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Abstract: Driving safety in tunnels has always been an issue of great concern. Establishing delineators
to improve drivers’ instantaneous cognition of the surrounding environment in tunnels can effectively
enhance driver safety. Through a simulation study, this paper explored how delineators affect
drivers’ gaze behavior (including fixation and scanpath) in tunnels. In addition to analyzing typical
parameters, such as fixation position and fixation duration in areas of interest (AOIs), by modeling
drivers’ switching process as Markov chains and calculating Shannon’s entropy of the fit Markov
model, this paper quantified the complexity of individual switching patterns between AOIs under
different delineator configurations and with different road alignments. A total of 25 subjects
participated in this research. The results show that setting delineators in tunnels can attract drivers’
attention and make them focus on the pavement. When driving in tunnels equipped with delineators,
especially tunnels with both wall delineators and pavement delineators, the participants exhibited a
smaller transition entropy Ht and stationary entropy Hs, which can greatly reduce drivers’ visual
fatigue. Compared with left curve and right curve, participants obtained higher Ht and Hs values in
the straight section.
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1. Introduction

Drivers’ safety on the road is always the most important issue in road design, especially in special
sections such as tunnels. Compared with open roads, tunnel environments are poorly lit, the internal
space is limited and the driving environment is monotonous and repetitive. The idea that traffic
accidents are caused by sudden environmental changes when drivers drive in tunnels was widely
discussed [1].

Due to the special environments of tunnels, drivers need to concentrate on the surrounding
environment to extract valid traffic information [2]. Mäntyjärvi stated that the information obtained
through vision accounts for approximately 80% of the total required information obtained by drivers
during driving, of which 95% is dynamic information [3]. However, in many tunnels, drivers can
only identify their surrounding environment under low illumination and given monotonous tunnel
walls; furthermore, it is difficult for drivers to obtain more effective information visually. Meanwhile,
because of the lack of appropriate visual stimulation, drivers tend to feel fatigue and distraction [4].

To improve driving safety in tunnels, many studies enhanced the illumination of tunnels to
improve visibility in the tunnel [5,6]. However, improving the lighting conditions in the tunnel
alone cannot solve the problem of visual fatigue caused by monotonous tunnel environments [7].
Setting visual guidance facilities can effectively guide drivers’ sight and provide them with appropriate
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visual stimuli to avoid visual fatigue. As an economical and effective visual guiding device, delineators
were used on the road. Similar to the main objective for setting lamps in tunnels, equipping tunnels
with delineators can also help drivers be aware of the existence and movement of objects in tunnels [8].

Drivers’ visual characteristics are closely related to safe driving in tunnels [9,10]. As a key modality,
the characteristics of vision in tunnels were studied by many scholars. Based on the drivers’ visual
adaptation, and considering equivalent veiling luminance, atmosphere luminance and windshield
luminance, Mehri et al. designed the required lighting in threshold zone, entrance zone and exit zone
of one of long tunnels in Ilam province. By comparing the designed values with the estimated values
in the selected tunnel of this study, they concluded that the lighting system of this tunnel was not
standard [11]. Through a simulator study, Kircher and Ahlstrom studied the effects of illumination in
tunnels on attentive and visually distracted drivers. In the experiment, three levels of illumination
were investigated in combination with light-coloured versus dark tunnel walls and attentive versus
visually distracted drivers. They found that when driving in tunnels, a driver’s visual attention given
to the driving task could significantly affect their visual behavior. Meanwhile, compared with strong
illumination, the light-coloured tunnel walls were more important to keep driver’s visual attention
focused forward [12]. In other studies, eye movement data were collected through experiments,
and basic eye movement parameters were analyzed [13,14]. For example, to investigate how the
route familiarity affected drivers’ eye movement features (fixation and saccade) when driving in
the entrance zone of highway tunnels with different spatial visual conditions. Hu et al. used eye
tracker to record the eye movement data of the drivers at the entrance of the tunnel. By analyzing the
variations in the eye movement features, they found that the driver’s familiarity with the road could
reduce the adaptation time required by the driver’s eyes when driving through a tunnel [15]. Through
an eye movement tracking experiment, Underwood et al. investigated whether the differences in
the scanpaths could be associated with the skill acquisition. During the experiment, eye fixations
were recorded while the novice and the experienced drivers drove along three types of roads (rural,
suburban and dual-carriageway). When the content of fixations were analysed, they identified the
single-fixation, the two-fixation, and the three-fixation patterns of eye-movements, and they found that
the fixation sequences were different between the novice and the experienced drivers. The experienced
drivers showed greater sensitivity and the novices showed some stereotypical transitions in the visual
attention [16]. Yan et al. studied how the drivers’ visual characteristics changed as they were passing
tunnels. By using eye movement tracking devices, they recorded participants’ test data at tunnel
entrance and inside sections. Then they established a relationship model between fixation duration
and tunnel distance. Finally, they found that at 100 meters before the entrance of tunnel, the average
fixation duration increased. After 100 meters into the tunnel, the fixation duration started to decrease
first and then increased [17]. It can be concluded that the analysis of driver visual characteristics is
mainly focused on fixations.

