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Abstract: Temperature influences the life of many organisms in various ways. A great number of
organisms live under conditions where their ability to adapt to changes in temperature can be vital and
largely determines their fitness. Understanding the mechanisms and principles underlying this ability
to adapt can be of great advantage, for example, to improve growth conditions for crops and increase
their yield. In times of imminent, increasing climate change, this becomes even more important in
order to find strategies and help crops cope with these fundamental changes. There is intense research
in the field of acclimation that comprises fluctuations of various environmental conditions, but most
acclimation research focuses on regulatory effects and the observation of gene expression changes
within the examined organism. As thermodynamic effects are a direct consequence of temperature
changes, these should necessarily be considered in this field of research but are often neglected.
Additionally, compensated effects might be missed even though they are equally important for the
organism, since they do not cause observable changes, but rather counteract them. In this work,
using a systems biology approach, we demonstrate that even simple network motifs can exhibit
temperature-dependent functional features resulting from the interplay of network structure and the
distribution of activation energies over the involved reactions. The demonstrated functional features
are (i) the reversal of fluxes within a linear pathway, (ii) a thermo-selective branched pathway with
different flux modes and (iii) the increased flux towards carbohydrates in a minimal Calvin cycle
that was designed to demonstrate temperature compensation within reaction networks. Comparing
a system’s response to either temperature changes or changes in enzyme activity we also dissect
the influence of thermodynamic changes versus genetic regulation. By this, we expand the scope of
thermodynamic modelling of biochemical processes by addressing further possibilities and effects,
following established mathematical descriptions of biophysical properties.
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1. Introduction

Living beings are subject to fluctuations of environmental factors they need to adapt to. This process
of adaptation is called acclimation and can happen on different levels of organization. There can be
morphological changes [1], but also a reorganization of biochemical processes like metabolism [2].
Many plants, for example, accumulate carbohydrates when their growth temperature is low, which is
assumed to increase freezing tolerance by serving as osmoprotection [3,4]. As plants cannot flee from
cold or heat, it is especially important for them to be able to adapt to such fluctuations.

The changes in biological processes differ in their nature and cause. Some are known to be
triggered responses like the production of heat shock proteins as a consequence of thermal or other
stresses [5]. These responses are coordinated by regulatory mechanisms involving, i.e., gene expression
alteration or post-translational modifications that actively promote the desired biochemical changes.
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Furthermore, there are thermodynamic effects that directly influence the involved biochemical
reactions themselves. As reaction rates depend on temperature, different reactions can change their
velocities to varying amounts leading to a rearrangement of flux distributions within the biochemical
systems. Additionally, enzyme activity and protein stability change [6,7], contributing to the described
effects. The observed responses can be unexpected or even contradictory. For example, most enzyme
activities increase with temperature up to a thermal optimum [6], nevertheless, an overall increase in
activity of Calvin cycle enzymes has been reported for Arabidopsis thaliana during cold treatment [8].
A review on changes in aerobic metabolism of ectotherms is provided by Schulte (2015) [9].

Sometimes it is not straightforward to determine whether an observed change is part of the
acclimation process or merely a thermodynamic byproduct. At the same time, observations might be
attributed to some unknown regulation mechanism although they are caused by the thermodynamically
induced changes within the reaction network. Additionally, parts of the acclimation process are hard
to identify as they compensate for changes that would occur otherwise. In these cases, the crucial
observation would be the absence of a change.

Ruoff et al. (2007) [10] used a systems biology approach to demonstrate how reaction networks
can possess the inherent property to compensate for temperature changes as a result of the relation
between its architecture and the properties of the involved reactants and enzymes that determine
the activation energies and equilibrium constants of the corresponding reactions [10]. This type of
compensation does not need any active regulation and can be referred to as static compensation.

By introducing control coefficients, they also showed and quantified how changes to single
reactions can propagate and shape the overall behavior of whole reaction schemes. These changes can,
for example, be enzyme modifications affecting the value of apparent activation energies and therefore
changing the balance of the reaction network. As this type of compensation involves changes of
network properties, it can be referred to as dynamic compensation. However, temperature changes can
thermodynamically affect biochemical reaction networks in different ways and the network responses
can be of different nature than compensation.

