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Abstract: Image fusion is a very practical technology that can be applied in many fields, such as
medicine, remote sensing and surveillance. An image fusion method using multi-scale decomposition
and joint sparse representation is introduced in this paper. First, joint sparse representation is applied
to decompose two source images into a common image and two innovation images. Second, two
initial weight maps are generated by filtering the two source images separately. Final weight maps
are obtained by joint bilateral filtering according to the initial weight maps. Then, the multi-scale
decomposition of the innovation images is performed through the rolling guide filter. Finally, the final
weight maps are used to generate the fused innovation image. The fused innovation image and the
common image are combined to generate the ultimate fused image. The experimental results show
that our method’s average metrics are: mutual information (MI)—5.3377, feature mutual information
(FMI)—0.5600, normalized weighted edge preservation value (QAB/F)—0.6978 and nonlinear
correlation information entropy (NCIE)—0.8226. Our method can achieve better performance
compared to the state-of-the-art methods in visual perception and objective quantification.

Keywords: image entropy; joint bilateral filter; image fusion; rolling guidance filter; joint sparse
representation; multi-scale decomposition

1. Introduction

Image fusion combines multiple source images of the same scene together to make the fusion
image more suitable for human visual perception or computer processing [1]. The source images are
obtained from different sensors or imaging conditions. Each source image contains redundant and
complementary information about the scene. The purpose of image fusion is to integrate the redundant
and complementary information to make the fused image contain more relevant information specific to
an application or task. Image fusion technology has good application prospects. It has been applied in
many fields. In the medical field, we can reconstruct fused images by fusing multiple medical images
from different sensors. The fused images are able to provide complementary information for medical
analysis, enabling doctors to diagnose more quickly and accurately [2]. Moreover, surveillance is a
typical application of image fusion [3]. Using an infrared–visible image fusion, a surveillance system
can work effectively all day.
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Image fusion methods based on transform domain can be divided into two types: multi-scale
decomposition and sparse representation [4]. Multi-scale decomposition (MSD) is a very classical
approach to performing image fusion. The basic process of MSD-based methods contains three steps.
First, source images are converted into a specific transform domain, which typically decomposes
the source images into multi-scale representations. Then, different fusion strategies are adopted
for each scale level to acquire the multi-scale representation of the fused image in the transform
domain. Finally, the corresponding inverse transformation is utilized to reconstruct the fused image.
Traditional MSD methods can be divided into two categories. One includes the pyramid-based methods
such as Laplacian pyramid (LP) [5] and gradient pyramid (GP) [6]. The other contains the wavelet
transform-based methods, such as discrete wavelet transform (DWT) [7] and dual-tree complex wavelet
transform (DTCWT) [8]. In addition, there are some new MSD methods, such as non-subsampled
contourlet transform (NSCT) [9], shift-invariant shearlet transform (SIST) [10], non-subsampled
shearlet transform (NSST) [11] and complex shearlet transform (CST) [12]. In recent years, the edge-
preserving filter based-MSD has been a hot research direction. Edge-preserving smoothing filters,
such as the guided filter (GF) [13], joint bilateral filter (JBF) [14] and rolling guidance filter (RGF) [15],
can avoid ringing artifacts, since they do not blur strong edges in the decomposition process. Li et al.
put forward a method of image fusion using GF [16]. Chen et al. proposed an infrared-visible image
fusion method combining RGF and multi-directional decomposition [17]. Jian et al. combined RGF
and JBF together for image fusion [18]. Although these methods achieve quite good performance on
many types of images, they still have the following disadvantages: (1) the redundant information
between source images leads to low information entropy of fused images; (2) contrast of fused images
is likely to decrease.

Sparse representation (SR) is another classic image processing method. SR conforms to the
physiological characteristics of human vision [19]. Besides, it has robustness to additive noise [20].
SR has been successfully applied in many image processing fields, such as image classification [21],
image denoising [22], image communication [23] and image super-resolution [24]. Yang and Li [25]
were the first ones to utilize SR to deal with image fusion problem. The general flow of SR-based
methods contains three steps. First, an appropriate over-complete sparse dictionary is constructed
through a mathematical model or example learning. Second, the sparse representations of the source
images on the given sparse dictionary are obtained. The sparse representations are usually sets of
sparse coefficient vectors. Finally, the corresponding vectors are fused to get the coefficient vector
set of the fused image. The fused image is reconstructed with the same dictionary. Recently, a new
SR-based method called joint sparse representation (JSR) was applied to image fusion successfully.
The idea of JSR is to use sparse representation to divide two source images into a common part and
two innovation parts. The common part contains the redundant information shared by the two source
images, while the two innovation parts represent the complementary information of each source image.
After that, different fusion rules are used to fuse the two kinds of part separately. JSR preserves the
advantages of the SR method while eliminating the correlation between source images so that the
fused image is less affected by the redundant information. Yu et al. proposed a JSR-based approach
to carry out image denoising and fusion simultaneously [26]. Ma et al. combined JSR and optimum
theory to address the multi-focus image fusion problem [27]. However, including JSR, all SR-based
methods generally have the following disadvantages: (1) an over-complete dictionary may result in
visual artifacts in the reconstructed image; (2) simple fusion strategy for sparse coefficient vectors
leads to spatial inconsistency.