Eye movement is an alternating process of fixations and saccades. To study fixation patterns,
researchers collected eye movement parameters (such as fixation duration and fixation position)
through eye tracking technology [13,14]. For scanpaths, which can be represented by an ordered
sequence of fixations [18,19], many studies modeled the ordered sequence as a Markov chain to
quantify dynamic eye movement patterns [20]. By modeling the gaze transition as a gaze information
channel, Hao et al. calculated the gaze entropy and mutual information to quantify the cognitive
comprehension of poster reading [21]. Krejtz et al. calculated the transition entropy and stationary
entropy when participants observed paintings from three classical periods and found that individuals’
visual attention switching behavior was related to their personal traits, interests, and recognition
of stylized artwork [22]. Gaze entropy can also be used as a reliable surgical task load index,
and increasing gaze entropy represents increased task complexity [23,24]. In the transportation domain,
gaze entropy is also widely used to evaluate visual exploration features. For example, in Mu et al.’
study, the spectrum entropy, approximate entropy, sample entropy and fuzzy entropy were used
to evaluate fatigue driving states. The results showed that the entropy method could achieve good
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classification performance in driving fatigue studies [25]. Jeong et al. stated that compared with
typical static measures, the Markov-based entropy method can quantify eye movement and provide a
better understanding of individual switching patterns [26].

This paper mainly studies how different delineator configurations affect drivers’ gaze behavior,
which includes fixation and scanpath, in tunnels. Previous studies on delineators were mostly in terms
of their influence on driving speed [27,28]. In this study, in addition to studying typical eye movement
parameters in a traditional manner, we also quantify the complexity of individual switching patterns
using the Markov-based entropy method. According to the previous studies and the actual driving
situation in China, this paper assumes that driver focus on the pavement is a positive outcome for
safety. Klauer et al. stated that long glances away from roadway were detrimental to safety [29].
Based on Klauer et al.’s conclusion, Kircher and Ahlstrom used “The number of glances away from the
road exceeding 2 s” as one of performance indicators to discuss drivers’ visual behaviour, and they
stated that an increase of such glances indicated a risk [12]. Thus we think that drivers focus on
roadway is a positive outcome for safety. In China, due to the aggravation of traffic congestion,
many roads in many cities entered the period of reconstruction and expansion in recent years [30].
When driving on the road, driver’s vision is always blocked by the vehicle in front of them, in rare
cases, they can look far away [31,32]. In addition, Huang found that in a tunnel, the driver’s fixation
position was 0.604–2.557 s in front of the vehicle, and the distribution of fixation point at night was
closer to the front of the vehicle than in the day [33]. Based on the studies above, we assumes that it is
positive for safety, if driver spend more gaze time on the pavement.

Based on the actual alignment of the Qinling Mountain No. 1, No. 2 and No. 3 tunnels of the G5
Expressway in Xi’an City (Shaanxi Province, China), this paper designs a simulation experiment that
can minimize the interference of external factors and increase the value of the viewpoint information
extracted for this study. A total of 25 subjects participated in this research; one drive drove too quickly
during the trials, and the eye tracker could not obtain the fixation for three other participants. Finally,
data on 21 subjects’ eye movements were used in this study.

The remainder of this manuscript is organized as follows: Section 2 introduces the basic
information about gaze entropy. Section 3 presents the experimental details and introduces the
data collection. Section 4 mainly analyzes the extracted eye movement data with the traditional
method and with the entropy method. Section 5 shows the results of the analysis. Finally, the key
findings of the study are summarized in Section 6.

2. Gaze Entropy

The concept of entropy was defined by Shannon [34]. Let X be a discrete random variable with a
probability mass function p(x). The entropy of X is defined by

H(X) = −∑
x

p(x)log2 p(x) (1)

We use base-2 logarithms, and the entropy is expressed in bits. In information theory, entropy is a
measure of uncertainty in a random variable.

Through a discussion of the drivers’ scanpaths, this paper evaluates the effect of different
delineator post configurations on drivers’ switching patterns. Thus, to obtain quantitative scanpath
comparison metrics, a Markov chain was applied to establish a stochastic model [22].

The Markov chain is a stochastic process with the Markov property in probability theory and
mathematical statistics and exists in a discrete index set and state space. For a set of random variables
X = {Xt, t > 0} , if the values of the random variables are all in the countable set X = si, si ∈ s and
the conditional probability of the random variables satisfies the relationship

p {Xt+1 |Xt, . . . , X1 } = p {Xt+1 |Xt } (2)
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where the X is called a Markov chain. Specifically, the random variable in step t + 1 is conditionally
independent on the remaining random variables after giving the random variable in step t,
i.e., the Markov property.

