

〈exp (−βW)〉 = exp (−β∆F) . (2)
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Finally, using Jensen’s inequality [58], one arrives at the second law of thermodynamics in its
formulation as a bound for the average extractable work 〈Wext〉 ≤ −∆F. The Jarzynski equality has
been used to calculate free energy changes for highly complex systems [59] such as unravelling of
proteins [60], and as a theoretical tool to re-derive two of Einstein’s key relations for Brownian motion
and stimulated emission [61].

2.2. Fully Quantum Fluctuation Relations

Our starting point is a global “fully quantum fluctuation theorem” from [29], a more general
relation than that explicated in [32,40,41], which can be used to derive a whole family of quantum
fluctuation relations. A defining property of quantum systems is their ability to reside in superpositions
of states belonging to different energy eigenspaces, a property often referred to simply as coherence.
The quantum framework we present here carefully tracks the changes in these energetic coherences.

Changing the Hamiltonian of a system typically requires doing work or results in the system
performing work and thus every fluctuation relation, at least implicitly, involves an energy source
which supplies or absorbs this work. While often not explicitly modelled, the dynamics of the energy
supply can contribute non-trivially to the evolution of the driven system. Thus, to enable a more careful
analysis of the energy and coherence changes of the system, we consider an inclusive (this is in contrast
to the exclusionary picture of the original Crooks and Jarzynski equalities) approach [29–31,40,41,62],
which introduces a battery and assumes the system (S) and battery (B) evolve together under a time
independent Hamiltonian HSB.

To realise an effective change in system Hamiltonian from Hi
S to H f

S with a time independent
Hamiltonian, we assume a Hamiltonian of the form

HSB = 1S ⊗ HB + Hi
S ⊗Πi

B + H f
S ⊗Π f

B (3)

where HB is the battery Hamiltonian and Πi
B and Π f

B are projectors onto two orthogonal subspaces,
Ri and R f , of the battery’s Hilbert space. We assume the battery is initialised in a state in subspace
Ri only and evolves under a unitary U to a final state in subspace R f only, such that the system

Hamiltonian is effectively time dependent, evolving from Hi
S to H f

S .
To ensure that the energy supplied to the system is provided by the battery, we require the

dynamics to be energy conserving such that [U, HSB] = 0. We further assume that U and HSB are
time-reversal invariant with U = T (U) and HSB = T (HSB). The time-reversal [63,64] operation T is
defined as the transpose operation in the energy eigenbasis of the system and battery.

The most general process that can be described by a fluctuation relation within the inclusive
framework involves preparing the system and battery in an initial state ρ, evolving it under the
propagator U and then performing a measurement on the system and battery, which can be represented
by the measurement operator X. The outcome of this measurement is quantified by

Q(X|ρ) := Tr
[

XUρU†
]

(4)

which can capture a number of different physical properties. For example, if the measurement operator
X is chosen to be an observable, then Q(X|ρ) is the expectation value of the evolved state UρU†,
whereas, if the measurement operator is chosen to be some state ρ′, corresponding to the binary POVM
measurement {ρ′, 1− ρ′}, then Q(ρ′|ρ) captures a transition probability between the state ρ and ρ′

under the evolution U.
The global fluctuation relation relates Q(X f

SB|ρi
SB) of a forwards process to Q(Xi

SB|ρ
f
SB) of a

reverse process. For our purposes, we assume that the system and battery are initially uncorrelated in
both the forwards and reverse processes, i.e.,

ρi
SB = ρi

S ⊗ ρi
B and ρ

f
SB = ρ

f
S ⊗ ρ

f
B (5)
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and suppose that independent measurements are made on the system and battery such that the
measurement operator can be written in a separable form, i.e.,

Xi
SB = Xi

S ⊗ Xi
B and X f

SB = X f
S ⊗ X f

B . (6)

The global fluctuation relation holds for measurement operators and states related by the mapping
M defined as

ρk
S =M(Xk

S) ∝ T
(

exp

(
− βHk

S
2

)
Xk

S exp

(
− βHk

S
2

))
(7)

ρk
B =M(Xk

B) ∝ T
(

exp
(
− βHB

2

)
Xk

B exp
(
− βHB

2

))
(8)

for k = i, f . This mapping arises naturally when one relates a forward and a reverse quantum process
in the inclusive framework. When a measurement operator is a projection onto an energy eigenstate,
then the state related by the mapping, Equation (7), is an energy eigenstate. Conversely, when no
measurement is performed, i.e., X = 1, the corresponding state is a thermal state. However, in general,
the mapping is non-trivial and essential to capture the influence of quantum coherence and athermality.
The relationship between the four states quantified by the global fluctuation relation is sketched in
Figure 1.

Prepare Measure

Measure Prepare

Forwards

Reverse

⇢i
SB

⇢f
SB

Xf
SB

Xi
SB

M M

U

U

Figure 1. Relation between prepared states and measurements. In the forwards (reverse) process,

the state ρi
SB = ρi

S ⊗ ρi
B

(
ρ

f
SB = ρ

f
S ⊗ ρ

f
B

)
is prepared, it evolves under U as indicated by the wiggly

arrow, and then the measurement X f
SB = X f

S ⊗ X f
B

(
Xi

SB = Xi
S ⊗ Xi

B

)
is performed. As indicated by

the solid lines, the measurements Xi
SB and X f

SB are related to the states ρi
SB and ρ

f
SB, respectively, by

the mappingM, defined in Equation (7).

For the uncorrelated initial states and measurement operators related by the mapping M,
the global fluctuation relation [29,40,41] can be written as

Q(X f
SB|ρi

SB)

Q(Xi
SB|ρ

f
SB)

= exp
(

β(∆W̃ − ∆F̃)
)

(9)

in terms of the quantum generalisation

∆F̃ := Ẽ(β, H f
S , X f

S)− Ẽ(β, Hi
S, Xi

S) (10)
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of the change in free energy, as well as a quantum generalisation of the work

∆W̃ := Ẽ(β, HB, Xi
B)− Ẽ(β, HB, X f

B) . (11)

supplied by the battery. The function

Ẽ(β, H, X) := − 1
β

ln (Tr [exp (−βH) X]) (12)

is an effective potential that specifies the relevant energy value within the fluctuation theorem context.
When the measurement operator is equal to the identity operation the effective potential, Ẽ(β, H, 1),
is equal to the free energy with respect to Hamiltonian H and thus ∆F̃ reduces to the usual
Helmholtz free energy. Conversely, for a projector onto an energy eigenstate, the effective potential,
Ẽ(β, H, |Ek〉〈Ek|), is the corresponding energy Ek from which we regain the classical work term using a
two point projective measurement scheme. More generally, when restricting to projective measurement
operators, the function βẼ(β, H, |ψ〉〈ψ|) is a cumulant generating function in the parameter β that
captures the statistical properties of measurements of H on |ψ〉 [41].

We regain the Crooks equality from this global fluctuation relation for a thermal system and a
battery with a well defined energy. Specifically, in the forwards process, the system is prepared in a
thermal state

γi
S ∝ exp

(
−βHi

S

)
(13)

and we consider the probability to observe the battery to have energy E f having prepared it with
energy Ei, that is transition probabilities of the form

P(E f |γi
S, Ei) := Q

(
1S ⊗ |E f 〉〈E f |

∣∣∣∣ γi
S ⊗ |Ei〉〈Ei|

)
. (14)

In this classical limit, the global fluctuation relation reduces to

P(E f |γi
S, Ei)

P(Ei|γ f
S, E f )

= exp (β(W − ∆F)) (15)

where W := Ei − E f is the negative change in energy of the battery and thus, due to global energy
conservation, equivalent to the work done on the system. If we additionally assume that the dynamics
of the system and battery do not depend on the initial energy of the battery, then using this energy
translation invariance assumption, which we explicitly define in Section 3.3, one is able to regain all
classical and semi-classical fluctuation results [29]. The global fluctuation relation is thus a genuine
quantum generalisation of these relations and inherits their utility.

In this manuscript, we use the global fluctuation relation, Equation (9), to quantify deviations
from the classical Crooks relation resulting from athermality of the initial thermal system and quantum
coherence of the battery. Specifically, to probe the impact of preparing the system in imperfectly
thermal states, we derive in Section 3.1 a Crooks-like relation for a system that is prepared in a photon
added or a photon subtracted thermal state. In Section 3.2, we investigate the deviations generated by
coherence in the battery by deriving a Crooks equality for binomial states of the battery.