In order to make full use of the advantages and overcome the shortcomings of the above methods,
we propose a new image fusion method combining JSR and MSD. Specifically, first, JSR is used to
decompose two source images into a common image and two innovation images. Then, the innovation
images are sent to RGF-based MSD fusion framework to obtain the fused innovation image. Finally,
the fused innovation image and the common image are combined to obtain the fused image.

The main contributions of our work are as follows:
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1. To improve the low information entropy caused by the redundant information between source
images, only innovation images are performed edge-preserving MSD through RGF.

2. To suppress the artifacts that may be brought by JSR, weight maps are used to balance the
contribution of innovation images.

3. To make fused images have high contrast, innovation images are used to guide the optimization
of the weight maps.

4. To ensure the spatial consistency of fused images, the fusion of innovation images is performed
according to optimized weight maps.

2. Related Work

2.1. Joint Sparse Representation

JSR is a novel method with which to perform image fusion. As with SR, JSR has two key issues:
(1) sparse dictionary construction; (2) joint sparse coding to obtain coefficients. For JSR, constructing
an over-complete sparse dictionary is exactly the same as in SR. In this study, we used K-SVD [28] to
train the dictionary.

The biggest difference between JSR and SR is the method of sparse coding. In image processing,
the objects for sparse coding are overlapping small image patches of source images. These patches are
extracted by the sliding-window technique. The small patches of all the source images at the same
position constitute a patch set. SR encodes each patch separately, while JSR simultaneously encodes
all patches in the same set. JSR supposes that every patch consists of a common component and
an innovation component. The common component is shared by all patches in the same set, while
each patch has its own innovation component. There are two strategies for selecting the dictionaries
for JSR. One strategy is to use one fixed dictionary for all the components for sparse encoding and
reconstruction [26]. This strategy has low training cost, is easy to operate, and is suitable for the
sparse representation of multiple types of images. The other strategy is to use a fixed dictionary for
common components and an adaptive dictionary for innovation components for sparse coding and
reconstruction [27]. This strategy may yield better results, but comes with additional computational
costs. Our method uses the first strategy, which is to use a fixed dictionary for all components.
Since there are always two source images for fusion, suppose each patch set has W patches. Given
a flatten patch vi ∈ Rn (1 ≤ i ≤ 2) extracted from a source image and an over-complete dictionary
D ∈ Rn×m (n < m), where n represents the length of the vector and m represents the number of atoms
in the dictionary, respectively. The goal of JSR is to estimate a common sparse vector xC ∈ Rm and
innovation sparse vectors xI

i ∈ Rm (1 ≤ i ≤ 2) with only a few nonzero entries, such that

vi ≈ DxC + DxI
i , (1)

where DxC and DxI
i represent the common component and the innovation component of

vi, respectively.
When performing sparse coding, JSR needs to first concatenate the source image patches and the

dictionary separately. The encoded sparse coefficient vectors are also concatenated. Let

V =

[
v1

v2

]
, D̃ =

[
D D 0
D 0 D

]
, X =

 xC

xI
1

xI
2

 ,

where V denotes the concatenated source patch, D̃ denotes the concatenated dictionary and X denotes
the concatenated sparse coefficient vector. The joint version of Equation (1) can be defined as follows:

V ≈ D̃X. (2)
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The goal of JSR is to find an approximate optimal solution of X. This problem can be formulated as

arg min
X
‖X‖0 s.t.

∥∥D̃X−V
∥∥

2 ≤ ε, (3)

where ε is a sparse reconstruction error.
Our proposed method uses JSR as an image decomposition method to reduce correlations between

source images and increase the information entropy of a fused image. First, the two source images are
divided into small overlapping image patches through the sliding window technique. The dimensions
of the patches depends on the specific dictionary. Assuming the dictionary D ∈ Rn×m, then the size of
each patch should be

√
n×
√

n. Every patch is rearranged to a column vector. Second, two patches
located at the same position compose a patch set. JSR is performed independently on each patch
set. For every patch set, a common sparse vector belonging to the entire set and two innovative
sparse vectors belonging to each patch in the set can be obtained. Then, a common patch and two
innovation patches can be reconstructed by the corresponding sparse vector for each set. Finally, all the
common patches and the corresponding innovation patches are averaged in the same order they were
selected during the sliding window step. A common image and two innovation images are generated.
The correlation between the two innovation images is lower than that between the two source images.
We define the process of obtaining a common image and innovation images from source images as
JSR decomposition.

2.2. Rolling Guidance Filter

The purpose of multi-scale decomposition is to obtain images of different blur levels to make full
use of the information contained in the source images. Recently, edge-preserving filter-based MSD
methods have become the mainstream of research. These methods are able to preserve high-contrast
edges and obvious structures while blurring the image. The state-of-the-art edge-preserving MSD
method was proposed by by Jian et al. [18]. It uses a rolling guidance filter (RGF).