In this study, we apply the same systems biology approach to simple network motifs and
demonstrate cases of temperature induced reversal of fluxes and how temperature changes can regulate
and redirect fluxes in branched reaction systems. We explicitly ignore all other potential changes
in gene expression, or at other regulatory levels the organism could employ to prevent or enhance
the effects of varying temperature. Thus, we only study the passive rebalancing of fluxes that can
ultimately lead to the accumulation of certain reactants without any active mechanistic regulation on a
molecular level. These results therefore represent inherent functional network features and contribute
to addressing the question to what extent observed changes in network behavior, or their absence, are
the consequence of active regulation and what the role is of intrinsic network properties in this context.

2. Materials and Methods

In order to analyze the effects of temperature changes on different reaction networks, we chose
three common network motifs with qualitatively different structures: a linear pathway, a branched
pathway and a circular network motif. For each of the three networks, we defined a system of ordinary
differential equations (ODEs) describing their dynamics.

The linear pathway:
d
dt A = k+1 − k−1A− k+2A + k−2B
d
dt B = k+2A− k−2B− k+3B + k−3

(1)

The branched pathway:

d
dt A = k+1 − k−1A− k+2A− k+3A + k−2B + k−3C

d
dt B = k+2A− k−2B− k+4B + k−4
d
dt C = k+3A− k−3C− k+5C + k−5

(2)
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The circular pathway:

d
dt A = k3C− k4A− k6A d

dt B = k1 + k4A− k2B
d
dt C = k2B− k3C− k5C

(3)

To describe the effect of temperature on each reaction, we assigned the famous Arrhenius
equation [11] that holds for most chemical reactions within a temperature range, to each of the rate
constants. It describes how the rate constant k of a chemical reaction depends on temperature T and
the Gibbs energy of activation ∆G‡.

k = A · exp
(
−

∆G‡

RT

)
(4)

In Equation (4), R is the universal gas constant and A is the so-called pre-exponential factor.
This factor describes the frequency of molecule collisions. It is specific for each reaction and depends on
the molecular structures of the reactants. There exists different approaches to determine and describe
A. These are either empirical [11], based on collision theory [12] or transition state theory [13], with
varying focus and complexity. Technically, A depends on temperature as well, but the magnitude
of this dependency is comparably small to that of the exponential expression and can therefore be
neglected in this study.

This description of temperature dependence of chemical reaction rates can be applied to mass-action
kinetics, but also to Michaelis-Menten kinetics that describe enzymatic reactions, as explained in Bozlee
(2007) [14] for the irreversible case. Applying these principles to reversible Michaelis-Menten kinetics

v =

v f
maxS
KS

M
−

vb
maxP
KP

M

1 + S
KS

M
+ P

KP
M

(5)

results in
v f

max = k+2[E]tot = A+2 exp
(G4 −G3

RT

)
[E]tot (6)

vb
max = k−1[E]tot = A−1 exp

(G2 −G3

RT

)
[E]tot (7)

with
[E]tot = [E] + [ES] (8)

and

KS
M =

k−1 + k+2

k+1
= exp

( G3

RT

)( 1
A1

+
A+2

A+1
exp

(G2 −G4

RT

))
(9)

KP
M =

k−1 + k+2

k−2
= exp

(G3 −G5

RT

)(
A2 +

A−1

A−2
exp

(G4 −G2

RT

))
(10)

for the maximum rates vf
max and vb

max of the forward and backward reaction, respectively, and the
Michaelis constants KS

M and KP
M of substrate and product, respectively. Here, G1 to G5 represent the

different levels of Gibbs free energy for each of the reaction steps as illustrated in Figure 1. Ai is the
fraction of pre-exponential factors of the forward and backward reaction A+i

A−i
.
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Figure 1. Energy diagram for reversible Michaelis-Menten kinetics. The figure sketches the different
levels of Gibbs free energy G1 to G5 for a reversible enzymatic reaction with a substrate S, an enzyme E
and a product P. The relation of these energy levels is a determining factor for the overall reaction rate
and direction.