The Markov property was tested in modeling content-dependent area of interest (AOI)
sequences [22]. For each participant, a random sequence Xt was used as the scanning process. Let Xt

take values in the set of AOIs S = {1, . . . , s}. We can obtain a constant transition probabilities pij and
stationary probabilities πi , where i, j ∈ s.

According to previous studies [35–37], the scanning process, which is modeled as a Markov
process, can be measured by Shannon’s entropy:

Ht = −∑
i∈S

πi ∑
j∈S

pijlog2 pij (3)

where pij represents the empirical probability that the current fixation point is in the ith AOI and that
the next fixation point is in the jth AOI, πi is the frequency of visits of each AOI, and Ht means the
average uncertainty of the participant’s gaze transition between AOIs, called the transition entropy,
where a higher Ht means a higher frequency of conversion between different interest areas [22].

The entropy of the stationary distribution is

Hs = −∑
i∈S

πilog2πi (4)

This represents the average uncertainty of the viewpoint position between different AOIs, called
the stationary entropy, where a higher Hs indicates that the participant visits more AOIs, whereas
lower Hs indicates that the participant generally focused on only certain AOIs [21].

3. Experiment and Data Collection

3.1. Participants

A total of 25 drivers (8 women and 17 men) participated in the study. Their ages range from 23
to 38 years (mean = 29 years, standard deviation = 4.51 years). The participants’ driving experience
ranged from 4 years (4 participants) to 5 years (4 participants), 7 years (10 participants), 9 years
(5 participants) and 12 years (2 participants), and the total distance driven varied between 2000 km
and 300,000 km. The study was approved by the Institutional Review Board of School of Highway,
Chang’an University and all participants signed forms indicating informed consent.

3.2. Apparatus

The UC-win/road Drive Simulator (Forum 8, Tokyo, Japan) was used in the experiment. Through
the combination of virtual reality technology and cockpit, this simulator simulates driving and can
realistically simulate driving in a three-dimensional scene. The SMI ETGTM eye tracker (Sensomotoric
Instruments, Teltow, Germany), which consists of a head-mounted eye movement instrument,
a computer workstation, a mobile recording hard disk and a built-in radio system, was used to
extract eye movement data. The BeGaze 3.7 software package (Sensomotoric Instruments, Teltow,
Germany) was used for data analysis.

3.3. Scenarios

The Qinling Mountain No. 1, No. 2 and No. 3 tunnels of the G5 Expressway are located in Xi’an
City (Shaanxi Province, China). The expressway is a two-lane road with single-tube tunnels. The total
length of the three connected tunnels is 18 km. As shown in Figure 1, the driving direction is from
Hanzhong to Xi’an. Within the tunnel section, there are three curves (one right and two left curves).
The overall road width is 8.5 m, the lane width is 3.75 m, the left shoulder width is 0.5 m and the right
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shoulder width is 0.5 m. The posted speed limit is 80 km/h. To explore how delineators affect drivers’
gaze behavior in a tunnel, three different delineator post configurations were designed based on the
actual alignments of the Qinling Mountain No. 1, No. 2 and No. 3 tunnels.

Figure 1. Test route alignment design (Qinling Mountain No. 1, No. 2 and No. 3 tunnels of the
G5 Expressway).

The tunnel was equipped with three different delineator post configurations. In scenario A, both
the wall delineators and pavement delineators were set. In scenario B, only the pavement delineators
were set. In scenario C, there were no delineators. The wall delineators were placed 7 m [38] above
the pavement on the side wall, and pavement delineators were placed on the edge marking. Figure 2
shows the location of the delineators. The spacing was 18 m between the right wall delineators, 20 m
between the left wall delineators, 21 m between the right pavement delineators, and 22 m between the
left pavement delineators [39]. The effect under the driving simulator when participants drove along a
right curve in scenario A is shown in Figure 3.

Figure 2. The location of delineators in tunnel.
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Figure 3. Simulation view in the simulator. This picture is the simulation shown on the middle liquid
crystal display when participants drove in scenario A.

3.4. Task and Procedures

There were three delineator settings (both wall delineator and pavement delineator, pavement
delineator only and no delineator) combined with three tunnel alignments (straight, left curve and
right curve). The two left curve radii were 2900 m and 1400 m, and the right curve radius was 3200 m.
To best ensure the comparability of the data in the curve sections, data analysis was applied to the left
curve with radius of 2900 m and the right curve with radius of 3200 m. Before the experiment started,
the participants put on the eye tracker. They were asked to adjust their body to a comfortable sitting
position and do not move their heads too much during the experiment. Then, they were informed of
the design of the road and performed a 5-min driving test in the simulator to familiarize themselves
with the operating system. In addition, the participants were instructed to drive as usual, and the speed
limit was 80 km/h(the driving speed of the subjects was between 75 km/h and 80 km/h, which is
close to the speed limit, so this paper does not consider the influence of speed).