A RGF can be seen as an extension of joint bilateral filter (JBF). JBF is first proposed for image
denoising by Petschnigg et al. [14]. JBF accepts an input image and a guidance image as input.
The content of the output image is similar to the input image, while the structures and edges of it are
similar to the guidance image. First, the Gaussian kernel gδ is given as:

gδ (p, q) = exp

(
−‖p− q‖2

2δ2

)
, (4)

where p and q index pixel coordinates in the image, and δ is the standard deviation. With Equation (4),
given a guidance image G and an input image Iin, the definition of JBF is as follows:

Iout (p) =
1
U ∑

q∈N(p)
gδs (p, q) gδr (G (p) , G (q)) Iin (q) , (5)

where Iout is the output image, U = ∑q∈N(p) gδs (p, q) gδr (G (p) , G (q)) is the normalization factor,
N (p) is the set of neighboring pixels of p, δs is the spatial standard deviation and δr is the range
standard deviation. The function gδs sets the weight in the spatial domain based on the distance
between the pixels, while the function gδr sets the weight on the range based on intensity differences.
δs and δr control the spatial and range weights, respectively. For the sake of simplicity, we abbreviate
Equation (5) as follows:

Iout = JBF (Iin, G, δs, δr) , (6)

where JBF (·) denotes the JBF process.
RGF was proposed by Zhang et al. [15]. The biggest feature of RGF is the ability to remove small

structures while preserving the main content of the image. RGF is composed of two main steps: small



Entropy 2020, 22, 118 5 of 22

structure removal and edge recovery. As shown in Figure 1, RGF is an iterative process. Suppose Jt is
the result in the t-th iteration and M is the number of total iterations, the iterative process of RGF is
as follows:

Jt = JBF
(

Iin, Jt−1, σs, σr

)
, t = 1, 2, · · · , M, (7)

where σs and σr denote the standard deviations of RGF in order to distinguish them from δs and δr

of JBF.
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small structure 

removal

JBF

Guid-
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Input

Step2: 

edge 

recovery

... JBF

Guid-

ance

Guid-

ance
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2
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Figure 1. Rolling guidance filtering.

According to Equation (7), the iteration process of RGF is given as Algorithm 1.

Algorithm 1 : The iteration process of RGF.

Input: Input image Iin; spatial standard deviation σs; range standard deviation σr; iteration number

M.
1: Set J0 as a constant image, i.e., ∀p, J0 (p) = C, where C is a constant value.
2: for t = 1 : 1 : M do

3: Jt = JBF
(

Iin, Jt−1, σs, σr
)
.

4: end for
Output: Output image Iout = JM.

Since J0 is set as a constant image, the first iteration is equivalent to blurring Iin with a Gaussian
filter with the standard deviation of σs to remove small structures. The remaining iterations are
equivalent to continuous filtering of Iin by the joint bilateral filter. Specifically, in each iteration,
JBF takes Iin as input and Jt−1 as guidance, and σs and σr as standard deviations. Edges are recovered
gradually during this process. After all the iterations are completed, JM is the output Iout.

For simplicity, we denote the RGF filtering operation as follows:

Iout = RGF (Iin, σs, σr, M) , (8)

where RGF (·) denotes the RGF function.

3. Proposed Method

Our proposed method is shown in Figure 2, which contains four stages: (1) JSR decomposition;
(2) weight map construction; (3) multi-scale decomposition; (4)fused image reconstruction.
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Figure 2. The schematic diagram of our proposed fusion method.

3.1. JSR Decomposition

We first use JSR decomposition to decompose two source images SA and SB into a common image
C and two innovation images IA and IB. An example of JSR decomposition is given in Figure 3.

a b c d e
Figure 3. An example of JSR decomposition. (a,b) Source images; (c) The common image; (d) The
innovation image of (a); (e) The innovation image of (b).
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3.2. Weight Map Construction

The weight maps are references for fusing detail layers. In order to make the information accurate
and complete, weight maps are generated from the source images. First, SA and SB are processed with
Kirsch operator to obtain the saliency maps RA and RB. Next, the initial weight maps PA and PB are
obtained through a pixel-by-pixel comparison of the saliency maps RA and RB defined as follows:

PA (q) =

{
0, i f RA (q) ≤ RB (q)
1, otherwise

,

PB (q) = 1− PA (q) ,

(9)

where q denotes pixel coordinates. The order in which the two source images are considered does not
affect the initial weight maps. At each pixel position q, the initial weight of the one with the larger
saliency value is set to 1 and the other is set to 0. If RA (q) = RB (q), then either of the two initial
weights can be set to 1 and the other is set to 0, which does not affect the result. However, it is almost
impossible for two saliency values to be exactly equal.

Finally, JBF is used to filter PA and PB, and the final weight maps are obtained. This step is
as follows:

Wi
A = JBF(PA, IA, δi

s, δi
r), i = 1, 2, · · · , K− 1,

Wi
B = JBF(PB, IB, δi

s, δi
r), i = 1, 2, · · · , K− 1.

(10)

By adjusting δi
d and δi

r, weight maps for detail layers are optimized. The innovation images IA
and IB are used as guidance images to enhance the difference between weight maps. This results in
higher contrast in the fused image. Besides, this step makes the weight values same for the pixels with
similar brightness and next to each other so that the problems caused by spatial consistency can be
avoided [16].

3.3. Multi-Scale Decomposition

RGF is the key to performing this stage. When M and σr are set to constants, changes of σs can
achieve different blur levels of rolling guidance filtering. As σs increases, the output of RGF becomes
more blurred, which means it contains more low-frequency components. Therefore, the output of
using the largest σs for RGF should be regarded as the base layer. Outputs using various smaller σs are
sequentially differentiated and the difference values are regarded as the detail layers.

Now we take IA as an example to give the concrete multi-scale decomposition method. First,
IA is normalized to range [0, 1] and blurred into K− 1 levels through RGF; this process is described by
Equation (11).