To find parameter sets that result in particular temperature responses, we started to systematically
vary Gibbs energies of activation (∆G‡) and pre-exponential factors (A) within the networks one-by-one
and collectively and simulated the systems at different temperatures from 273 to 308 K until they
reached steady state. The temperature interval was chosen to represent a broad but physiological
range for most organisms. After observing the system responses, we were able to manually adjust
the parameters for sets that turned out promising to result in a certain behavior. In this process, all
parameters were chosen to be within a reasonable range in the order of magnitude comparable to the
ones provided by Ruoff et al. (2007) [10] and Bozlee (2007) [14]. The used parameters for the presented
simulations are provided in Table 1.

Table 1. Parameter values for all four presented networks (Equations (1)–(3) and Figure 6). Indexes i
denote the corresponding reaction with rate constant ki that is determined by Ai and ∆Gi following
Equation (4).

i Ai ∆Gi

linear pathway

1 3.00 × 107 4.00 × 104

−1 1.00 × 107 3.75 × 104

2 3.00 × 107 4.00 × 104

−2 1.00 × 107 3.73 × 104

3 3.00 × 107 4.00 × 104

−3 1.00 × 107 3.70 × 104

branched pathway

1 2.00 × 107 4.00 × 104

−1 1.00 × 107 4.00 × 104

2 5.00 × 108 5.00 × 104

−2 1.50×107 4.00 × 104

3 1.00 × 107 4.00 × 104

−3 1.00 × 109 5.00 × 104

4 5.00 × 108 5.00 × 104

−4 1.50 × 107 4.00 × 104

5 1.00 × 107 4.00 × 104

−5 1.00 × 109 5.00 × 104
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Table 1. Cont.

minimal Calvin cycle

1 2.95 × 1016 9.20 × 104

2 3.20 × 1012 5.00 × 104

3 2.99 × 1011 6.00 × 104

4 1.54 × 109 6.00 × 104

5 7.85 × 1039 2.10 × 105

6 2.56 × 106 4.00 × 104

All presented networks were implemented using the programming language Python and the
corresponding ODE systems were solved using the ‘odeint’-function of scipys integrate package that
utilizes the LSODA algorithm from the FORTRAN library odepack to compute a numerical solution.

3. Results

Since most observations regarding metabolic changes caused by temperature shift concern long
term changes, it is reasonable and necessary to examine non-transient responses and focus on steady
state fluxes. Temperature rises and declines seasonally or during the course of a day, causing long-term
responses, while metabolic fluxes adapt within seconds leading to strong time scale separation.
Most fluxes simply increase with higher temperature, resulting in an exponentially increasing response
curve as shown in Figure 2A.
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Figure 2. Illustration of exponential temperature response curves. Panel (A) shows a typical exponential
temperature response curve of a reaction flux, following the Arrhenius equation. Panel (B) illustrates a
case where the forward flux exceeds the backward flux of a reversible reaction at temperature TJ=0.
The resulting net flux at this temperature is zero and changes its direction when passing it.

Since biological networks most often contain some reversibility and branching, the effective
flux-temperature response curves can have very different shapes, as already demonstrated for CO2

fixation in Ruoff et al. (2007) [10]. Interestingly, besides flux compensation, this might result in
temperature-dependent functional network features like flux reversal or pathway selection.

3.1. The Direction of Fluxes Can be Reversed by Solely Changing Temperature

A major change to fluxes that could drastically alter the response of a network would be if fluxes
changed their direction. For this to happen, the unidirectional flux at low temperatures in one direction
(e.g., forward) must be at a higher level than the one in the opposite direction (then backward), but the
corresponding temperature response curve should be relatively flat over a broad temperature range.
If the temperature response curve of the unidirectional flux in the opposite direction (backward) is
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steeper and close enough to the one in forward direction, the net flux is zero at the temperature where
the curves intersect. Above this temperature, the flux is reversed as illustrated in Figure 2B.

Since the molecules are converted into other molecules with different shapes and physical
properties, the pre-exponential factors and Gibbs energies of activation for the forward and backward
direction of a reaction can differ greatly; so does the ratio of these parameters that defines the shapes of
the resulting flux temperature response curves, which makes the described scenario plausible.