3.5. Variables

Using the fixation start (ms), fixation duration (ms), fixation end (ms) and fixation position
parameters, this paper studied the participants’ gaze behavior in different delineator configurations
combined with different alignments.

3.6. Data Analysis

In this study, a 3 × 3 (scenario design × tunnel alignment) analysis was used. Of the
25 participants, one drove too quickly during the trials, and the eye tracker could not obtain fixations
for the three other participants. Therefore, the useful data came from the remaining 21 participants.
The eye movement data in each trial were recorded automatically by the SMI ETGTM eye tracker
and analyzed using BeGaze 3.5. Eye movement is an alternating process of fixations and saccades.
Using the fixation start (ms), fixation duration (ms), fixation end (ms) and fixation position parameters,
we studied the participants’ fixations in different delineator configurations. To explore the scanpath
characteristics, we modeled eye tracking fixation sequences between content-dependent AOIs as a
Markov chain and calculated every participant’s transition entropy Ht and stationary entropy Hs to
quantify variability of participants’ scan paths between different areas.

4. Analysis and Results

4.1. Fixation Analysis in Traditional Way

Figure 4 shows 21 participants’ fixation positions under three different alignments. As shown
in Figure 4, there seems to be a small relative difference between A and C here on the straight road and
left curve (as well as between A and B, in fact), in that fixations in C are more upwards.
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(a)

(b)

(c)

Figure 4. (a) Straight; (b) Left curve; (c) Right curve. Participants’ fixation positions in three different
scenarios (In scenario A, both the wall delineators and pavement delineators were set. In scenario B,
only the pavement delineators were set. In scenario C, there were no delineators.) combined with three
tunnel alignments (straight, left curve and right curve).
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Each viewpoint position had a fixation duration. To explore participants’ gaze behavior, first,
as shown in Figure 5, we divided the participants’ visual areas into five parts: the top wall (TW),
the left wall (LW), the right wall (RW), the central area (CA) and the pavement area (PA). TW included
lamps, LW and RW included wall delineators and PA included pavement delineators . The remainder
of the driver’s visual range outside of these five areas was defined as white space (WS).

Figure 5. Participant’s visual area division.

We counted the fixation duration of the 21 participants in these six areas. The percentage of each
participant’s fixation duration in each area to the total fixation duration was calculated as follows:

Ts =
n

∑
i=1

ti (5)

βs =
Ts

Ttotal
(6)

where ti means the ith fixation duration in area s, s = (1, . . . , 6), Ts means the total fixation duration
in area s, Ttotal is the total fixation duration in these six areas, and βs gives the proportion of fixation
duration in area s to the total fixation duration.

The result is shown in Figure 6. There are 9 subgraphs, in each subgraph, there are 21 concentric
circles. Each concentric circle represents one participant. The six different colors in each concentric
circle represent the fixation duration percentage of participant for six different areas, the black, red,
blue, green, purple, and yellow parts represent the proportion of gaze time spent in the pavement
area (PA), central area (CA), top wall (TW), left wall (LW), right wall (RW) and white space (WS),
respectively.

From Figure 6, we can find that when driving in different scenarios, participants’ interest areas
were different. When driving in scenario A, the majority of participants preferred the pavement area
(Figure 6a,d,g). In the straight line section and in both the left curve and right curve sections, most
of the participants spent more than 50% of their gaze time on the pavement area. While driving
in scenario B, the participants mainly focused on the pavement area and central area. As shown
in Figure 6b,e,h, the percentage of fixation duration in each area was more balanced than in scenario A.
In the straight section, the 21 participants’ fixation duration percentage on the pavement area varied
between 20% and 70%; in the central area, the percentage varied from 10% to 60% (Figure 6b). For the
left curve, the percentage on the pavement area was from 15% to 65%, and the percentage for the
central area was from 15% to 60% (Figure 6e). For the right curve, the percentage on the pavement area
varied from 20% to 80%, and the percentage on the central area varied from 10% to 45% (Figure 6h).
From Figure 6c,f,i, we can see that participants paid greater attention to the central area and top wall
when they drove in scenario C. Driving along the straight line, the percentage varied from 20% to
80% on the central area and from 10% to 65% on the top wall (Figure 6c) area. For the left curve,
the percentage on the central area varied from 10% to 70%, and the percentage on the top wall varied
from 10% to 80% (Figure 6f). For the right curve, the percentage on the central area varied from 10% to
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60%, and the percentage on the top wall varied from 10% to 70% (Figure 6i). Simultaneously, we found
that participants liked to focus on the left wall when they drove on the left curve and focused on the
right wall when they drove on the right curve. From the results above, we can easily find that under
these three scenarios, the driver’s view position moved gradually from the tunnel pavement to the top
of the wall. This is consistent with the result shown in Figure 4.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. (a) straight line in scenario A; (b) straight line in scenario B; (c) straight line in scenario C;
(d) left curve in scenario A; (e) left curve in scenario B; (f) left curve in scenario C; (g) right curve in
scenario A; (h) right curve in scenario B; (i) right curve in scenario C. The percentage of fixation duration
in three different scenarios (In scenario A, both the wall delineators and pavement delineators were set.
In scenario B, only the pavement delineators were set. In scenario C, there was no delineator.) combined
with three tunnel alignments (straight, left curve and right curve) for the 21 participants. There are
9 subgraphs, in each subgraph, there are 21 concentric circles. Each concentric circle represents one
participant. The six different colors in each concentric circle represent the fixation duration percentage
of participant for six different areas, the black, red, blue, green, purple, and yellow parts represent
the proportion of gaze time spent in the pavement area (PA), the central area (CA), the top wall (TW),
the left wall (LW), the right wall (RW) and the white space (WS), respectively.