3. Results

3.1. Photon Added and Subtracted Thermal States

Photon added and subtracted states are non-equilibrium states generated from a thermal state
by, as the name suggests, either the addition or the subtraction of a single photon. Considering a
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single quantised field mode with creation and annihilation operators a† and a and Hamiltonian H,
the photon added thermal state can be written as

γ+
H ∝ a† exp (−βH) a (16)

and the photon subtracted thermal state as

γ−H ∝ a exp (−βH) a† . (17)

The states γ+
H and γ−H are diagonal in the energy eigenbasis and therefore are classical in the sense

that they are devoid of coherence. Nonetheless, they are non-Gaussian and have negative Wigner
functions [45,65–68], traits which are considered non-classical in the context of quantum optics.

Moreover, the addition or subtraction of a photon from a thermal state has a rather surprising
impact on the number of photons in the state: In particular, adding a photon to a thermal state of
light, which contains on average n̄ photons, increases the expected number of photons in the state
to 2n̄ + 1 [42–44]. Similarly, subtracting a photon from a thermal state doubles the expected number
of photons to 2n̄. Thus, counter-intuitively, adding or subtracting a single photon to a thermal state
substantially increases the expected number of photons in the state.

In line with standard nomenclature we will refer to photon added and subtracted thermal states
throughout this paper; however, the modes in Equations (16) and (17) could naturally refer to any
boson. Experimental techniques for generating photon added [45] and subtracted [42] thermal states
are well established and methods are currently being developed for the preparation of phonon added
states [69].

To illustrate the deviations from classical thermodynamics induced by the addition (subtraction)
of a single photon we derive a Crooks-like relation characterised by replacing the initially thermal
system of the standard setting quantified by the Crooks equality, with a system in a photon added
(subtracted) thermal state. That is, for the photon added (+) and photon subtracted (−) equalities,
we suppose that the system is prepared in the states

ρi
S = γ±i and ρ

f
S = γ±f (18)

at the start of the forwards and reverse processes, respectively, where to simplify notation we have
introduced the shorthand γ±k ≡ γ±

Hk
S
.

In analogy to the classical Crooks relation, we quantify the work supplied to the system when the
photon added (subtracted) thermal system is driven by a change in Hamiltonian. For concreteness,
we assume here that the system is a quantum harmonic oscillator with initial and final Hamiltonians
given by

Hk
S := h̄ωk

(
a†

k ak +
1
2

)
, (19)

for k = i and k = f , such that the system is driven by a change in its frequency from ωi to ω f .
As energy is globally conserved, the work supplied to the system is given by the change in energy
of the battery and therefore the probability distribution for the work done on the system can be
quantified by transition probabilities between energy eigenstates of the battery. Specifically, in the
forward process, we consider the probability to observe the battery to have energy E f having prepared
it with energy Ei and vice versa in the reverse. We do not need to make any specific assumptions on
the battery Hamiltonian HB to quantify such eigenstate transition probabilities and therefore HB may
be chosen freely.

In contrast to the usual Crooks relation, the photon added (subtracted) Crooks relations depends
on the average number of photons in the photonic system after the driving process. This arises from
the mappingM between the measurement operators and the initial states following Equation (7).
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As shown explicitly in Appendix A, on inverting Equation (7), we find that for the photon added
equality the measurement operators Xi

S and X f
S are given by

Xk
S = a†

k ak := Nk for k = i, f ; (20)

and for the subtracted equality they are given by

Xk
S = aka†

k = Nk + 1 for k = i, f . (21)

That is, in both cases, they are given in terms of the number operator Nk only.
Given this form for the measurement operators, it follows that the photon added and subtracted

Crooks relations quantify the expected number of photons in the system at the end of the driving
process as well as the change in energy of the system. For example, for the forwards process of the
photon added Crooks equality, Q, as defined in Equation (4), is equal to

Q
(

N ⊗ |E f 〉〈E f |
∣∣∣∣ γ+

i ⊗ |Ei〉〈Ei|
)
= n(E f |γ+

i , Ei)P(E f |γ+
i , Ei) (22)

where P is the transition probability of the battery from energy Ei to E f conditional on preparing the
system in a photon added thermal state, as defined in Equation (14), and n(E f |γ+

i , Ei) is the average
number of photons in the system at the end of this driving process. Similar expressions to Equation (22)
are obtained for the reverse process of the photon added equality and both the forwards and reverse
processes of the photon subtracted equality.

As we are considering transition probabilities between energy eigenstates of the battery, the
generalised energy flow term ∆W̃ reduces to the work done on the system as in Equation (15). However,
as derived explicitly in Appendix A, the generalisations of the free energy term, Equation (10), ∆F̃+

and ∆F̃− for the photon added and subtracted equalities, respectively, evaluate to

∆F̃± = 2∆F± ∆Evac . (23)

In the above, ∆F is the change in free energy associated with the change in Hamiltonian from Hi
S

to H f
S and we introduce ∆Evac,

∆Evac :=
1
2

h̄ω f −
1
2

h̄ωi , (24)

as the difference between the initial and final vacuum energies of photonic system.
In the classical limit where h̄ tends to zero, the contribution from the energy of the vacuum

state, ∆Evac, vanishes and ∆F+ and ∆F− both tend to 2∆F. This behaviour can be explained by the
observation in [44] that the photon probability distributions for photon added and subtracted states
have the same functional form but while the photon subtracted distribution starts at n = 0, that is
in the vacuum state, the photon added distribution starts at n = 1, and therefore has no vacuum
contribution, a shift which becomes increasingly insignificant for higher temperatures. Conversely,
as shown in Figure 2, in the low temperature quantum limit , the contribution of the energy of the
vacuum state generates sizeable deviations between the generalised free energy terms for the photon
added and subtracted cases. Specifically, while ∆F−S tends to ∆F in agreement with the standard
classical Crooks relation, we find that ∆F+ is substantially larger than 2∆F. This is due to the fact
that in the low temperature limit the photon subtracted thermal state and normal thermal state both
tend to the vacuum state, whereas the photon added thermal state tends to a single photon Fock state.
In all limits, ∆F+ and ∆F− are larger than ∆F, indicating that the addition and subtraction of a photon
increases the energy and information content of a thermal state, thereby increasing the extractable work
from the state. Similar phenomena have been observed elsewhere in the context of work extraction
protocols [46] and Maxwell demons [47].
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Figure 2. Generalised Free Energies. The solid red and dark blue lines show the generalised free
energy, ∆F+ and ∆F−, of the oscillator system for the photon added and photon subtracted equalities,
respectively. These are plotted as a function of χ = βh̄ωi/2, the ratio between the initial vacuum
fluctuations, h̄ωi/2, and the thermal fluctuations, kBT, a measure which quantifies the temperature
and thus effectively delineates the classical and quantum regimes. The grey dashed line is the usual
change in energy ∆F. The dotted lines indicate the contribution of ∆Evac (purple) and 2∆F (light blue)
to ∆F+ and ∆F+. In this plot, we suppose h̄ω f = 1.5h̄ωi and energies are given in units of kBT.

The final photon added (+) and photon subtracted (−) Crooks equality can be written as

P(E f |γ±i , Ei)

P(Ei|γ±f , E f )
= R±(W) exp (β (W − 2∆F∓ ∆Evac)) . (25)

The prefactor R±(W) quantifies the ratio of the number of photons measured in the system
at the end of the reverse process over the number of photons measured at the end of the forwards
process. Note, as a result, the prefactor is only defined when both the numerator and denominator
of Equation (A30) are both positive quantities. As shown in Appendix A, the prefactorsR+(W) and
R−(W) can be written as

R±(W) =
ω f

ωi

h̄ω f (2n̄ f + k±) + W + ∆Evac

h̄ωi

(
2n̄i + k−1

±
)
−W − ∆Evac

(26)

with k+ = 1 and k− = ωi
ω f

and where n̄k is the average number of photons in a thermal state with

frequency ωk. It is worth noting that R±(W) implicitly depends on the free energy of the initial
and final Hamiltonians because h̄ωk(n̄k +

1
2 ) is the average energy of a thermal photonic state with

frequency ωk, which, by definition, is equal to the sum of free energy and entropy of the state.
The classical Crooks equality implies that driving processes which require work and decrease free

energy are exponentially more likely than processes which produce work and increase free energy,
thus quantifying the irreversibility of non-equilibrium driving processes. Given that the generalised
free energy terms ∆F̃+ and ∆F̃− are greater than the usual change in free energy ∆F, it is tempting
to conclude that athermality of the initial system can strengthen irreversibility by amplifying the
suppression factor of free energy increasing processes. However, the presence of the prefactorR in
Equation (25), which depends on both the work done during the driving process and implicitly the
initial and final free energies of the system, makes it harder to draw clear cut conclusions.