Oi
A = RGF

(
IA, σi

s, σr, M
)

, i = 1, 2, · · · , K− 1, (11)

where Oi
A denotes the outputs of RGF using different σi

s. Let σi+1
s > σi

s; then, the smooth level is
Oi+1

A > Oi
A. Furthermore, in order to give a unified equation form, let O0

A = IA. Finally, base layers
BA and K− 1 detail layers Hi

A (i = 1, 2, · · · , K− 1) can be obtained by Equation (12)

BA = OK−1
A ,

Hi
A = Oi−1

A −Oi
A, i = 1, 2, · · · , K− 1.

(12)

The same operation is performed to IB to get BB and Hi
B (i = 1, 2, · · · , K− 1).



Entropy 2020, 22, 118 8 of 22

3.4. Fused Image Reconstruction

There are four steps to reconstruct the final fused image: (1) reconstruct the fused base layer FB;
(2) reconstruct the fused detail layers Fi

H ; (3) reconstruct the fused innovation image FI by combining
FB and Fi

H ; (4) reconstruct the final fused image F by combining FI and the common image C.
First, the fused base layer FB is reconstructed by entropy-based average. The base layer contains

the low-frequency information of the image, which is equivalent to the average value of the image.
Fusing base layers by the traditional simple averaging method may cause the fused image have low
contrast and information entropy. Since the global variance of a base layer represents its overall
contrast and amount of information, we regard global variance of a base layer as its entropy. Then, an
entropy-based average method is used to fuse the base layers. Specifically, the entropies EA and EB of
the two base layers BA and BB are calculated by:

EA = var (BA) ,

EB = var (BB) ,
(13)

where var (·) denotes the global variance function. Second, the fused base layer FB is reconstructed by
weighted average using EA and EB as weights:

FB =
1

EA + EB
(EABA + EBBB) . (14)

Second, the fused detail layers Fi
H are reconstructed. The detail layers are simply multiplied by

the corresponding weight maps and summed up to achieve the fusion. This process is described
as follows:

Fi
H = Hi

AWi
A + Hi

BWi
B, i = 1, 2, · · · , K− 1. (15)

Then, with the fused detail layers Fi
H and base layer FB, the fused innovation image FI can be

obtained as follows:

FI = FB +
K−1

∑
i=1

Fi
H . (16)

Finally, the fused innovation image FI and the common image C are merged together to obtain
the ultimate fused image F:

F = FI + C. (17)

3.5. Workflow of Our Proposed Method

The workflow of our proposed method can be summarized as follows. Consider two source
images SA and SB, dictionary D, the decomposition level K and the parameters of JBF and RGF. First,
JSR is used to decompose the two source images into one common image C and two innovation images
IA and IB. Second, the Kirsch operator is used to extract saliency maps PA and PB from source images.
Regarding the innovation images as guidance, JBF is applied to the saliency maps to obtain weight
maps Wi

A and Wi
B (i = 1, 2, · · · , K− 1). Then, K-level multi-scale decomposition of the innovation

images is performed by RGF to obtain the detail layers Hi
A and Hi

B (i = 1, 2, · · · , K− 1) and the base
layers BA and BB. Finally, the detail layers are fused according to the corresponding weight maps.
The base layers are fused by an entropy-based fusion rule. By summing the fused detail layers Fi

H
(i = 1, 2, · · · , K− 1) and the fused base layer FB, the fused innovation image FI is obtained. The last
step is to add FI to the common image C, and the fused image is obtained.

When doing addition and multiplication, the problem of dynamic range of images needs to be
addressed. In our workflow, multiplication and addition occur during the fusion of the detail and
base layers. For the fusion of detail layers, two detail layers on the same decomposition level are
respectively multiplied with their corresponding weight maps, and the products are added to obtain
the fused detail layer. The two corresponding weight maps are complementary, that is, the sum of
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two weights at the same pixel position is very close to 1. Therefore, the value range of the fused detail
layers hardly changes. For the fusion of base layers, since the two weights are also complementary, the
value range of the fused base layer does not change either. By adding all the fused detail layers and the
fused base layer together, the fused image can be reconstructed. This final addition may cause a small
number of pixels to be out of the reasonable range of [0, 255]. For these pixels, the values less than 0
are set to 0 and the values greater than 255 are set to 255. Finally, the value of each pixel is rounded
into an integer.

The pseudo code of our proposed method is shown as Algorithm 2.

Algorithm 2 : Pseudo code of our proposed method.

Input: Source images SA, SB; Dictionary D; Decomposition level K; JBF parameters δi
s, δi

r; RGF

parameters σi
s, σr, M.

1: Use D to perform JSR decomposition on SA, SB to get C, IA, IB.
2: Process SA, SB with Kirsch operator to get RA, RB.
3: for q in pixel coordinate range of RA do

4: if RA (q) ≤ RB (q) then

5: PA (q) = 0, PB (q) = 1.
6: else

7: PA (q) = 1, PB (q) = 0.
8: end if
9: end for

10: for i = 1 : 1 : K− 1 do

11: Wi
A = JBF(PA, IA, δi

s, δi
r), Wi

B = JBF(PB, IB, δi
s, δi

r).
12: Oi

A = RGF
(

IA, σi
s, σr, M

)
, Oi

B = RGF
(

IB, σi
s, σr, M

)
.

13: end for
14: BA = OK−1

A , BB = OK−1
B .

15: O0
A = IA, O0

B = IB.
16: for i = 1 : 1 : K− 1 do

17: Hi
A = Oi−1

A −Oi
A, Hi

B = Oi−1
B −Oi

B.
18: end for
19: EA = var (BA), EB = var (BB).
20: FB = 1

EA+EB
(EABA + EBBB).