This effect does not even demand for a complex network structure, since it is simply based on
the physical properties of the involved reactants, but could potentially reverse the flux direction of a
complete linear pathway as illustrated in Figure 3A.
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Figure 3. Flux reversal in a linear pathway. The upper part of (A) shows the structure of the reversible
linear pathway, comprising the two species A and B. The rate constants of the forward reactions are
indicated by k1 to k3, while k−1 to k−3 are the rate constants of the backward reactions. The lower part
of (A) shows the corresponding net fluxes for a temperature range from 273 to 308 K. The three panels
of (B) illustrate the system’s response to continuous cyclical temperature changes. The upper panel
shows the time courses for three different temperatures oscillating by ± 5 K around 290 K (blue), 300 K
(green) and 310 K (orange). The middle panel shows the resulting temporal changes in concentrations
of species A and B. The flux changes are depicted in the lower panel. The colors of the concentration
and flux curves match the colors of their corresponding temperature curves.

If we look at a system of reversible reactions arranged in a linear sequence and consisting of i
species Si, a precursor P1 and a product P2 (Figure 4B), we can describe each reaction rate using mass
action kinetics as

vi = k+iSi−1 − k−iSi. (11)

For each of the reversible reactions i, we can write the equilibrium constant Ki as

Ki =
k+i

k−i
=

A+i exp
(
−

∆G+i
RT

)
A−i exp

(
−

∆G−i
RT

) = Ai exp
(

∆G−i − ∆G+i

RT

)
. (12)
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From this and considering the Arrhenius law, we can find an expression for the temperature-
dependent steady state concentration of each species in the system:

Si(T) =
k+i(T)Si−1−k−(i+1)(T)Si+1

k−i(T)+k+(i+1)(T)

=
A+i exp

(
−∆G+i

RT

)
Si−1+A−(i+1) exp

(
−∆G

−(i+1)
RT

)
Si+1

A−i exp
(
−∆G−i

RT

)
+A+(i+1) exp

(
−∆G+(i+1)

RT

)
.

(13)

Assuming the concentrations of P1 and P2 as constant, we can also derive a formula for the
temperature-dependent steady state flux through the system:

J(T) =
P1

∏r
j=1 K j(T) − P2∑r

j=1
1

k+ j

∏r
m= j Km(T)

=
P1

∏r
j=1 A j exp

(
∆G− j−∆G+ j

RT

)
− P2∑r

j=1
1

A+ j
exp

(
∆G+ j

RT

)∏r
m= j Am exp

(∆G−m−∆G+m
RT

) (14)

with the number of reactions r, the equilibrium constants Ki and the Gibbs free energies of activation
∆G+i and ∆G−i for the forward and backward direction of reaction i, as illustrated in Figure 4A.
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Figure 4. Energy diagram for a single reaction within a linear, reversible pathway. Panel (A) shows the
Gibbs free energies of activation for the forward (∆G+i) and backward (∆G−i) direction of reaction i of
the linear, reversible pathway shown in panel (B). Here, ∆Gi is the difference in Gibbs free energy of
the substrate Si−1 and the product Si.

When looking at the numerator, we see that this term can equate to zero and change signs.
The temperature at which the flux is zero is the critical temperature (TJ=0) at which the overall flux
changes direction when it is passed. For J = 0 and ∆Gj = ∆G−j − ∆G+j, it holds.

r∏
j=1

A j exp
(

∆G j

RT

)
=

P2

P1
. (15)
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If we assume a system of reactions where the values of all pre-exponential factors and Gibbs free
energies are relatively close to each other, we can approximate Aj ≈ Aj+1 = A and ∆Gj ≈ ∆Gj+1 = ∆G,
resulting in the expression

Ar exp
( r∆G

RT

)
=

P2

P1
. (16)

We can now finally determine TJ=0 for the linear pathway as

TJ=0 =
r∆G

R

(
ln

(
P2

P1Ar

))−1

(17)

When looking at single reaction i in any pathway, we consider the concentrations of the
corresponding substrates and products Si-1 and Si, the change of Gibbs free energy ∆Gi and the
ratio of pre-exponential factors Ai. The critical temperature for flux reversal can be determined as