To aid comparison between the athermal and thermal cases, in Figure 3, we plot the total predicted
ratio of the forwards and reverse processes for the photon added and subtracted Crooks relations,
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that is the right hand side of Equation (25), and compare them to the equivalent prediction of the
classical relation, Equation (1). We similarly plot the prefactorsR+ andR−. As the prefactorR does
not appear in the classical Crooks relation, Equation (1), we can say thatR is effectively equal to 1 in
the limit of a perfectly thermal system. For concreteness, we here consider a forwards process where
the oscillator frequency is doubled, increasing the system’s free energy. We plot the ratio and R as
a function of χ := βh̄ω

2 , the ratio of vacuum energy to thermal energy, a measure which delineates
between quantum and thermodynamic regimes.
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Figure 3. Predicted ratio and R prefactor. The left figure plots the predicted ratio of the forwards
and reverse transition probabilities, i.e., the right hand side of Equation (25), for the photon added
(subtracted) Crooks equality as a function of χ = βh̄ωi/2. The right figure plots R as a function of
χ. The red (blue) lines indicates the photon added (subtracted) case and the grey lines indicate the
equivalent classical limit. That is, in the left plot the grey line is the right hand side of the classical
Crooks equality, Equation (1), and in the right plot the grey line isR = 1. The solid lines plot the case
W = 2h̄ωi and the dashed lines, W = 0. Here, we suppose h̄ω f = 5h̄ωi.

As shown in Figure 3, the interplay between the prefactorsR±, which are greater than the classical
limit of 1, and the terms exp(−β∆F̃±), which are smaller than exp(−β∆F), leads to a rich spectrum
of deviations from the classical Crooks relation. For example, while the prefactorR+ for the photon
added case is substantially greater than 1 in the low temperature limit, the total predicted ratio is
smaller than for the photon subtracted case. This is because the large value of R+ is exponentially
suppressed by ∆F̃+ which is substantially larger than ∆F̃− and ∆F, as shown in Figure 2, due to the
contribution of the change in vacuum energy. Thus, we conclude that for the photon added relation,
irreversibility is milder in the quantum limit due to the contribution of the energy of the vacuum state,
a phenomenon which was also observed in [40].

In the high temperature classical limit one might expect adding or subtracting a single photon
to a thermal state containing on average a large number of photons would have a negligible effect.
Indeed, this is what we see for processes in which no work is performed on the system since in the
high temperature limit the prefactor R±(0) reduces to exp(β∆F). However, interestingly for work
requiring processes, we do see large deviations from the usual classical Crooks relation in the classical
limit. We attribute this to the fact that adding or subtracting a photon from thermal light effectively
doubles the mean photon number the state, and therefore the net effect can be substantial even for
high temperature states as they contain larger numbers of photons.

More generally, for all temperatures and for both the photon added and subtracted relations, we
find that the larger the work done on the system, the larger the predicted ratio. This confirms that even
when the initial states are photon added or subtracted thermal states, processes which require work
are exponentially more probable than processes that generate work.
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3.2. Binomial States

In the previous section, we show how the athermality of the initial system, due to the addition
or subtraction of a single photon, induces rich deviations from the classical Crooks relation. Here,
we complement this analysis by exploring how quantum features can be introduced through the
coherence of the battery. The quantum fluctuation relations are well characterised for coherent states of
the battery [40] which have close-to-classical properties. In the following, we consider binomial states,
which provide a well-defined transition between coherent states of a quantum harmonic oscillator,
and highly quantum mechanical states such as a state of an individual qubit.

Binomial states are pure states of the form

|n, p〉 =
n

∑
k=0

√(
n
k

)
pk(1− p)n−k eiφk |k〉, (27)

whose properties have been extensively studied in the field of quantum optics [44,53,54,70]. Binomial
states are non-classical states with finite support and exhibit sub-Poissonian statistics [44,54], squeezing
of quadratures [54] and are highly non-classical both in terms of their coherent properties and the
negativity of their Wigner function [55]. They can be thought of as an n-qubit tensor product |p〉⊗n of
the states |p〉 =

√
1− p|0〉+√p|1〉. The states |n, p〉 and |p〉⊗n are related by an energy-preserving

unitary rotation. This is important as the effective potential Ẽ is invariant under energy conserving
unitaries, implying that as far as the fluctuation theorem is concerned, they are interchangeable. In the
limit that n tends to infinity, they approach the regular coherent states and the opposite limiting case
n = 1 corresponds to the deep quantum regime.

Binomial states find use owing to their nice analytical properties. For instance, the commonly
encountered spin-coherent states are particular examples of binomial states [52,70–72]. Spin-coherent
states belong to a class of generalised coherent states that allow for different displacement operators,
in this case of the form D(α) = exp(αS+ + α∗S−) where S± are the spin-raising and lowering
operators [52,53,71]. Proposals for the generation of binomial states have been developed in
atomic systems [56,57] and they have been suggested as analogues to coherent states for rotational
systems [73,74]. These examples indicate that binomial states are of natural physical interest.

In what follows, we assume the battery is a harmonic oscillator, HB = h̄ω(a†a + 1
2 ), but do

not make any specific assumptions on the initial and final system Hamiltonians. Note, one could
also consider a finite Hamiltonian; however, for complete generality, decoupling the dimension of
the Hamiltonian and the support of the state proves useful. We assume the system is prepared in
a standard thermal state and consider transitions between two binomial states of the battery. More
specifically, here the battery measurement operators are chosen as the projectors

Xk
B = |nk, pk〉〈nk, pk| for k = i, f . (28)

which, given the mappingM in Equation (7), fixes the preparation states. As shown in Appendix B,
we find that the prepared states are the binomial states,

ρk
B = |nk, p̃k〉〈nk, p̃k| with p̃ =

pe−βh̄ω

pe−βh̄ω + q
and q̃ =

q
pe−βh̄ω + q

, (29)

with q = 1− p and for k = i, f . Thus, we see that the mappingM preserves binomial statistics but
leads to a distortion factor due to the presence of coherence. Since p̃ is always less than p, this distortion
fromM lowers the energy of the prepared state as compared to the equivalent measured state, with its
energy vanishing in low temperature limit.

There exist two clear distinct physical regimes corresponding to different battery preparation and
measurement protocols. In the realignment regime, we fix the system size n and consider transition
probabilities between rotated states. Conversely, the resizing regime quantifies transition probabilities
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between states of different “sizes”, that is states with different supports but fixed alignment in the
Bloch sphere. For the realignment regime, the prepare and measure protocols are as follows:

• Forwards: The battery B is prepared in the state |n, p̃i〉 and measured in |n, p f 〉
• Reverse: The battery B is prepared in the state |n, p̃ f 〉 and measured in |n, pi〉.

While for the resizing regime, where we fix p and vary n, we have the prepare and
measure protocol:

• Forwards: The battery B is prepared in the state |ni, p̃〉 and measured in |n f , p〉.
• Reverse: The battery B is prepared in the state |n f , p̃〉 and measured in |ni, p〉.

In the qubit picture, for a system of N qubits, the realignment regime amounts to fixing the
number of battery qubits with coherence to precisely n while changing the polarisation pk of each of
these n qubits concurrently. Similarly, the resizing regime corresponds to fixing the polarisation and
changing the number of non classical qubits. More precisely, we can write

|nk, pk〉 ≡ |pk〉⊗nk ⊗ |0〉⊗N−nk for k = i, f (30)

where in the first regime nk is kept fixed while pk is varied and vice versa for the second. In the context
of spin-coherent states, the first regime corresponds to a battery that remains a spin- n

2 system but
whose orientation varies, while the second amounts to changing the magnitude of the spin while fixing
the orientation.

The key quantity in the fluctuation relation is the generalised work flow, the derivations of which
can be found in Appendix B. In these processes, the generalised work flow in the realignment regime
and resizing regimes, ∆W̃align and ∆W̃size, respectively, take the form

β∆W̃align = n

(
ln

p f

p̃ f
− ln

pi
p̃i

)
(31)

β∆W̃size = (n f − ni)

(
ln

p
p̃
+ βh̄ω

)
, (32)

provided both pi and p f are non-zero. These capture the temperature-dependent distortion of the
binomial states due toM. While the generalised work flow in the realignment regime smoothly varies
with its free parameters, in the resizing regime, the energy flow is discretised. The binomial state
Crooks relations corresponding to the realignment and resizing regimes follow upon insertion of the
generalised work flow terms, Equations (31) and (32), into the global fluctuation relation, Equation (9),
when restricted to binomial state preparations specified in Equation (29).