21: FH = ∑K−1
i=1 Hi

AWi
A + Hi

BWi
B.

22: FI = FB + FH .
23: F = FI + C.
Output: Fused image F.

4. Experimental Results and Analysis

4.1. Experimental Settings and Objective Evaluations

We tested all the methods using four categories of images, with four sets of source images in
each category. Specifically, there are infrared-visible images shown in Figure 4, medical images
shown in Figure 5, multi-focus images shown in Figure 6 and remote sensing images shown in
Figure 7. The images we used for our experiments are downloadable from the following website:
https://sites.google.com/view/durgaprasadbavirisetti/datasets.

The default parameters in our method are set according to [18]. Specifically, for the parameters of
JBF, we set δi

s = {1, 3, 10, 30} (i = 1, 2, 3, 4) and δi
r = {10, 30, 100, 300} (i = 1, 2, 3, 4) as defaults. For the

RGF part, we set σi
s = {3, 18, 108, 648} (i = 1, 2, 3, 4), σr = 0.2 and M = 5 as a default. The other

https://sites.google.com/view/durgaprasadbavirisetti/datasets
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parameters are discussed in the following experiments. All the experiment’s programs were generated
in Matlab R2019a (MathWorks, Natick, MA, USA) on an Intel(R) Core(TM)i5-6400CPU (Intel, Santa
Clara, CA, USA) @ 2.70 GHz with 8.00 GB RAM.

a b c d
Figure 4. Infrared-visible image sets. (a–d) Four sets of infrared–visible source images.

a b c d

Figure 5. Medical image sets. (a–d) Four sets of medical source images.

a b c d

Figure 6. Multi-focus image sets. (a–d) Four sets of multi-focus source images.
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a b c d
Figure 7. Remote sensing image sets. (a–d) Four sets of remote sensing source images.

The objective evaluation has a certain reference value for judging the quality of image fusion.
In our experiments, four metrics were used to measure the information entropy and visual quality of
the results of different methods:

1. Mutual information (MI) [29] based on Shannon entropy and relative entropy. It measures the
correlation between the source image and the fused image to indicate how much information
is retained.

2. Feature mutual information (FMI) [30] indicates the entropy of features in fused image.
It measures the amount of information in image features carried from the source images to
the fused image. Besides, it is a non-reference image fusion metric.

3. The normalized weighted edge preservation value (QAB/F) [31] measures the visual information
quality of the fusion, and more edge information can lead to higher values for this metric.

4. Nonlinear correlation information entropy (NCIE) [32] is based on nonlinear joint entropy.
It measures the general correlation between the source images and the fused image.

Higher values of the above four metrics demonstrate a better fusion effect. The codes of the
metrics are provided by Qu et al. [33].

4.2. Discussions about Parameters

4.2.1. Size of JSR Dictionary

This experiment tested the effect of different JSR dictionary sizes on the fusion performance.
Suppose the dictionary D ∈ Rn×m (n < m); then n affects the size of image patches while m affects the
completeness of the dictionary. A larger n indicates a larger size of image patches, which leads to an
enlarged window to perform joint sparse representation, while a larger m increases the completeness
of the dictionary. It is important to find a suitable dictionary size. n and m values which are too small
cause large reconstruction errors and loss of details, while overly large n and m easily cause artifacts
and take more time.

In this experiment, the decomposition level K was set to 5 while other parameters were set to
default values. All the dictionaries used in this experiment were trained with 100,000 natural image
patches for 180 iterations by the K-SVD algorithm, as suggested in [34]. All 16 sets of source images
were tested. The average values of the objective metrics and the average time cost were compared.
First, m was fixed to 512 and n was set to {36, 64, 100}, respectively. Then, n was fixed to 64 and m was
set to {128, 256, 512}, respectively. The results are shown in Tables 1 and 2.
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Table 1. Objective evaluation of different n values for the JSR dictionary. The best and second best
results of each metric are marked in red and bold, respectively.

Metric 36 × 512 64 × 512 100 × 512

MI 5.3075 5.3377 5.3179
FMI 0.5650 0.5600 0.5556

QAB/F 0.6971 0.6978 0.6974
NCIE 0.8224 0.8226 0.8225
Time 163.74 398.33 1182.71

Table 2. Objective evaluation of different m values for the JSR dictionary. The best and second best
results of each metric are marked in red and bold, respectively.

Metric 64 × 128 64 × 256 64 × 512

MI 5.2805 5.3309 5.3377
FMI 0.5538 0.5638 0.5600

QAB/F 0.6936 0.6973 0.6978
NCIE 0.8223 0.8225 0.8226
Time 176.07 251.15 398.33

It can be seen that the size of 64 × 512 achieved the highest MI, QAB/F and NCIE in both
experiments, and its FMI values were both the second highest. At the same time, its time cost was
not too high compared to others. Therefore, it is reasonable to choose the size of the JSR dictionary as
64× 512.

4.2.2. Number of Decomposition Level

This experiment tested the effect of different decomposition levels K on the fusion performance.
For the innovation image of each source image, RGF decomposition generates K− 1 detail layers and
one base layer. The base layer can be considered as the last detail layer with the highest degree of
blur. At the same time, K− 1 weight maps are generated by JBF to guide the fusion of detail layers.
To ensure that at least one detail layer exists, the minimum value of K should be 2.