TJ=0,i =
∆Gi
R

(
ln

(
Si−1

SiAi

))−1

. (18)

In the case of Reaction 2 of the linear network shown in Figure 3, this equates to about 301 K,
the temperature at which the pathway indeed changes its flux direction. To further elaborate this,
we performed simulations with periodically changing temperature as shown in Figure 3B. Here,
we simulated the behavior of the linear pathway in response to a cyclically changing temperature
over time for three different temperature regimes. One of the temperature curves cycles around the
critical temperature TJ=0 at about 301 K. Another temperature curve is set to lower temperatures
around 290 K and the last one serves higher temperatures around 310 K. As expected, the resulting
flux response curve for temperatures around 300 K changes its sign periodically, switching from
forward to backward direction. In contrast to this, the flux at higher temperatures keeps forward
direction, only varying in extent. The same holds for the flux at lower temperatures; only here the
maintained flux direction is backwards. Interestingly, there are big differences in the amplitudes of
these oscillations, increasing from lower temperatures with small amplitudes to higher temperatures
with bigger amplitudes, although the absolute changes in temperature for all three temperature curves
are the same. Additionally, we notice that for positive (forward) fluxes, the concentration of species B
is always higher than the concentration of A and vice versa for negative (backward) fluxes. Also, the
concentrations of both species are generally lower for higher temperatures.

3.2. Temperature Can Potentially Direct Fluxes Through Selective Branched Systems

Another major alteration of the overall behavior of a network that also involves the network
structure would be the temperature-dependent redirection of fluxes to different network branches.
We designed a simple branched network and tested different distributions of activation energies and
pre-exponential factors for all corresponding reactions and found constellations that resulted in exactly
this behavior, as illustrated in Figure 5.
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Figure 5. Thermo-selective, branched pathway. The figure shows the structure of a reversible branched
pathway with three species (upper part) and the net fluxes (considering forward and backward direction)
for all involved reactions (lower part). The numbers in top left corner in each of the panels denote
the corresponding reaction. Here we see three specifiable temperature regions with distinctive flux
directions (colored areas). While the flux comes in from the upper branch and flows out through the
lower branch within the blue temperature region, it can change to flowing outwards at both branches
(red region) and eventually invert the initial flux direction with rising temperature (green region).

Looking at the lower temperature region, marked in blue, the fluxes enter from the left and
upper branch, forming species A and B and leave through the lower branch via C. The intermediate
temperature range, marked in red, is characterized by flux separation. While two incoming fluxes
result in a single outgoing flux within the blue temperature region, here a single flux is split into
two outgoing fluxes. It enters from the left branch forming A which is converted to both, B and C.
The separated flux then leaves the network through the upper and lower branch. Eventually, there is a
high temperature range, marked as green. Here the network behaves the same as in the blue region,
but the roles of the upper and lower branches are reversed. So the fluxes enter through the left and
lower branch, forming species A and C and leave through the upper branch via B. In this context, it is
important to note that the transitions from one flux mode to another occur at temperatures where one
or more of the reversible reactions change their direction of flux, satisfying Equation (18), as described
for single reactions and linear pathways in 3.1. At the transition from the blue to the red flux mode,
reactions 2 and 4 (upper branch) are reversed, followed by the reversal of reactions 3 and 5 (lower
branch) at the transition from the red to the green regime.

3.3. Dissecting Influence of Temperature Change Versus Genetic Regulation Resulting in Change of
Enzyme Activity

As already pointed out, changes in biochemical processes upon temperature change can be passive
consequences resulting from the physical properties of the involved substances and their surroundings,
but are also actively regulated on the gene expression and post-translational level. In order to compare
and dissect the magnitudes of influence of these different types of response, we designed a minimal
branched network, following the same principles as before, and systematically altered temperature
and the concentration of one of the involved enzymes (enzyme 2) as illustrated in Figure 6.
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Figure 6. Comparison of the effect of gene expression changes versus temperature changes. Considering
a minimal branched network, we changed either the concentrations of the three enzymes individually
or the temperature that affects all three reactions at the same time. The panels in the top row show the
flux changes in response to changes in temperature (left) and enzyme concentration (right) separately.
Notice the reversal of flux direction of reaction 1 (blue). The bottom row shows three heatmaps
illustrating the combined effects of enzyme 2 and temperature T on the concentration of species S
(left). The relative change of S compared to the case that only enzyme 2 is varied and T is kept at 290 K
(middle), and the relative change of S compared to the case that temperature is varied and enzyme 2 is
kept at concentration 1.