It can be concluded that setting delineators can make a participant focus on the pavement,
especially when using both wall delineators and pavement delineators. This may be because the
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combination of wall delineators and pavement delineators can clearly indicate the edges of the roadway
and the forward roadway. When only pavement delineators were set, some drivers identified the
direction of the road by the pavement delineators, and others identified the direction by the lamps
at the top of the tunnel. However, when no delineators are used, most drivers tend to identify the
direction of the road according to the tunnel lamps. Because long glances away from the road are
adverse to driver safety [40], we can conclude that the presence of delineators can increase driving
safety in tunnels.

4.2. Scanpath Analysis Based on Entropy

To further explore the influence of delineator setting on driver gaze behavior under different
alignments, the entropy method mentioned above is used to quantify participants’ scanpaths between
different areas. The computing process is as follows:

• Collect participants’ eye movement data, including fixation start (ms), fixation duration (ms),
fixation end (ms) and fixation position.

• Assign each fixation to AOI sequences. In this paper, the AOIs are S =

{s1(PA), s1(RW), s1(LW), s1(TW), s1(CA)}. The reason for stimulation to appear in the
WS area is to divert the driver’s attention to the dashboard to prevent speeding, which is not
related to the effect of delineators on a driver’s gaze characteristics. In this section, only eye
movement data between the remaining five areas are studied.

• Calculate the probability transition matrix P =
[
pij
]

[41] and stationary probabilities πi as follows:

P =


p11 p12 p13 p14 p15

p21 p22 p23 p24 p25

p31 p32 p33 p34 p35

p41 p42 p43 p44 p45

p51 p52 p53 p54 p55

 (7)

pij =
nij

∑
j

nij
(8)

πi =
pi

∑
i

pi
(9)

where pi represents the probability that the fixation point is in the ith AOI, i, j ∈ S.
• Calculate transition entropy Ht and stationary entropy Hs according to Equations (3) and (4).

An example is given to calculate the entropy of participant 2 in scenario A driving in a straight
line. The result is shown as follows:

P =


0.667 0.067 0.044 0.089 0.133
0.167 0 0.5 0.167 0.167

0.2 0.05 0.5 0.2 0.05
0.111 0 0.133 0.667 0.089
0.154 0.077 0 0.231 0.538

 (10)

π = ( 0.310 0.042 0.148 0.317 0.183 ) (11)

Ht = −∑
i∈S

πi ∑
j∈S

pijlog2 pij = 1.593 (12)

Hs = −∑
i∈S

πilog2πi = 2.098η2
p = 1 (13)
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The entropy values of 21 participants were shown in the Appendix A Tables A1–A6. A two-way
ANOVA was used to test whether the scenarios, alignments, the interaction of scenarios and alignments
had significant effects on the participants’ entropy values. The dependent variables were the transition
entropy Ht and the stationary entropy Hs, and the independent variables were the scenarios and
alignments. The results showed that the scenarios had a significant effect on the drivers’ transition
entropy Ht (F(2,180) = 12.252, P < 0.001, η2

p = 0.120) and stationary entropy Hs (F(2,180) = 16.556,
P < 0.001, η2

p = 0.155), and the alignments also had a significant effect on the drivers’ transition entropy
Ht (F(2,180)=302.425, P < 0.001, η2

p = 0.771) and stationary entropy Hs (F(2,180) = 460.013, P < 0.001,
η2

p = 0.836). Meanwhile, there was one significant interaction effect on the drivers’ transition entropy
Ht (F(4,180) = 2.840, P = 0.026, η2

p = 0.059) and stationary entropy Hs (F(4,180) = 3.751, P = 0.006,
η2

p = 0.077) for scenarios and alignments.
The 21 participants’ entropy values in three different scenarios (In scenario A, both the wall

delineators and pavement delineators were set. In scenario B, only the pavement delineators were set.
In scenario C, there was no delineator.) combined with three tunnel alignments (straight, left curve
and right curve) are shown in Figure 7.