In this experiment, K was set to {2, 3, 4, 5}, respectively. The other parameters were set to default.
The 64× 512 dictionary was used for JSR as mentioned before. All 16 sets of source images were tested.
The average values of the objective metrics were compared. The results are shown in Figure 8.

As K increases, MI and NCIE also increase. The highest values of MI and NCIE were at K = 5,
but both the growth rates from K = 4 to K = 5 were low. Both the highest growth rates were from
K = 3 to K = 4. FMI reached the highest value at K = 2. After reaching the highest value, the value
dropped. NCIE reached the highest value at K = 3. Except from K = 2 to K = 3, the growth rate
of NCIE was approximately equal to zero. Since two metrics reached the maximum value at K = 5,
and the growth rates of all four metrics tended to be zero at K = 5, it is reasonable to choose K = 5 as
the default decomposition level.
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a b c d
Figure 8. Objective evaluation of different decomposition level K. (a–d) The values of MI, FMI, QAB/F

and NCIE, respectively.

We also compared the calculation times required for different decomposition levels. The comparison
results are shown in Table 3.

Table 3. Time cost of different decomposition levels.

K 2 3 4 5

Time 374.70 376.97 381.58 398.33

As K increases, the time cost increases at a very slow rate. Compared with the time cost of JSR
decomposition, the time cost of MSD using RGF is very small. The 5-level decomposition is only about
6% slower than the 2-level decomposition. It is worthwhile to trade these time costs for performance
improvements. Overall, it is reasonable to choose K = 5 as the default decomposition level.

4.3. Validity of Our Combination Strategy

In this experiment, our proposed method was compared to original JSR-based [26] and
RGF-based [18] image fusion methods to validate the effectiveness of our combination strategy.
Our method adopted the aforementioned default parameters, and the JSR-based and RGF-based
methods adopted the default parameters from their papers. All four categories of source images
were tested. The average values of the objective metrics of each category were compared separately.
Some examples of the fused images are shown in Figure 9. The average values of the objective metrics
are shown in Table 4.

According to Figure 9, RGF and our method perform similarly in terms of subjective effects.
But the subjective effect of JSR is not as good as the other two. For fused images of JSR, the details
in some images are smoothed, and some images have local artifacts. The objective metrics in Table 4
show that for images other than medical ones, our method is the best. This means that the fused
images of our method have higher information entropy and visual quality. In the results of medical
images, our method achieves best MI and QAB/F, while JSR achieves best FMI and NCIE. However,
according to the medical image fusion example in Figure 9, our method generates clearer details than
the JSR method.

Our method combines JSR and RGF for better image fusion performance, while JBF can be
regarded as a special form of RGF. First, JSR decomposition is used to obtain two innovation images
and a common image. The two innovation images contain the complementary information of the
two source images, which have more information entropy and less redundancy. The complementary
information is what really needs to be fused. Since the common image contains the redundant
information shared by the two source images, it should be directly included in the fused image without
modification. Second, the combination of JBF and RGF for image fusion was proven to be very effective.
RGF is used for multi-scale edge-preserving decomposition, which makes the most use of details and
textures. JBF is used to obtain the corresponding weight maps, which take spatial consistency well into
account and reduces local artifacts [18]. To further improve the quality of fusion, the innovation images
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generated by JSR were used as the input images of RGF and the guidance images of JBF. The MSD
using RGF can extract complementary details of the innovation images at different levels. Meanwhile,
using the innovation images as the guidance images of JBF can make the weight maps balance the
contribution of the innovation images well. Then, different strategies are used to fuse the detail layers
and the base layer to make the fused innovation image have high contrast and more details. Finally,
adding the common image directly to the fused innovation image ensures that common information
can be preserved.

ba c d e

Figure 9. Some fused images of JSR, RGF and our proposed method. (a,b) Source images; (c) The fused
results of JSR; (d) The fused results of RGF; (e) The fused results of our proposed method.

Table 4. Objective evaluation of JSR, RGF and our method. The best and second best results of each
metric are marked in red and bold, respectively.

Category Metric JSR RGF OURS

MI 3.6597 3.7839 4.2105
Infrared- FMI 0.4946 0.5456 0.5477

visible QAB/F 0.6130 0.6644 0.6652
NCIE 0.8106 0.8113 0.8143

MI 4.1862 4.0194 4.2164
Medical FMI 0.5439 0.5278 0.5228

QAB/F 0.6177 0.6768 0.6800
NCIE 0.8133 0.8119 0.8130

MI 6.9542 8.8911 8.9213
Multi- FMI 0.5475 0.6316 0.6324
focus QAB/F 0.7449 0.7890 0.7891

NCIE 0.8316 0.8465 0.8467

MI 2.9600 3.7494 4.0035
Remote FMI 0.4555 0.5337 0.5370
sensing QAB/F 0.5846 0.6508 0.6567

NCIE 0.8082 0.8145 0.8165
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Overall, our method is superior to the single JSR-based and RGF-based methods. This experiment
proves the validity of our proposed combination strategy.