As a measure for the contribution of either enzyme changes or temperature change, we were
interested in a measure that is independent of the units of these two modifiers. Therefore, we compared
the concentration of substrate S upon alteration of both modifiers (T and enzyme 2, lower left panel) to
the concentration of S, when only changing the concentration of enzyme 2 (lower middle panel) or the
temperature (lower right panel).

We see that the magnitude of the influence of enzyme concentration changes is bigger than sole
temperature changes since fluxes and concentrations both change more drastically in response to it
(note the different scales). Nevertheless, when comparing the shapes of the flux response curves, we
also see that the type of response differs qualitatively, and when looking at the combined effects on the
concentration of S, we find that temperature modulates the response to enzyme changes as it shifts the
general abundance of S.

3.4. A Minimal Calvin Cycle Can Exhibit an Increased Flux Towards Carbohydrates at Low Temperatures

We also further analyzed the potential of the minimal Calvin–Benson cycle network presented
by Ruoff et al. (2007) [10]. It is a minimal representation of the important cyclic reaction scheme also
referred to as dark reaction of photosynthesis. The corresponding reactions comprise the essential
processes of carbon fixation from CO2 by Rubisco, the reduction of the fixation product and the
regeneration of ribulose-1,5-bisphosphate for the next fixation. When taking a closer look at the
structure of this network, one realizes that it’s branching provides the potential to show bell-shaped
temperature response curves, similar to the ones presented for CO2 fixation, at the other branch points
as well. Consequently, we were able to identify a parameter set for which the network exhibits an
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increased flux towards carbohydrates at low temperatures, as frequently reported in literature [4,8].
The network and the corresponding temperature response curve are illustrated in Figure 7.
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Figure 7. Increased flux towards carbohydrates in a minimal Calvin cycle. The figure shows the
structure of a Calvin cycle model designed by P. Ruoff et al. (2007) [10] which comprises only its most
essential processes as lumped single reactions. The structure of this network has the potential to exhibit
an increased flux towards carbohydrates at lower temperatures that is based on the distribution of
activation energies and pre-exponential factors of the reactions within the network. An accumulation
of carbohydrates at lower temperatures has been observed and reported frequently.

3.5. Connection to Entropy Production

We are interested in the effect that temperature T has on the magnitude and the sign of the velocity
of biochemical reactions in a network of reactions. In equilibrium, the direction of an isolated reaction
r is given by the difference in the Gibbs free energy, ∆Gr(S, P), of its substrate S and its product P. We
can, instead, also use the affinity

Ar = −
K∑

i=1

µinir (19)

which represents the (negative) sum over the chemical potentials µi = µi
0(p, T) + RT ln ci times the

stoichiometric coefficients with which they enter the reactions. The affinity has the same value as the
difference in Gibbs free energy, when considering the conversion of 1 mol of substrate, but the opposite
sign. Hence, a reaction is favorable and it will proceed with a positive rate, when the affinity is positive.

An important characterization of the system is the entropy production density σ [15,16], which
can be expressed as follows

σ =
→

J Qgrad
( 1

T

)
−

K∑
i=1

→

J ci
grad

(µi

T

)
+

R∑
r=1

vrAr

T
(20)

σ is the sum of the product of generalized forces and generalized fluxes. The relevant forces
considered for biochemical reaction systems are the temperature gradient grad

(
1
T

)
, the gradient of the

chemical potential grad
(µi

T

)
and the reaction affinity Ar

T . The respective fluxes are the heat flow
→

J Q, the

diffusion flows
→

J ci
and the reaction velocities vr. For the specific conditions investigated in this study,

we assume that we have a well-mixed system with no spatial gradients, neither of the temperature nor
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of the chemical potentials. Hence, the first two terms in the expression for the entropy production
density vanish and we obtain

σ =
R∑

r=1

vrAr

T
(21)