In the high temperature limit, βh̄ω � 1, we can truncate the power series of ∆W̃ to second order
for sufficient accuracy, which gives

β∆W̃align ≈ βh̄ωn
(

pi − p f

)
− (βh̄ω)2

2
(σ2

i − σ2
f ) (33)

β∆W̃size ≈ βh̄ω(ni − n f )p− (βh̄ω)2

2
(ni − n f )σ

2, (34)

where σ2
k = npk(1− pk) is the variance of HB in the state |n, pk〉 for k = i, f and σ2 = p(1− p) is the

variance for a Bernoulli distribution. Note that the variance evaluated for pure states is a genuine
measure of coherence [75] and that due to microscopic energy conservation , that is the fact U commutes
with HSB, both energy and variance in energy are globally conserved. Given this, Equations (33) and (34)
characterise the change in energy and coherence of the system due to an equal and opposite change in
the battery.

Furthermore, binomial states exhibit sub-Poissonian statistics, that is the variance np(1− p),
is smaller than the mean np (for non vanishing p). Therefore, it follows from Equations (33) and (34)
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that the fluctuation relation (Equation (9)) captures the sub-Poissonian character of these states and
shows that this affects the resulting irreversibility of the dynamics. Viewed through the lens of
quantum optics, binomial states of light are anti-bunched [55], a signature of non-classicality. Thus,
the binomial state Crooks equality draws a non-trivial link between bunching and the reversibility of
quantum driving processes, since anti-bunching and sub-Poissonian statistics are directly correlated
for single-mode time-independent fields [54].

In the case of spin-coherent states, the Hamiltonian is in effect taken to be defined in the eigenbasis
of the spin-z operator and therefore the variances in Equations (33) and (34) detail the variation of
uncertainty in the spin-z component. However, aligning the Hamiltonians in the z-direction defines
a preferential axis and therefore the spin-z and the spin-x and spin-y components are not placed on
equal footing. This is because the effective potential is invariant under unitary transformations U that
commute with H, that is

E(β, H, ρ) = E(β, H, UρU†) ∀ [U, H] = 0 , (35)

and hence is invariant under rotations about the z-axis. Consequently, while the fluctuation relation
captures changes to the uncertainties in the spin-z components, the relation is unaffected by changes
to uncertainties in the spin-x and spin-y components. More generally, the invariance of the effective
potential to phase rotations means that even for standard coherent states, the fluctuation relation
depends on the magnitude of the absolute displacement but not the particular magnitude of the
expectation values for position and momentum. This is no coincidence, as the connection between
these regimes will be explored further on.

Deviations from Classicality. To characterise the deviations between the binomial state Crooks
relation and classical Crooks equality, we can compare the generalised energy flow ∆W̃ to the actual
energy flow in the forwards and reverse processes. In the standard Crooks equality, the work term
appearing in the exponent of Equation (1) can be expressed as W = (W − (−W))/2, the average
difference between the work done in the forward and reverse processes. For the quantum analogue,
we introduce

Wq = (∆E+ − ∆E−)/2 (36)

as the difference between the energy cost ∆E+ of the forwards process and the energy gain ∆E− of the
reverse process. Restricted to binomial state preparations of the form in Equation (29), the binomial
states Crooks relation is

P(n f , p f |γi; ni, p̃i)

P(ni, pi|γ f ; n f , p̃ f )
= exp

(
β
(
q(χ)Wq − ∆F

) )
. (37)

where the transition probabilities take the form

P(n f , p f |γi; ni, p̃i) := Q
(

1⊗ |n f , p f 〉〈n f , p f |
∣∣∣γi⊗|ni, p̃i〉〈ni, p̃i|

)
(38)

and we introduce the quantum distortion factor

q(χ) :=
∆W̃
Wq

(39)

as the ratio between the generalised work flow and the actual energy flows. The classical limit
q(χ) = 1 corresponds to a quasi-classical expression in which the quantum fluctuation relation
depends only on the energy difference between the two states |ni, pi〉 and |n f , p f 〉. This can be seen
from Equations (33) and (34) when truncating to first order in βh̄ω. Deviations from unity thus capture
the quantum features of the process.
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The resizing and re-aligning protocols experience two related yet distinct distortions. These factors,
derived in Appendix B, are

qalign(χ) =
1
χ

ln( p̃ f /p f )− ln( p̃i/pi)

( p̃ f − p̃i) + (p f − pi)
and qsize(χ) =

1
χ

ln( p̃/p) + 2χ

p̃ + p
(40)

respectively, again provided neither pi nor p f vanishes. These two factors are plotted in Figure 4.
They are equal to each other if one of either pi or p f are zero, corresponding to measuring the
battery in the ground state, as can be seen with the long-form equations provided in Appendix B
(see Equations (A72) and (A78)).

Both factors are independent of the system size n. That only the parameter p plays a non-trivial
role is relevant to the fact that it alone controls the coherent properties of binomial states. Since n is the
free parameter of the resizing regime, it is particularly significant that the deviation is independent of
the change in system size. Beyond this, the realignment factor is symmetric in the parameters pi, p f
and thus does not depend on the chosen ordering of the measurements (likewise for the resizing factor
with respect to ni and n f ).
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Figure 4. Quantum distortions of fluctuation relations due to binomial battery states: The left and
right plots correspond to qalign and qsize, respectively. The left plot is evaluated for a fixed value
p f = 0.8. Both functions are plotted against the quantum-thermodynamic ratio χ =

βh̄ω
2 . The plots

show that the distortion due to quantum features can both enhance and suppress irreversibility
in a process as compared to a “classical equivalent” solely involving energy exchanges. In both
cases, we typically find suppressed irreversibility as quantum features dominate for large values of
χ. However, when thermodynamic and quantum energy scales are of similar magnitude, we observe
unexpected behaviour.

Regarding the thermodynamic properties, both factors exhibit a sensible classical limit in the
thermally dominated regime where χ is much less than one and p̃ converges to p. More generally,
in the quantum dominated regime at large χ, the distortion is generally sub-unity scaling as 1/χ,
showing the irreversibility is milder than is classically expected. To understand this, consider the fact
that Ẽ(β, H, ρ) is lower bounded by Emin(ρ), defined as the smallest energy eigenvalue with non-zero
weight in the state ρ [41], corresponding to the vacuum energy for all binomial states with p < 1.
In the low temperature limit, the lower bound is saturated meaning that the generalised energy flow
(accounted for by the differences in Ẽ between any two states) vanishes. However, as shown in Figure 4,
this behaviour is not true for all temperatures and values of p.

In the resizing regime, for values of p nearing unity, there exists a finite temperature region where
the fluctuation relation exhibits stronger-than-classical irreversibility. Peaking for values of p ≈ 1 in the
intermediate region originate because the semi-classical two-point measurement scheme is recovered
when p = 1, which corresponds to an energy eigenstate, hence qsize(χ) = 1. The states satisfying this
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condition on p must remain close to an energy eigenstate and have a flatter initial slope until larger
values of χ overcome this almost-eigenstate behaviour and recover the 1/χ scaling.

The behaviour of the realigning regime is more nuanced, having two free parameters. We observe
greatly enhanced irreversibility over a finite temperature region for most values of pi or p f if the
sum of these values are ' 1. An oddity occurs when one measures an excited energy eigenstate,
corresponding to p f = 1 (due to symmetry in the parameters, one can also set pi = 1 and let p f be
free). In this case, at extremely low temperatures Equation (40) is modified to

lim
χ→∞

qalign(χ) =
2

2− pi
≥ 1, (41)

and the quantum regime no longer asymptotically approaches zero. Rather, we have that Ẽ(β, H, ρ)

is naturally upper bounded by Emax(ρ), defined as the largest eigenvalue with non-zero weight
in the state ρ [41]. With the battery prepared in the excited state for either the forward or reverse
protocol, we have that Ẽ(β, HB, |n, 1〉) = Emax, and the greatest possible generalised energy flow
of ∆W̃ = Emax − Emin occurs when the lower bound of Emin is saturated. By fixing one state to be
the excited energy eigenstate, the generalised energy flow only attains this upper bound when the
temperature reaches absolute zero.

At low temperatures, for values of p nearing unity the deviations from classicality are most
pronounced for both regimes. Due to the temperature-dependent rescaling, this choice of parameter
corresponds to the physical preparation of states with greater coherence present, as detailed by
Equation (29) where p is greater than p̃ for all positive temperatures. Initialising the battery in a state
with a large amount of coherence thus generates the non-classical behaviour we would expect.