In straight line (Figure 7a,b), when participants were driving under scenarios A and B, 86% of
them obtained the small transition entropy Ht and 90% of them obtained the small stationary entropy
Hs under scenario A. Compared the entropy values in scenarios A and C, 76% of participants obtained
the small transition entropy Ht and the small stationary entropy Hs under scenario A. When the
participants’ entropy values in scenarios B and C were analyzed statistically, approximately two-thirds
of the drivers showed smaller Ht values (the percentages were 71%) and Hs (the percentages were
62%) values in scenario B.

In Left curve (Figure 7c,d), comparing the entropy values in scenarios A and B, 86% of participants
obtained the small Ht value and the small Hs value under scenario A. When participants drove under
scenarios A and C, 81% of them obtained the small Ht value and 76% obtained the small Hs value
under scenario A. Analyzing the entropy values in scenarios B and C, 57% of participants obtained the
small Ht value and the small Hs value under scenario B.

In right curve (Figure 7e,f), when participants were driving under scenarios A and B, 90% of
them obtained the small Ht value and 86% of them obtained the small Hs value under scenario A.
Comparing the entropy values in scenarios A and C, 86% of participants obtained the small Ht value
and the small Hs value under scenario A. When the participants’ entropy values in scenarios B and C
were analyzed, 76% of them obtained the small Ht value and 67% of them obtained the small Hs value
under scenario B.

From the results, it can be found that most drivers’ visual entropy values were the smallest in
scenario A, followed by scenario B and scenario C, especially in right curve. Compared with scenario
B, when the participants were driving in left curve, only 57% of them showed a higher entropy value
in scenario C.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. (a) Ht in straight line; (b) Hs in straight line; (c) Ht on left curve; (d) Hs on left curve;
(e) Ht on right curve; (f) Hs on right curve. The 21 participants’ entropy values in three different
scenarios (In scenario A, both the wall delineators and pavement delineators were set. In scenario B,
only the pavement delineators were set. In scenario C, there were no delineators.) combined with three
tunnel alignments (straight, left curve and right curve).
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5. Discussion

Ni [39] proposed that red-and-white cylinders set at a certain distance from the entrance of a
tunnel can be used as a visual reference system for drivers when driving into the tunnel. Similarly, we
believe that facilities set up continuously at a certain distance in a tunnel can also be used as a visual
reference system for drivers to guide their vision continuously. Therefore, combined with the lamps
on the top wall, scenario A provided a three-layer visual reference frame for drivers (one layer for
the pavement delineator, one layer for the wall delineator and one layer for the lamp in the top wall).
The pavement delineator reference system shows the drivers of the edge marking in the tunnel, and the
wall delineator provides the boundary position of the tunnel contour. Most importantly, all three
reference systems can show drivers the forward direction of the roadway . Driving under scenario A,
participants obtained the minimum Ht value. Ht indicates the average uncertainty of the participant’s
gaze transition between AOIs. The minimum entropy Ht in scenario A indicates that when participants
drive in scenario A, they have the lowest viewpoint conversion frequency in different AOIs.

Meanwhile, pavement and wall delineators flashing at a certain frequency can continuously give
drivers appropriate visual stimulation, and drivers can accurately judge their lateral position from the
corner of their eyes; thus, they only need to focus on the road ahead and do not need to change their
viewpoints frequently between different AOIs. Whether driving in straight section, left curve or right
curve, the minimum Hs value in scenario A supports this result because the lower Hs value means
that participants focuse on certain AOIs [21]. Combined with the analysis of Section 4.1, we find that
the participants mainly focus on the PA area under scenario A.

Scenario B was not as good as scenario A in guiding participants’ vision; however, it obtained
better effects than scenario C. Scenario B provided a two-layer visual reference frame for participants
(one layer for the wall delineator and one layer for the lamp in the top wall). Because of the limited
number of pavement delineators, some participants preferred to judge the road direction by the
lamps, which made the participants’ Ht values larger than that in scenario A. This indicates that
the participants’ viewpoint conversion frequency in different AOI is higher than that in scenario
A. In Table A4, the value of Hs is higher than that in scenario A. This means that under scenario B,
participants visited more AOIs, which was consistent with the previous fixation analysis in Section 4.1
(the main AOIs were PA and CA).Compared with scenario A, scenario B was not safe enough.