4.4. Comparison with Other Methods

In order to prove the superiority of the proposed method, we compare it with 13 other image
fusion methods here. The comparative methods include the adaptive sparse representation (ASR) [35],
the convolutional sparse representation (CSR) [36], curvelet transform (CVT) [37], dual-tree complex
wavelet transform (DTCWT) [8], the gradient transfer fusion (GTF) [38], the hybrid multi-scale
decomposition (H-MSD) [39], the convolutional neural network (CNN) [40], Laplacian pyramid
(LP) [5], the general framework based on multi-scale transform and sparse representation (MSSR) [34],
the multi-resolution singular value decomposition (MSVD) [41], nonsubsampled contourlet transform
(NSCT) [9], the visual saliency map and weighted least square optimization (WLS) [42] and the fast
filtering image fusion (FFIF) [43]. All these methods were given default parameters from in their
related papers. For our proposed method, the dictionary size was 64× 512, the decomposition level K
was set to 5 and the other parameters were set to defaults.

In this experiment, all four categories of source images were tested. The average values of the
objective metrics of each category were compared separately. Some examples of the fused images are
shown in Figures 10–13. The average values of the objective metrics are shown in Tables 5–8.

c d

e f g h

i k l

m n o p
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Figure 10. Examples of the fusion results of infrared-visible images. (a,b) Source images; (c–p) The
fused results of ASR, CSR, CVT, DTCWT, GTF, H-MSD, CNN, LP, MSSR, MSVD, NSCT, WLS, FFIF,
and our proposed method, respectively.
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Table 5. Objective evaluation of infrared-visible image fusion. The best and second best results of each
metric are marked in red and bold, respectively.

Metric ASR CSR CVT DTCWT GTF H-MSD CNN

MI 2.7134 2.7878 2.2697 2.3902 2.5465 2.6970 2.9490
FMI 0.5202 0.4510 0.4596 0.4892 0.4874 0.4324 0.4818

QAB/F 0.5986 0.5890 0.5512 0.5796 0.4994 0.5686 0.6290
NCIE 0.8064 0.8066 0.8052 0.8055 0.8061 0.8064 0.8072

Metric LP MSSR MSVD NSCT WLS FFIF OURS

MI 2.6575 3.4726 2.9739 2.4802 2.7887 4.9717 4.2105
FMI 0.5003 0.5044 0.3972 0.4988 0.4339 0.5775 0.5477

QAB/F 0.6366 0.6065 0.4123 0.6144 0.5574 0.6405 0.6652
NCIE 0.8062 0.8107 0.8072 0.8057 0.8065 0.8226 0.8143

c d

e f g h

i k l

m n o p

b

j

a

Figure 11. Examples of the fusion results of medical images. (a,b) Source images; (c–p) The fused
results of ASR, CSR, CVT, DTCWT, GTF, H-MSD, CNN, LP, MSSR, MSVD, NSCT, WLS, FFIF, and our
proposed method, respectively.
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Table 6. Objective evaluation of medical image fusion. The best and second best results of each metric
are marked in red and bold, respectively.

Metric ASR CSR CVT DTCWT GTF H-MSD CNN

MI 3.4473 3.3705 2.6794 2.9084 2.9051 3.2624 3.5522
FMI 0.5638 0.5087 0.3534 0.4478 0.5125 0.4738 0.5152

QAB/F 0.6037 0.5976 0.5170 0.5488 0.4288 0.5639 0.6416
NCIE 0.8092 0.8090 0.8069 0.8075 0.8076 0.8086 0.8097

Metric LP MSSR MSVD NSCT WLS FFIF OURS

MI 3.2668 3.6737 3.5279 3.1658 3.5519 4.6729 4.2164
FMI 0.5243 0.5406 0.4731 0.5063 0.4907 0.6086 0.5228

QAB/F 0.6384 0.6422 0.4713 0.6220 0.5914 0.6535 0.6800
NCIE 0.8085 0.8102 0.8097 0.8082 0.8097 0.8151 0.8130

c d

e f g h

i k l

m n o p

b

j
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Figure 12. Examples of the fusion results of multi-focus images. (a,b) Source images; (c–p) The fused
results of ASR, CSR, CVT, DTCWT, GTF, H-MSD, CNN, LP, MSSR, MSVD, NSCT, WLS, FFIF, and our
proposed method, respectively.
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Table 7. Objective evaluation of multi-focus image fusion. The best and second best results of each
metric are marked in red and bold, respectively.

Metric ASR CSR CVT DTCWT GTF H-MSD CNN

MI 7.5714 7.6874 7.2197 7.4468 7.6793 7.5452 8.5647
FMI 0.6022 0.4586 0.5643 0.5942 0.5963 0.5534 0.6065

QAB/F 0.7746 0.7570 0.7571 0.7710 0.6210 0.7477 0.7835
NCIE 0.8367 0.8363 0.8343 0.8360 0.8397 0.8363 0.8441

Metric LP MSSR MSVD NSCT WLS FFIF OURS

MI 7.9235 7.8695 6.5958 7.5796 7.3741 9.2663 8.9213
FMI 0.6057 0.5987 0.4236 0.5963 0.5680 0.6558 0.6324

QAB/F 0.7829 0.7807 0.6212 0.7795 0.7647 0.7403 0.7891
NCIE 0.8390 0.8385 0.8299 0.8367 0.8349 0.8533 0.8467

c d

e f g h

i k l

m n o p

b

j
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Figure 13. Examples of the fusion results of remote sensing images. (a,b) Source images; (c–p) The
fused results of ASR, CSR, CVT, DTCWT, GTF, H-MSD, CNN, LP, MSSR, MSVD, NSCT, WLS, FFIF,
and our proposed method, respectively.



Entropy 2020, 22, 118 19 of 22

Table 8. Objective evaluation of remote sensing image fusion. The best and second best results of each
metric are marked in red and bold, respectively.