From this analysis, we can conclude that binomial states batteries display a greater range of
distinguishing features than coherent states, with the coherent properties playing a highly non-trivial
role. We observe behaviour that is reminiscent of the semi-classical coherent state Crooks equality in
the high and low temperature limits. In an intermediate temperature region, however, we observe
deviations that lead to stronger than classical irreversibility in both the resizing and realignment
regimes. We note that the binomial state factors bear many qualitative similarities to the squeezed-state
factors derived in [40]. The connection between binomial and coherent states in an appropriate limit
are discussed next.

The Harmonic Limit. Infinite dimensional binomial states in harmonic systems exhibit behaviour
that approaches simple harmonic motion. This link is well established and leads to a semi-classical
limit for the binomial state fluctuation theorem. Specifically, as shown in Appendix B, we prove that
as n tends to infinity, the binomial state |n, p〉 tends to the coherent state |α〉 where the displacement
parameter is given by α =

√
np and thus is only defined as long as np remains finite. Consequently,

for infinitely large spin systems, or infinitely large ensembles of qubits, with a finite expected
polarisation, binomial states reduce to coherent states. Thus, in this limit, the binomial state and
coherent state Crooks equalities [40] are quantitatively and qualitatively identical.

It follows that, for infinite dimensional binomial states, qalign(χ) and qsize(χ) converge on

q(χ) =
1
χ

tanh(χ) (42)

This form admits a special interpretation in terms of the mean energy of a harmonic oscillator
h̄ωth := 〈HB〉γ, with q(χ) = kBT/h̄ωth. In particular, the average energy in a thermal harmonic
oscillator is related to the thermal de Broglie wavelength λth [40]. The thermal de Broglie wavelength
often finds use as a heuristic tool to differentiate between quantum and thermodynamic regimes.
The coherent state equality thus leads to a natural and smooth transition between quantum
and thermal properties for semi-classical battery states delineated by λth, suggesting a genuinely
quantum-thermodynamic relation.
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It is interesting then that the binomial state fluctuation relation is able to incorporate a
wide-ranging set of features, all the way from the highly quantum single-qubit states to the
semi-classical coherent state limit, together in the same framework.

3.3. Energy Translation Invariance, Jarzynski Relations and Stochastic Entropy Production

The photon added and subtracted Crooks equalities both quantify transition probabilities between
states of the battery. If we assume that the system and battery dynamics depend only on the change
in energy of the battery and not the initial energy of the battery, then we can rewrite the relation in
terms of the probability distributions for the change in energy of the battery, that is the work done on
the system. This conceptual move allows us to derive a Jarzyski-like relation for photon added and
subtracted thermal states and hint at a link between the generalised free energy change and stochastic
entropy production.

If the system and battery dynamics are independent of the initial energy of the battery, then the
following energy translation invariance condition holds

P(Ej|γ±i , Ek) = P((Ej − Ek) + El |γ±i , El) ∀ Ej, Ek, El . (43)

We can now define the work probability distributions in the forwards (F) and reverse (R) processes
for the photon added (+) and subtracted relations (−) as

P±F (W) := ∑
w
P
(
E0 − w|γ±i , E0

)
p (E0) δ (W − w) and (44)

P±R (W) := ∑
w
P
(

E0 − w|γ±f , E0

)
p (E0) δ (W − w) (45)

where p(E0) is the probability that the battery is prepared with energy E0. It now follows, as shown in
Appendix A, that the photon added and subtracted Crooks relation can be written explicitly in terms
of these work distributions as

P±F (W)

P±R (−W)
= R±(W) exp (β(W ∓ ∆Evac − 2∆F)) . (46)

The classical Jarzynski equality, which quantifies the work done by a driven system for a single
driving process, emerges as a corollary to the classical Crooks equality. Similarly, here, by rearranging
and taking the expectation of both sides of the above equality, we obtain the photon added and
subtracted Jarzynski relation〈

1
R±(W)

exp(−βW)

〉
= exp (−β(2∆F± ∆Evac)) . (47)

This relation complements our Crooks relation, Equation (25), by relating the work done on the
athermal system for a single driving process, where the system’s Hamiltonian is changed from Hi

S to

H f
S , to the associated change in free energy.

In classical stochastic thermodynamics, when generalising fluctuation relations to non-equilibrium
initial states, such as photon added or subtracted thermal states, a natural quantity to consider is the
stochastic entropy production. As expected and as shown in [31], in the limit of a classical battery
which is assumed to be energy translation invariant, this inclusive setting obeys the classical Crooks
equality in its formulation in terms of stochastic entropy production [9]. This suggests it may be
possible to directly relate the generalised free energies term of the global fluctuation relation for
non-equilibrium system states to stochastic entropy production. While these ideas were touched on
in [31], explicitly stating this link remains an open question.
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An analogous approach for the binomial state Crooks equality encounters difficulties. States with
coherence undergo a temperature dependent rescaling and therefore the initial and final states in the
forwards and reverse process are related but not equivalent. Thus, due to the presence of coherence,
energy translation invariance is not a sufficient condition to rewrite the binomial state Crooks relation
in terms of work probability distribution. Therefore, we cannot derive a Jarzysnki-like equality and
the link with stochastic entropy production is further obscured. Similar problems arise for states such
as coherent, squeezed and Schrödinger cat states, as were studied in [40].

4. Conclusions and Outlook

In this paper, we probe deviations from the classical Crooks equality induced by the initial state
of the system or battery and the measurements made at the end of the driving process. However,
we stress that the choice in prepared states and measurement operators is not the only manner in
which the relation is non-classical. Rather, the dynamics induced by the unitary evolution will in
general entangle the system and battery resulting in coherence being exchanged between the two
systems. Thus, the evolved state may be a highly non-classical state. For example, for the coherent
state Crooks equality, the battery is prepared in a coherent state, the most classical of the motional
states of a harmonic oscillator. However, driving the battery with a change in Hamiltonian Hi

S to

H f
S , using the experimental scheme proposed in [40], results in the highly non-Gaussian state with

a substantially negative Wigner function. The non-classicality of the final state can be amplified by
repeating the driving process a number of times, that is cycling through changes of Hi

S to H f
S back to

Hi
S and again to H f

S , repeatedly.
The photon added and subtracted Crooks relations could be tested by supposing that both the

system and battery are photonic and using a linear optical setup, as sketched in Figure 5. Preparing a
photonic battery in a high energy eigenstate, that is a Fock state containing a large but well defined
number of particles, would be experimentally challenging and thus a more promising avenue is to
consider a battery in a coherent state by driving one input arm with a laser. Such a scenario would
be quantified by a coherent state photon added and subtracted Crooks relation. A limitation of this
implementation is that it would not change the effective Hamiltonian of the system and thus only
probe the relation in the limit that ∆F and ∆Evac vanish. Constructing a physical implementation
involving a change to the system frequency requires more imagination. One possibility would be to
generalise the trapped ion implementation proposed in [40] but use a pair of internal energy levels to
simulate a thermal state of an oscillator. This could be done by changing the background potential to
simulate a wider range of energy level splittings.

One possible means of testing the binomial state Crooks equality would be to prepare a finite
number of qubits in the state |p〉 =

√
1− p|0〉+√p|1〉 and perform a unitary algorithm that interacts

the qubits with a thermal system. This could perhaps be best performed on a quantum computer by
utilising methods for Hamiltonian simulation [76,77] and with the thermal system modelled using
“pre-processing” [40]. One would need to restrict to unitaries that conserve energy between the qubits
and the thermal system. Both regimes could be probed with this set-up, where one could have an
N qubit register and in one case prepare ni or n f qubits in the state |p〉, where ni, n f ≤ N, or in
the other case a fixed number of qubits could be individually addressed to rotate them in the Bloch
sphere. Measurements in different bases are routinely performed on quantum computers and thus the
measurement procedure is readily implemented.

We have taken a highly general but rather abstract fluctuation relation and shown how its physical
content can be elucidated through a study of particular examples of interest. However, the cases we
have considered are just a sample of the diverse range of phenomena that can be explored with this
framework. While we have developed Crooks equalities for thermal systems to which a single photon
has been added or subtracted, a natural extension to probe further perturbations from thermality
would be to generalise our results to the case where multiple photons are added to or subtracted from
the thermal state, or perhaps the case when a photon is added and then subtracted from a thermal state.
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Similarly, one could quantify higher order quantum corrections to the Crooks relation by developing
equalities for squeezed and cat binomial states. On a different note, incoherent binomial states, that
is the dephased variant of a binomial state, model Fock states that have been transmitted through
a lossy channel and thus model a lossy classical battery. Given the structural similarities between
incoherent and coherent binomial states, our results here could be used to develop Crooks relations for
imperfect batteries.