Analysis of the entropy value in scenario C clearly showed that participants achieved the largest
Ht and Hs values. Scenario C only provided one layer of a visual reference frame (the lamps on the
top wall). Fewer visual guidance facilities made participants search for more effective information
in tunnels to accurately determine the forward direction on the roadway. Thus, their viewpoint
conversion frequency was the highest, and the drivers were more strongly focused on the CA and
TW areas. In addition to the above discussion, it seems that compared with linear structures (the
edges of the roadway), participants preferred to rely on larger structures (wall delineators, pavement
delineators and lamps) to guide their viewpoint in the tunnel. The larger structures improved the
visibility of both sides of the road in the tunnel and reduced the drivers’ sense of the distance of the
road ahead, while linear structures made the road ahead look far away and monotonous, which readily
fatigued the drivers.

Most participants’ visual entropy values (Ht and Hs) were the smallest in scenario A, followed
by scenario B and scenario C, especially in right curve. It seems that in right curve, the influence
of different scenarios on the participants’ visual entropy values was more significant. Moreover,
compared with scenario B, when the participants drove in left curve, only 57% of them showed a
higher entropy value in scenario C. We could consider that in left curve, the influence of scenario B
and scenario C on the participants’ visual entropy values was not significant enough.

Participants’ visual entropy followed different rules when the drivers drove under different tunnel
alignments. From Tables A1–A6, we find that the participants obtained higher Ht and Hs values in the
straight section. It is not difficult to understand that when driving on a curved section, participants
would focus on the inner wall of the curve to determine the tunnel boundary. When they drove on
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the left curve, the LW area became the main area of focus after the PA, CA and TW areas. When they
drove on the right curve, the RW area became the main area of focus after the PA, CA and TW areas.
Unlike the curved sections, where the inner wall required the greatest focus, in the straight section,
participants’ view positions were more free and arbitrary. Thus, they showed higher Hs values (that is,
they paid attention to the AOIs that were more balanced) and higher Ht values (that is, the viewpoint
conversion frequency was higher).

This paper discussed how different delineator configurations affect drivers’ gaze behaviour in
different tunnel alignments. Previous studies on delineators mostly centered their influence on the
driving speed. In this study, in addition to studying typical eye movement parameters under different
scenarios in a traditional manner, we also quantified the complexity of individual switching patterns
by using the Markov-based entropy method. However, this experiment was completed in a simulator,
we did not consider the influence of the background noise in real-world scenarios, and the different
curve radii in tunnels will also influence drivers’ gaze behaviour. In the future, we will improve this
aspect of the design.

6. Conclusions

This paper reports a simulation experiment to explore how delineators affect drivers’ gaze
behavior in tunnels, based on the actual alignment of the Qinling Mountain No. 1, No. 2 and No.
3 tunnels of the G5 Expressway in Xi’an City (Shaanxi Province, China). Through the simulation
study, eye movement data on 21 participants were collected. By analyzing these data in a traditional
manner, we determined participants’ fixation features. Based on the entropy method, we quantified
the participants’ scanpaths between different areas. The conclusions are as follows:

• Compared with the linear structures (the edges of the roadway), drivers preferred to rely on the
larger structures (wall delineators, pavement delineators and lamps) to guide their viewpoint in a
tunnel. Driving in tunnel equipped with delineators, drivers spent more gaze time on the road
ahead and exhibited lower viewpoint conversion frequency in different AOIs.

• Setting delineators can attract drivers’ attention to the pavement. Compared with setting only
pavement delineators, setting both wall delineators and pavement delineators can make drivers
focus on the road ahead as much as possible.

• Most drivers showed the smallest transition entropy Ht and stationary entropy Hs in scenario A
and the largest Ht and Hs values in scenario C, especially in right curve. Compared with the left
curve and the right curve, participants obtained higher Ht and Hs values in the straight section.

Author Contributions: Conceptualization, X.H. and P.Y.; methodology, X.H. and Y.S.; formal analysis, P.Y. and S.Y.;
visualization, X.H., P.Y.; writing—review and editing, X.H.; supervision, S.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by China Scholarship Council with file No. 201506560015.

Acknowledgments: The authors would like to acknowledge the China Scholarship Council for partially fundings.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Ht values for all participants in straight.

Participants 1 2 3 4 5 6 7 8 9 10 11

Scenario A 0.704 1.393 1.224 0.303 1.409 1.355 0.768 1.416 0.882 0.231 1.294
Scenario B 1.215 1.478 1.016 1.355 1.608 1.422 1.104 1.481 0.889 0.810 1.285
Scenario C 1.204 1.639 1.144 1.444 0.645 1.193 1.304 1.559 1.116 0.928 1.374

Participants 12 13 14 15 16 17 18 19 20 21 -

Scenario A 0.430 1.160 1.290 0.397 1.533 0.571 1.229 0.920 0.912 1.100 -
Scenario B 1.016 1.352 1.867 0.755 1.107 1.626 1.396 1.040 1.494 1.215 -
Scenario C 0.582 1.008 1.320 1.495 1.516 1.637 1.503 1.371 1.693 1.204 -
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Table A2. Ht values for all participants on left curve.