Metric ASR CSR CVT DTCWT GTF H-MSD CNN

MI 2.0875 2.2285 1.8935 1.9541 1.7620 2.1677 3.6505
FMI 0.5057 0.4519 0.4305 0.4590 0.4967 0.4141 0.4741

QAB/F 0.5375 0.5908 0.5526 0.5802 0.4661 0.5428 0.6194
NCIE 0.8047 0.8052 0.8044 0.8045 0.8037 0.8055 0.8143

Metric LP MSSR MSVD NSCT WLS FFIF OURS

MI 2.1795 3.1134 2.0510 2.0314 2.1937 4.5241 4.0035
FMI 0.4784 0.4646 0.3010 0.4757 0.4199 0.5473 0.5370

QAB/F 0.6173 0.5941 0.4055 0.6119 0.5389 0.6298 0.6567
NCIE 0.8051 0.8110 0.8044 0.8046 0.8050 0.8209 0.8165

4.4.1. Analysis of Infrared–Visible Results

According to Figure 10, our method produces clear structures of the windows and the barrel.
GTF produces the sharpest silhouettes and structures. However, in the GTF result, the light under
the windows in the visible image is not fused, which reduces the local contrast and makes the letters
unclear. CNN performs similarly to our method. The results of other methods either have unclear
structures or have low contrast.

According to Table 5, our method is the best on QAB/F and the second best on the other three
metrics. FFIF is the best on MI, FMI and NCIE, while it is the second best on QAB/F. However,
the visual quality of FFIF is not so good. Some information in the visible image is not fused at all.
Some details from the visible image are missing in the fused image. Although the metrics show that
the results of FFIF have high information entropy, this is in exchange for the decline in visual quality.
In contrast, our method achieves a balance between visual quality and information entropy.

4.4.2. Analysis of Medical Results

According to Figure 11, our method produces both high contrast and clear structures. With the
exception of CNN, MSSR, FFIF and our method, all other methods make the texture from the middle
part of (b) unclear due to low contrast. However, the structures produced by CNN, MSSR and FFIF are
not as clear as our method.

According to Table 6, our method is the best on QAB/F and the second best on MI and NCIE.
FFIF is the best on MI, FMI and NCIE, while it is the second best on QAB/F. ASR is the second best
on FMI. However, the edges and structure of the FFIF result are unclear. The structures of the two
source images are mixed together, and it looks confusing. The result of ASR has low contrast and the
middle part of the fused image is not clear. As pointed out by QAB/F, our method has the best visual
quality. At the same time, our method also has high information entropy.

4.4.3. Analysis of Multi-Focus Results

According to Figure 12, our method preserves the clear letters and edges well. Letters in ASR,
H-MSD, MSVD and WLS results are not very clear. The edges of the right clock in MSSR and NSCT
are not well preserved. In the CSR result, there is an obvious artifact above the clock edge. The fusion
results of GTF and FFIF are very poor, the clock on the right is very fuzzy, and the information in the
source image (a) is hardly fused. CVT, DTCWT, CNN, LP perform similarly to our method.

According to Table 7, our method is the best on QAB/F and the second best on the other three
metrics. FFIF is the best on MI, FMI and NCIE. CNN is the second best on QAB/F. However, as
mentioned earlier, the fusion quality of FFIF for some multi-focus images is very poor. In this case,
high values of the metrics are not so convincing. Our method can achieve high values of metrics while
ensuring visual quality.
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4.4.4. Analysis of Remote Sensing Results

According to Figure 13, our method preserves the textures on the ground and the structures of the
buildings well. ASR and MSVD fail to preserve the straight line structures in the right box. Except our
method, all other methods do not preserve the textures on the ground well.

According to Table 8, our method is the best on QAB/F and the second best on the other three metrics.
FFIF is the best on MI, FMI and NCIE, while it is the second best on QAB/F. However, the results of
FFIF suffer from spatial inconsistencies, and there are many discontinuous black patches on the ground.
In contrast, our method has the best visual quality while having high information entropy.

4.4.5. Summary of the Analysis

According to Figures 10–13 and the QAB/F metric, our method is the best in terms of visual
quality compared with the other 13 methods. The MI, FMI and NCIE metrics of our method are
slightly lower than those of FFIF. Although the metrics show that the fused images of FFIF have higher
information entropy, FFIF does not make full use of the information in each source image. This makes
the visual quality of the FFIF method not so good. In contrast, our method achieves a good balance
between visual quality and information entropy.

Overall, this experiment demonstrates that our method is comparable to or better than
state-of-the-art methods both in visual and objective evaluations.

5. Conclusions

In this paper, a JSR and RGF based image fusion method is proposed. Our method uses JSR for
image decomposition, reduces the correlation and highlights the complementary information between
source images. This improves the low information entropy caused by the redundant information
between source images. Multi-scale decomposition using RGF can remove small structures while
preserving obvious edges in the innovation images. It can extract complementary details of the
innovation images at different levels. Using weight maps to balance the contribution of the innovation
images can suppress the artifacts that may be brought by JSR. The innovation images are used to guide
the optimization of the weight maps so that the fused image can have high contrast. The fusion of
innovation images is performed according to optimized weight maps to ensure the spatial consistency
of the fused innovation image. Finally, adding the common image directly to the fused innovation
image without processing ensures that the common information contained in the two source images
can be well retained. Experimental results demonstrate that our main contributions have been achieved,
and our method can achieve better performance than state-of-the-art methods.
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