Figure 5. Linear optic implementation schematic. A photon added (or subtracted) thermal state is
sent into one input arm of a linear optical set up and a coherent state the other. The linear optical set
up, consisting of a series of linear optical elements, such as beamsplitters, phase-shifters and mirrors
(the particular sequence sketched here is chosen arbitrarily), drives the photonic system and battery
with an energy conserving and time reversal invariant operation. Finally, a coherent state measurement
is performed on one output arm of the optical setup using a homodyne detection and the number of
photons out put is measured in the other arm.
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Appendix A. Derivation of Photon Added and Subtracted Crooks Equality

The photon added (subtracted) Crooks equality is derived from the global fluctuation relation by
supposing that the system is prepared in a photon added (subtracted) thermal state. That is, for the
photon added (+) and photon subtracted (−) equalities, we suppose that the system is prepared in
the states

ρi
S = γ±

Hi
S

and ρ
f
S = γ±

H f
S

(A1)

for the forwards and reverse processes, respectively, where the photon added state and subtracted
states are defined as

γ+
H ∝ a† exp (−βH) a and γ−H ∝ a exp (−βH) a† (A2)

respectively. In what follows, we use the short hand γ±i ≡ γ±
Hi

S
and γ±f ≡ γ±

H f
S

to simplify notation. For

concreteness, we consider a quantum harmonic oscillator system with initial and final Hamiltonians
given by

Hk
S := h̄ωk

(
a†

k ak +
1
2

)
, (A3)

for k = i and k = f , such that the system is driven by a change in its frequency from ωi to ω f .
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We leave the battery Hamiltonian HB entirely general and, to isolate the deviations to the classical
Crooks equality due to the athermality of the initial system states, we consider a semi-classical battery,
which is prepared and measured in the energy eigenbasis. Specifically, we assume that

ρi
B = |Ei〉 〈Ei| and ρ

f
B = |E f 〉 〈E f | (A4)

where |Ei〉 and |E f 〉 are energy eigenstates of HB. Given that the battery is prepared in energy

eigenstates, the measurement operators Xi
B and X f

B specified by Equation (7) are also projectors onto
energy eigenstates, that is

Xi
B = |Ei〉 〈Ei| and X f

B = |E f 〉 〈E f | . (A5)

It follows that the generalised energy flow ∆Ẽ, Equation (11), evaluates the change in energy of
the battery,

∆W̃ = Ei − E f ≡W , (A6)

which by global energy conservation is equivalent to the work done, W, on the system.
To derive the photon added and subtracted Crooks relations from the global fluctuation, we need

to determine the measurement operators Xi
S and X f

S which are related to the initial photon added and
subtracted states by the mappingM, Equation (7). Specifically, inverting Equation (7), we have that
the measurement operators for the photon added, Xk+

S , and subtracted, Xk−
S , cases, respectively, are

related to the photon added and subtracted thermal states by

Xk±
S ∝ exp

(
χka†

k ak

)
γ±k exp

(
χka†

k ak

)
(A7)

where χk =
βh̄ωk

2 . On substituting in the explicit expressions for γ+
k and γ−k , and using the Hadamard

lemma, we find that

Xk+
S ∝ exp

(
χka†

k ak

)
a†

k exp
(
−2χka†

k ak

)
ak exp

(
χka†

k ak

)
∝ a†

k ak and similarly, (A8)

Xk−
S ∝ exp

(
χka†

k ak

)
ak exp

(
−2χka†

k ak

)
a†

k exp
(

χka†
k ak

)
∝ aka†

k . (A9)

We note that any constants of proportionality in front of the measurement operators Xi
S and X f

S
will cancel out in the final relation and thus we are free to set them to 1. We therefore conclude that the
measurement operators for the photon added Crooks relation, forced by the mappingM, Equation (7),
are given by

Xi+
S = a†

i ai ≡ Ni and X f+
S = N f (A10)

and the measurement operators for the photon subtracted equality are equal to

Xi−
S = aia†

i = Ni + 1 and X f−
S = N f + 1 (A11)

where Ni and N f are the initial and final number operators, respectively.
The photon added Crooks equality thus quantifies the ratio of

Q
(

a†
f a f ⊗ |E f 〉 〈E f |

∣∣∣∣γ+
i ⊗ |Ei〉 〈Ei|

)
= n(E f |γ+

i , Ei)P(E f |γ+
i , Ei) (A12)

for a forwards process, and

Q
(

a†
i ai ⊗ |Ei〉 〈Ei|

∣∣∣∣γ+
f ⊗ |E f 〉 〈E f |

)
= n(Ei|γ+

f , E f )P(Ei|γ+
f , E f ) (A13)
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of a reverse process. Here, n(E f |γ+
i , Ei) (n(Ei|γ+

f , E f )) is the average number of photons measured in
the system at the end of the forwards (reverse) process, conditional on the battery being measured to
have the energy E f (Ei). Similarly, the photon subtracted Crooks equality quantifies the ratio of

Q
(
(a†

k ak + 1)⊗ |Ek〉 〈Ek|
∣∣∣∣γ+

j ⊗ |Ej〉 〈Ej|
)
=
(

n(Ek|γ+
j , Ej) + 1

)
P(Ek|γ+

j , Ej) (A14)

for a forwards process, with j = i and k = f , and a reverse process, with j = f and k = i.
It remains to calculate the generalised free energy ∆F̃ for the measurements Xi

S and X f
S as defined

in Equation (A11). To do so, we start by noting that ∆F̃ can be written as

∆F̃ = kBT ln

 Z̃
(

β, Hi
S, Xi

S
)

Z̃
(

β, H f
S , X f

S

)
 where Z̃ (β, H, X) := Tr[exp(−βH)X] . (A15)

As our notation suggests, Z̃ is an operator dependent mathematical generalisation of the usual
thermodynamic partition function,

Z(β, Hk
S) := Tr[exp(−βHk

S)] . (A16)

For the oscillator Hamiltonians defined in Equation (A3), we find by working in the number
basis that

Z̃
(

β, Hk
S, Nk

)
=

∞

∑
nk=0

nk exp(−2χk(nk + 1/2)) =
exp(χk)

(exp(2χk)− 1)2 and

Z̃
(

β, Hk
S, Nk + 1

)
=

∞

∑
nk=0

(nk + 1) exp(−2χk(nk + 1/2)) =
exp(3χk)

(exp(2χk)− 1)2 .
(A17)

The physical content of these expressions can be elucidated by rewriting them in terms of the
usual partition function, which evaluates to

Z(β, Hk
S) =

exp(χk)

exp(2χk)− 1
. (A18)

On substituting Equation (A18) into Equation (A17), we obtain

Z̃
(

β, Hk
S, Nk

)
:= Zk

1
exp(2χk)− 1

= (Zk)
2 exp(−χk) and

Z̃
(

β, Hk
S, Nk + 1

)
= Zk

exp(2χk)

exp(2χk)− 1
= (Zk)

2 exp(χk)

(A19)

where we introduce the short hand Zk ≡ Z(β, Hk
S). Finally, on substituting Equation (A19) into

Equation (A15), and using the fact that because

Z f

Zi
= exp(−∆F/kBT) it follows that

(Z f

Zi

)2

= exp(−2∆F/kBT) (A20)

we find that
∆F̃± = ±∆Evac + 2∆F . (A21)
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In the above, we introduce ∆Evac as the difference between the vacuum energies of the harmonic
oscillator at the start and end of the forwards driving process,

∆Evac :=
1
2

h̄ω f −
1
2

h̄ωi . (A22)

The photon added (+) and photon subtracted (−) Crooks equality can thus be written as

P(E f |γ±i , Ei)

P(Ei|γ±f , E f )
= R± exp (β(W ∓ ∆Evac − 2∆F)) , (A23)

where the prefactorsR+ andR− are defined as

R+ :=
n(Ei|γ+

f , E f )

n(E f |γ+
i , Ei)

and R− :=
n(Ei|γ−f , E f ) + 1

n(E f |γ−i , Ei) + 1
. (A24)

Since the number of photons in the system is necessarily a positive quantity, the prefactors are
only defined when both the numerator and denominator of Equation (A24) are positive quantities.