To link this expression to the considerations on the Arrhenius equation, we assume for simplicity
that all reaction rates obey mass action kinetics. Hence, the rate for the forward reactions and backward
reactions read, respectively:

v f ,r = k f ,r

K∏
i=1

c
−ni, f

i, f ; vb,r = kb,r

K∏
i=1

cni,b
i,b (22)

and the net rate is given by the difference of the forward and backward rates.

vr = v f ,r − vb,r = v f ,r

1−

K∏
i=1

cni,r
i

Keq,r

 (23)

Here, Keq,r =
K∏

i=1

(
cni,r

i

)
eq

is the equilibrium constant of the r-th reaction.

The affinity can also be expressed as function of reactant concentrations and equilibrium constant,
as follows:

Ar = −
K∑

i=1

µinir = −RT ln


K∏

i=1
cni,r

i

Keq,r

 (24)

Combining the expression for the rates and for the affinity, we easily derive the following
expression for the entropy production density:

σ =
R∑

r=1

vrAr

T
= −

R∑
r=1

vrR ln
(
1−

vr

vr, f

)
(25)

It is important to note that this expression is not explicitly dependent on the temperature T.
However, it is implicitly dependent on T via the Arrhenius relations.

Applying this expression to the linear reaction network, shown in Figure 3, results in the
temperature response curve for σ shown in Figure 8, considering only internal fluxes. We see that,
here, entropy production has a clear minimum where it becomes zero. This minimum relates to the
temperature at which also the net flux is zero, i.e., TJ=0. For temperatures away from this balanced
state, σ increases in both directions, showing that it does not necessarily decrease with T as previous
terms might suggest.
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Figure 8. Temperature response of σ for a linear reversible reaction system. The figure shows the
temperature response of the entropy production density σ of all internal reactions and reaction 2 from
the linear pathway illustrated in Figure 3, separately. The entropy production vanishes at TJ=0, the
temperature at which the net flux is zero. It increases for both higher and lower temperatures.

4. Discussion

In this work, we demonstrate how the interplay of thermodynamic properties and the structure of
reaction networks can potentially result in surprising temperature-dependent effects. These effects can
be the compensation of flux changes due to temperature shifts, as already demonstrated by Ruoff et
al. (2007) [10], but also functional network properties like the reversal of fluxes or the temperature
sensitive flux redirection within branched pathways, as shown in this work. Furthermore, we find
clues indicating that some of the changes observed in plant metabolism after temperature changes
might just occur naturally, at least to some extent, without additional regulation.

The Arrhenius equation was derived from experimental studies [11] and there are limits to
its applicability. The temperature-dependent kinetics utilized in this study are not universal for
biochemical reaction networks. The actual physics behind many of such reactions might be more
complex than considered here, rendering temperature-dependent modelling very complicated and
hard to tackle. Especially because of this, it is even more useful and necessary to not overcomplicate
things from the beginning. It has turned out that the Arrhenius equation is actually able to accurately
describe the temperature dependency of many reaction rates and, therefore, represents a proven and
sufficiently simple instrument to begin with.

Following this approach, we were able to demonstrate the potential for significant changes in the
overall network behavior, without any mechanistic regulation, by solely varying temperature, even for
the small and elementary network motifs presented in this study. The number of noteworthy effects,
within the framework of the approach, might be much higher, considering the multitude of combinations
of network structures, reaction kinetics and parameter distributions that are possible, and it remains a
challenge to fully explore the space of possibilities at this point. For future investigations, it would be
interesting to study the role of different kinetics in this context, by utilizing temperature-dependent,
reversible Michaelis-Menten kinetics as explained in the Methods section. In this way, one can describe
enzymatic reactions, also considering the role of changing enzyme concentration, as this can be a
limiting factor in a cellular environment. However, to approach the problem in a simple and structured
manner, we focused on non-complex effects that are relatively easy to assess and comprehend.

The reversal of reaction fluxes falls exactly into this category. It can fundamentally change the
overall behavior of a biochemical reaction network and can be observed in vivo. It has been shown by
Maitra and Lobo (1978) [17], that glycolysis, specifically the Embden–Meyerhof pathway, can reverse
direction in yeast. Although the trigger for flux reversal in this study was not temperature, it is pointed
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out that between phosphoenolpyruvate and fructose 1,6-diphosphate, many reactions stay close to
equilibrium, irrespective of the flux direction. This reveals a sensitive system that is, consequently, also
susceptible to thermodynamic changes.