Participants 1 2 3 4 5 6 7 8 9 10 11

Scenario A 0.251 0.407 0.408 0.247 0.283 0.329 0.112 0.144 0.276 0.334 0.306
Scenario B 0.438 0.439 0.490 0.428 0.399 0.303 0.286 0.340 0.442 0.350 0.459
Scenario C 0.277 0.584 0.551 0.428 0.499 0.350 0.405 0.289 0.394 0.317 0.331

Participants 12 13 14 15 16 17 18 19 20 21 -

Scenario A 0.506 0.235 0.374 0.462 0.278 0.362 0.427 0.287 0.329 0.351 -
Scenario B 0.302 0.331 0.381 0.236 0.421 0.439 0.439 0.429 0.438 0.450 -
Scenario C 0.421 0.366 0.418 0.414 0.433 0.481 0.412 0.334 0.525 0.375 -

Table A3. Ht values for all participants on right curve.

Participants 1 2 3 4 5 6 7 8 9 10 11

Scenario A 0.172 0.503 0.480 0.380 0.465 0.343 0.224 0.149 0.409 0.226 0.321
Scenario B 0.498 0.397 0.495 0.425 0.413 0.408 0.287 0.361 0.493 0.398 0.441
Scenario C 0.403 0.476 0.510 0.368 0.540 0.424 0.485 0.394 0.521 0.504 0.416

Participants 12 13 14 15 16 17 18 19 20 21 -

Scenario A 0.440 0.358 0.380 0.483 0.291 0.402 0.231 0.420 0.292 0.295 -
Scenario B 0.454 0.397 0.422 0.495 0.417 0.504 0.403 0.464 0.367 0.445 -
Scenario C 0.475 0.411 0.484 0.496 0.375 0.551 0.562 0.392 0.408 0.580 -

Table A4. Hs values for all participants in straight.

Participants 1 2 3 4 5 6 7 8 9 10 11

Scenario A 1.038 1.712 1.376 0.386 1.601 1.246 0.991 1.763 1.512 0.520 0.928
Scenario B 1.577 1.739 2.019 1.605 1.863 1.681 1.663 1.998 0.966 0.839 1.669
Scenario C 1.217 2.130 2.101 1.830 2.144 1.613 1.679 1.515 1.412 1.257 1.696

Participants 12 13 14 15 16 17 18 19 20 21 -

Scenario A 0.971 1.325 1.763 0.910 1.607 1.264 2.163 0.811 1.421 1.561 -
Scenario B 1.632 1.874 2.096 1.222 1.870 1.957 1.849 1.408 1.797 1.664 -
Scenario C 0.919 1.770 1.647 1.723 1.130 1.992 2.032 1.708 1.750 2.177 -

Table A5. Hs values for all participants on left curve.

Participants 1 2 3 4 5 6 7 8 9 10 11

Scenario A 0.373 0.479 0.453 0.369 0.325 0.360 0.232 0.191 0.348 0.342 0.382
Scenario B 0.497 0.535 0.613 0.449 0.507 0.353 0.358 0.428 0.469 0.378 0.476
Scenario C 0.300 0.651 0.628 0.478 0.574 0.406 0.306 0.410 0.436 0.443 0.347

Participants 12 13 14 15 16 17 18 19 20 21 -

Scenario A 0.609 0.311 0.418 0.546 0.325 0.522 0.426 0.433 0.345 0.340 -
Scenario B 0.341 0.442 0.514 0.355 0.507 0.592 0.550 0.484 0.502 0.459 -
Scenario C 0.445 0.425 0.598 0.445 0.514 0.417 0.497 0.543 0.424 0.600 -

Table A6. Hs values for all participants on right curve.

Participants 1 2 3 4 5 6 7 8 9 10 11

Scenario A 0.230 0.629 0.423 0.477 0.394 0.356 0.152 0.319 0.281 0.329 0.578
Scenario B 0.605 0.643 0.467 0.471 0.532 0.486 0.460 0.560 0.436 0.499 0.545
Scenario C 0.442 0.676 0.381 0.610 0.455 0.575 0.595 0.582 0.575 0.463 0.509

Participants 12 13 14 15 16 17 18 19 20 21 -

Scenario A 0.527 0.571 0.528 0.264 0.420 0.319 0.271 0.445 0.347 0.390 -
Scenario B 0.553 0.462 0.624 0.587 0.542 0.477 0.445 0.510 0.510 0.471 -
Scenario C 0.623 0.637 0.631 0.371 0.340 0.637 0.498 0.560 0.532 0.655 -
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