The physical role of theR± term can be made more explicit by taking advantage of that fact that
energy is conserved during the driving process. It follows that the number of photons at the end of
the driving process is equal to the average number of photons initially in the system plus (minus)
the change in photon number due to the decrease (increase) in the energy of the battery. By energy
conservation, we can write

h̄ω f

(
n(E f |γ±i , Ei) +

1
2

)
= h̄ωi

(
n±i +

1
2

)
−W and h̄ωi

(
n(Ei |γ±f , E f ) +

1
2

)
= h̄ω f

(
n±f +

1
2

)
+ W (A25)

where n±i (n±f ) is the average number of photons in a photon added/subtracted thermal state
with frequency ωi (ω f ) at temperature T. Equation (A25) can be rearranged to find the average number
of photons measured at the end of the driving processes,

h̄ω f n(E f |γ±i , Ei) = h̄ωin±i −W − ∆Evac and h̄ωin(Ei|γ±f , E f ) = h̄ω f n±f + W + ∆Evac. (A26)

Thus, on substituting Equation (A26) into Equation (A24), we find that the prefactor R± takes
the form

R±(W) =
ω f

ωi

h̄ω f n±f + W + x±

h̄ωin±i −W ∓ x±
(A27)

with x+ equal to the change in vacuum energy, x+ = ∆Evac, and x− equal to the sum of the initial and

final vacuum energies, x− =
h̄ω f +h̄ωi

2 . As discussed in Section 3.1, the average number of photons in a
photon added or subtracted state, n±f , evaluates to

n+
k = 2n̄k + 1 and n−k = 2n̄k (A28)

where n̄k is the average number of photons in a thermal state with frequency ωk and takes the form

n̄k :=
1

Zk
∑ nk exp(−2χk(nk + 1/2)) =

1
exp(2χk)− 1

. (A29)

Thus, we find that the prefactor R±, Equation (A27), can be rewritten in terms of the mean
number of photons in a thermal state as

R±(W) =
ω f

ωi

h̄ω f (2n̄ f + k±) + W + ∆Evac

h̄ωi

(
2n̄i + k−1

±
)
−W − ∆Evac

(A30)
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with k+ = 1 and k− = ωi
ω f

. It is worth noting that the prefactor implicitly depends on the free energy

of the initial and final Hamiltonians because the term h̄ωk(n̄k +
1
2 ) is the average energy of a photon

in a thermal state with frequency ωk, which is equal to the free energy of the state plus kBT times
the entropy of the state. Thus, R depends on the temperature, the work done during the driving
process, the equilibrium free energy and the entropy of a thermal system with respect to the initial and
final Hamiltonians.

Photon added and subtracted Jarzynski equality.

We can derive a Jarzyski-like relation for photon added and subtracted thermal states from
Equation (25), if we further assume that the system and battery dynamics depend only on the change
in energy of the battery and not the initial energy of the battery. That is, if the following energy
translation invariance condition holds,

P(Ej|γ±i , Ek) = P((Ej − Ek) + El |γ±i , El) ∀ Ej, Ek, El . (A31)

Having made this assumption, we can rewrite the photon added and subtracted Crooks relation,
Equation (A23), as

P(w + E0|γ±i , E0)

P(−w + E0|γ±f , E0)
= R±(w) exp (β(w∓ ∆Evac − 2∆F)) , (A32)

which can be rearranged into

1
R±(w)

exp(−βw)P(w + E0|γ±i , E0)p(E0) = exp (β(∓∆Evac − 2∆F))P(−w + E0|γ±f , E0)p(E0) (A33)

where p(E0) is the probability that the battery is prepared with energy E0. We can now define the work
probability distributions in the forwards (F) and reverse (R) processes for the photon added (+) and
subtracted relations (−) as

P±F (W) := ∑
w
P
(
E0 − w|γ±i , E0

)
p (E0) δ (W − w) and (A34)

P±R (W) := ∑
w
P
(

E0 − w|γ±f , E0

)
p (E0) δ (W − w) . (A35)

It therefore follows from Equation (A33) that the photon added and subtracted Crooks equalities
can be rewritten in terms of the forwards and reverse work probability distributions instead of battery
state transition probabilities, with

P±F (W)

P±R (−W)
= R±(W) exp (β(W ∓ ∆Evac − 2∆F)) . (A36)

Finally, rearranging and taking the expectation of both sides of the above equality we obtain the
photon added and subtracted Jarzynski relation〈

1
R±(W)

exp(−βW)

〉
= exp (−β(2∆F± ∆Evac)) . (A37)

Thus, we can relate the work done on a system which is prepared in a photon added or subtracted
thermal state and driven by a change in Hamiltonian to the change in free energy associated with the
change in Hamiltonian.
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Appendix B. Derivation of Binomial State Properties

This section contains derivations of some mathematical properties of binomial states. In the main
text, the mappingM is introduced, defined as

M(X) =

T
(

e−
βHB

2 Xe−
βHB

2

)
Tr(e−βHX)

. (A38)

This mapping, without the time-reversal, is often referred to as a Gibbs rescaling, and it has many
interesting properties [29,41]. Under the Gibbs rescaling, we find the binomial states transform as
follows.

Proposition 1. Let |n, p〉 be a binomial state as defined in the main text, for n ∈ N and 0 ≤ p ≤ 1. For a
harmonic Hamiltonian HB = h̄ω(a†a + 1

2 ), the Gibbs re-scaled state |n, p̃〉〈n, p̃| = ΓHB(|n, p〉〈n, p|) is also a
binomial state with probability distribution

p̃ :=
e−βh̄ω p

pe−βh̄ω + q
, q̃ :=

q
pe−βh̄ω + q

, (A39)

where q = 1− p.

Proof. Since the Gibbs re-scaling maps pure states to pure states, we need only consider the action
of Z−1/2

n,p e−βHB/2|n, p〉 = |ψ〉 where Z−1/2
n,p is the normalising factor. As the phases are arbitrary, we

neglect them with no loss of generality. Before proceeding, we make the substitution χ = βh̄ω
2 and

q = 1− p. Using the definition of |n, p〉, we find

|ψ〉 = 1√Zn,p

n

∑
k=0

√(
n
k

)
pkqn−ke−χ(a†a+ 1

2 )|k〉 (A40)

=
1√Zn,p

n

∑
k=0

√(
n
k

)
pkqn−ke−χ(k+ 1

2 )|k〉. (A41)

Let us calculate the normalisation factor

Zn,p = 〈n, p|e−βHS |n, p〉 (A42)

=
n

∑
k=0

n!
k!(n− k)!

pkqn−ke−2χ(k+ 1
2 ) (A43)

= e−χ(pe−2χ + q)n (A44)

where to obtain the last line we used the binomial expansion theorem. Inserting Equation (A44) into
Equation (A41), we obtain

|ψ〉 = e−χ/2

e−χ/2(pe−2χ + q)n/2

n

∑
k=0

√(
n
k

)
pkqn−ke−kχ|k〉 (A45)

=
n

∑
k=0

√(
n
k

)
pkqn−k

(pe−2χ + q)n e−2kχ|k〉 (A46)

=
n

∑
k=0

√(
n
k

) [
pe−2χ

pe−2χ + q

]k [ q
pe−2χ + q

]n−k
|k〉 (A47)

= ∑
k=0

√(
n
k

)
p̃k q̃n−k|k〉, (A48)



Entropy 2020, 22, 111 23 of 29

where

p̃ :=
e−βh̄ω p

pe−βh̄ω + q
, q̃ :=

q
pe−βh̄ω + q

. (A49)

It is easily verified that p̃ + q̃ = 1 and therefore |ψ〉 = |n, p̃〉 is a binomial state as claimed.

Binomial state statistics are preserved under a Gibbs re-scaling but in general p̃ decreases with
increasing χ, as can be seen if we instead look at q̃. In the limit χ → 0, q̃ → q and hence p̃ → p,
while, in the limit χ→ ∞, q̃→ 1 and conversely p̃→ 0. It smoothly varies between these two limits,
implying q̃ ≥ q.

To derive the quantum distortion factors, we need to know the expectation value in energy for a
system prepared in a binomial state.