Furthermore, many biochemical processes are based on branched reaction networks. These branch
points have the potential to serve as a basis for network-inherent temperature compensation as shown
in Ruoff et al. (2007) [10], but can also represent temperature-dependent control points, redirecting
fluxes through different branches of a network or pathway as demonstrated here. Unfortunately, since
branch points of this type would likely be embedded into bigger reaction networks, the described
effects might be hidden or masked by other processes, making them hard to discriminate and identify.
This work can serve as a reminder to consider the involvement of such effects when interpreting
experimental results.

To design, parameterize and validate models of temperature-dependent reaction networks, it is
essential to have a solid base of temperature-resolved experimental data. Although there are various
experimental attempts to study the effects of temperature on different organisms, there is still a lack of
data that captures the responses in sufficient scale and resolution to serve as a comprehensive foundation.
Yet, looking at plants, there are measured temperature response curves for ribulose-1,5-bisphosphate
carboxylase/oxygenase, better known as Rubisco, the enzyme responsible for carbon fixation in the
Calvin cycle during photosynthesis [18]. These data provide a basis to begin with and there already
exist models describing temperature-dependent Rubisco dynamics [19].

Here, we present a thermodynamic effect that might play a role in the accumulation of
carbohydrates in plants that are exposed to cold, another plant-specific phenomenon. Although
it is likely not the sole cause for this accumulation, it would be helpful to identify or rule out
its contribution.

It is known that different levels of active regulation are involved and important in acclimation
processes as demonstrated in Bräutigam (2009) [20], for example. Therefore, it is important to
point out that the effects presented here are solely based on the structural and thermodynamic
properties of the networks and require no regulation of enzyme activity on a genetic or any other level.
To test the potential effect of changes in enzyme concentration and temperature, either alone or in
combination, we analyzed a small toy network and demonstrated that both modifications have an
impact, however, enzyme-related effects seem to be stronger than the effect of temperature changes,
even though both modifiers have a non-negligible impact. We would like to emphasize that it is
indispensable to incorporate thermodynamic considerations like this in the research on acclimation, as
the thermodynamic influence is inevitable and its consequences might be unexpected.

Author Contributions: Conceptualization, S.O.A. and E.K.; methodology, S.O.A. and E.K.; formal analysis,
S.O.A. and E.K.; investigation, S.O.A. and E.K.; writing—original draft preparation, S.O.A.; writing—review and
editing, S.O.A. and E.K.; funding acquisition, E.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the Deutsche Forschungsgemeinschaft (CRC 175 “The Green Hub”).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, W.; Su, J. Effects of light acclimation on shoot morphology, structure, and biomass allocation of two
Taxus species in southwestern China. Sci. Rep. 2016, 6, 35384. [CrossRef] [PubMed]

2. Macmillan, H.A.; Knee, J.M.; Dennis, A.B.; Udaka, H.; Marshall, K.E.; Merritt, T.J.S.; Sinclair, B.J. Cold
acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 2016,
6, 28999. [CrossRef] [PubMed]

3. Hare, P.D.; Cress, W.A.; Van Staden, J. Dissecting the roles of osmolyte accumulation during stress.
Plant Cell Environ. 1998, 21, 535–553. [CrossRef]

4. Sicher, R. Carbon partitioning and the impact of starch deficiency on the initial response of Arabidopsis to
chilling temperatures. Plant Sci. 2011, 181, 167–176. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/srep35384
http://www.ncbi.nlm.nih.gov/pubmed/27734944
http://dx.doi.org/10.1038/srep28999
http://www.ncbi.nlm.nih.gov/pubmed/27357258
http://dx.doi.org/10.1046/j.1365-3040.1998.00309.x
http://dx.doi.org/10.1016/j.plantsci.2011.05.005
http://www.ncbi.nlm.nih.gov/pubmed/21683882


Entropy 2020, 22, 117 15 of 15
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