Proposition 2. Suppose B has a harmonic Hamiltonian HB := h̄ω(a†a + 1
2 ); then, the expectation value of

energy for a state |n, p〉 is

〈HB〉n,p = h̄ω

(
np +

1
2

)
. (A50)

Proof. We begin by assuming a harmonic Hamiltonian HB = h̄ω(a†a + 1
2 ). Using the definition of

|n, p〉 leads to

〈HB〉n,p =
n

∑
k=0

n!
k!(n− k)!

pkqn−k h̄ω

(
k +

1
2

)
(A51)

We now proceed to calculate the two components separately; for the first, we have

first term = h̄ωnp
n

∑
k=0

k
(n− 1)!

k!(n− k)!
pk−1qn−k (A52)

= h̄ωnp
n

∑
k=1

(n− 1)!
(k− 1)!([n− 1]− [k− 1])!

pk−1q[n−1]−[k−1] (A53)

= h̄ωnp
m

∑
j=0

m!
j!(m− j)!

pjqm−j (A54)

= h̄ωnp(p + q)m (A55)

= h̄ωnp (A56)

where we made the substitutions m = n − 1 and j = k − 1. Doing a similar calculation for the
second term,

second term =
h̄ω

2

n

∑
k=0

n!
k!(n− k)!

pkqn−k (A57)

=
h̄ω

2
(p + q)n (A58)

=
h̄ω

2
. (A59)

Combining these two equations gives the claimed result.

The final property we need is the effective potential evaluated for an arbitrary binomial state

Proposition 3. For a binomial state |n, p〉 and harmonic Hamiltonian HB = h̄ω(a†a + 1
2 ),

βẼ(β, HB, |n, p〉) = βh̄ω

2
− n ln(pe−βh̄ω + q) (A60)
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where q = 1− p.

Proof. From the definition of Ẽ and |n, p〉, we find

βẼ(β, HB, |n, p〉) = − ln

(
n

∑
k=0

e−βh̄ω(k+ 1
2 )

(
n
k

)
pkqn−k

)
(A61)

= − ln

(
e−βh̄ω/2

n

∑
k=0

e−βh̄ωk
(

n
k

)
pkqn−k

)
(A62)

=
βh̄ω

2
− ln

(
n

∑
k=0

(
n
k

) [
pe−βh̄ω

]k
qn−k

)
(A63)

=
βh̄ω

2
− ln

(
pe−βh̄ω + q

)n
(A64)

=
βh̄ω

2
− n ln

(
pe−βh̄ω + q

)
, (A65)

which concludes the proof.

Equation (A60) can also be formulated in terms of p̃ by noting that pe−βh̄ω/ p̃ = (pe−βh̄ω + q). It
follows that

βẼB(β, HB, |n, p〉) = βh̄ω

2
− n ln(pe−βh̄ω/ p̃) (A66)

= βh̄ω(n +
1
2
) + n ln( p̃/p), (A67)

on the condition that p, p̃ > 0.

Appendix B.1. The Quantum Distortion Factor for Binomial States

In the main text, we discuss a quantum distortion factor q(χ) that determines how the quantum
fluctuation theorem diverges compared to the standard notion of average change in energy of the
forwards and reverse processes. Here, we derive the explicit formulae for q(χ).

We defined two distinct processes when restricting to binomial state preparation and
measurement, corresponding to the resizing and re-aligning regimes. In the re-aligning regime, using
Proposition 2, the energetic cost to the battery in each protocol is

∆E(align)
+ := 〈HB〉n,p̃i − 〈HB〉n,p f = h̄ωn( p̃i − p f ), (A68)

∆E(align)
− := 〈HB〉n,p̃ f − 〈HB〉n,p f = h̄ωn( p̃ f − pi). (A69)

The quantity W (align)
q := (∆E(align)

+ − ∆E(align)
− )/2 therefore takes the form

W (align)
q = h̄ωn

2

(
[ p̃i + pi]− [ p̃ f + p f ]

)
= h̄ω

2

(
pi

[
e−βh̄ω

pie−βh̄ω+qi
+ 1
]
− p f

[
e−βh̄ω

p f e−βh̄ω+q f
+ 1
])

. (A70)

For the generalised energy flow, we can use Proposition 3, which depends solely upon the normal
un-rescaled states ∆W̃ = E(β, HB, |n, pi〉)− E(β, HB, |n, p f 〉). This turns out to be

∆W̃align = −nkBT ln

(
pie−βh̄ω + qi

p f e−βh̄ω + q f

)
= −nkBT ln

(
p̃ f pi

p f p̃i

)
, (A71)
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where the latter equality holds provided p f , pi 6= 0. The quantum distortion factor where we are free
to vary p for fixed n thus takes the form

qalign (χ) =
1
χ

ln
(

pie−2χ+qi
p f e−2χ+q f

)
( p̃ f − p̃i) + (p f − pi)

(A72)

=
1
χ

ln
( p̃ f

p f

)
− ln

(
p̃i
pi

)
( p̃ f − p̃i) + (p f − pi)

, if pi, p f 6= 0. (A73)

On the other hand, one is also free to vary n and keep p fixed as detailed by the resizing regime.
We can define the same quantities, which we now label with a new superscript to differentiate the cases.

∆E(size)
+ := 〈HB〉ni ,p̃ − 〈HB〉n f ,p = h̄ω(ni p̃− n f p), (A74)

∆E(size)
− := 〈HB〉n f ,p̃ − 〈HB〉ni ,p = h̄ω(n f p̃− ni p), (A75)

which implies

W (size)
q =

h̄ω

2

(
ni − n f

)
( p̃ + p) =

h̄ωp
2

(
ni − n f

)( e−βh̄ω

pe−βh̄ω + q
+ 1

)
. (A76)

Likewise, the generalised energy flow for this process is given by

∆W̃size = −(ni − n f )kBT ln(pe−βh̄ω + q) = (ni − n f ) {kBT ln( p̃/p) + βh̄ω} . (A77)

The quantum distortion factor for the second regime is thus

qsize(χ) =
1
χ

ln(pe−2χ + q)
p̃ + p

(A78)

=
1
χ

ln( p̃/p) + 2χ

p̃ + p
, if p 6= 0. (A79)

Appendix B.2. The Harmonic Limit

In this section, we prove that there exists a limit in which binomial states become coherent states
with arbitrary precision. In what follows, we assume that np = λ for some constant λ ∈ R. The correct
limit involves making the binomial states a superposition over infinitely many energy eigenstates by
taking n→ ∞ and correspondingly p→ 0.

Firstly, let us consider the effect on the expectation value for energy. We have that

lim
n→∞
np=λ

〈HB〉n,p = lim
n→∞
np=λ

h̄ω(np +
1
2
) (A80)

= h̄ω(λ +
1
2
) (A81)

which we note bears a likeness to the expectation value of energy for a coherent state |α〉 where
|α|2 = λ. Likewise, the effective potential also attains an identical form to that of a coherent state
Ẽ(β, HB, |α〉) where we once again choose |α|2 = λ.
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lim
n→∞
np=λ

βẼB(β, |n, p〉) = lim
n→∞
np=λ

(
βh̄ω

2
− n ln

(
1 +

λ

n
[e−βh̄ω − 1]

))
(A82)

= lim
n→∞
np=λ

(
βh̄ω

2
− n

[
λ

n
[e−βh̄ω − 1] +O

(
1
n2

)])
(A83)

=
βh̄ω

2
+ λ(1− e−βh̄ω). (A84)

For our purposes, these two quantities being identical to their coherent state counterparts
means that the fluctuation theorem in the appropriate limit is indistinguishable from a coherent
state fluctuation theorem. However, it is also the case that the states themselves become identical. This
is easily verified by using the closely related characteristic functions [78]. Since characteristic functions
ϕ(t) uniquely specify a probability distribution, showing equality for all t translates to equality in
distribution. Defining the characteristic function ϕψ(t) := 〈ψ|eiHBt|ψ〉 we have

ϕα(t) = e|α|
2(eih̄ωt−1)+i h̄ω

2 t (A85)

ϕn,p(t) = ei h̄ω
2 t(1 + p[eih̄ωt − 1])n. (A86)

Making the substitution p = λ/n, we find

ϕn,p(t) = ei h̄ω
2 t(1 +

λ

n
[eih̄ωt − 1])n (A87)

However, in the limit, we have that limn→∞(1 + x
n )

n = ex and therefore

lim
n→∞
np=λ

ϕn,p(t) = eλ(eih̄ωt−1)+i h̄ω
2 t. (A88)

If these are equal for all values of t, we deduce that up to arbitrary phases,

lim
n→∞
np=λ

|n, p〉 = |
√

λ〉 (A89)

where |
√

λ〉 is a coherent state.
These results are enough to prove convergence of the binomial state fluctuation relation to the

coherent state fluctuation relation. The quantum distortion factors can also be obtained by perturbative
means or by using the relevant quantities in the coherent state limit.
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