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Abstract: This paper studies the problem of tangible assets acquisition within the company by
proposing a new hybrid model that uses linear programming and fuzzy numbers. Regarding linear
programming, two methods were implemented in the model, namely: the graphical method and the
primal simplex algorithm. This hybrid model is proposed for solving investment decision problems,
based on decision variables, objective function coefficients, and a matrix of constraints, all of them
presented in the form of triangular fuzzy numbers. Solving the primal simplex algorithm using fuzzy
numbers and coefficients, allowed the results of the linear programming problem to also be in the
form of fuzzy variables. The fuzzy variables compared to the crisp variables allow the determination
of optimal intervals for which the objective function has values depending on the fuzzy variables.
The major advantage of this model is that the results are presented as value ranges that intervene
in the decision-making process. Thus, the company’s decision makers can select any of the result
values as they satisfy two basic requirements namely: minimizing/maximizing the objective function
and satisfying the basic requirements regarding the constraints resulting from the company’s activity.
The paper is accompanied by a practical example.

Keywords: tangible assets; investment decisions; situation analysis; graphical method; primal
simplex algorithm; fuzzy coefficients and decision variables; fuzzy triangular numbers

1. Introduction

In the current economic context, companies will have to solve a rather complex decision problem,
respectively, to consider capital assets in tangible assets that ensure the best combination between the
economic performance of the tangible assets, the economic benefits generated by the tangible assets
during the useful economic life and to take into account the constraints that the company has due to
the limited nature of the resources. Solving this complex decision problem is the main purpose and
motivation for this research paper.

The major contribution of the paper consists in solving a complex problem within the company,
namely, to obtain a favorable relationship between the economic benefits of the tangible assets, the
acquisition cost, and the constraints of the company. This complex problem was solved with a hybrid
model which uses two modern tools:

• linear programming, through which it is ensured that conditions are met for the tangible assets,
namely: the fulfillment of the objective function condition that can be to minimize the cost of
acquiring the tangible assets or to maximize the economic benefits generated by them; and at the
same time the fulfillment of the restrictions that refer to the limited character of the resources.
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For example, limited investment budget, limited budget for maintenance expenses or limited
areas destined to the production activities, etc.,

• the fuzzy optimization necessary for modeling the technical and economic criteria that are specific
to the tangible assets. The fuzzy modeling for the acquisition criteria specific to the tangible
assets has a number of advantages, such as ensuring the comparability between the acquisition
criteria of the assets with different units of measure, ensuring the hierarchy of the tangible assets
according to their economic performance, ensuring the value ranges stratification for the analysis
of the acquisition criteria, etc.

The novelty of the approach consists of the introduction of fuzzy variables and fuzzy coefficients both
in the objective function and in the problem constraints, in order to ensure the decision-making framework
of the company’s investments in tangible assets. This is possible since the triangular fuzzy numbers, that
were the basis of the fuzzy modeling for the implementation of the graphical method and the primal
simplex algorithm, are presented as value ranges. Any value in this range, which is the solution of the
linear programming problem satisfies both the requirements resulting from the objective function and the
constraints of the problem. Moreover, the use of triangular fuzzy numbers allows the characterization of
the objective function coefficients, the decision variables or the constraint variables of the problem, with
the help of linguistic variables as well as the precise measurement of their vague character.

Linear programming and fuzzy optimization as a solution to the problem identified above, finally
lead to the substantiation of the investment decision in tangible assets that allows the immobilization
of capital for different periods of time so that the economic benefits obtained from the use of the asset
in its organic activity is maximum, also respecting the constraints.

The innovative nature of this research is represented precisely by the introduction of fuzzy
coefficients and fuzzy variables in the decision-making process of companies’ investments with
implementation of the graphical method and the primal simplex algorithm.

The paper is structured in seven sections. The first one is dedicated to the introduction part of
the research, emphasizing the motivation, the advantages, and the novelty character of the paper.
The Section 2 presents the state-of-the-art in the domain of linear programing and fuzzy programming,
by analyzing the ISI Web of Science database. The Section 3 is dedicated to fuzzy modeling and its
main advantages for solving investment decisions.

Within the Section 4, the graphical method for solving linear programming problem with fuzzy
optimization is presented, while in the Section 5 the primal simplex algorithm with fuzzy variables is
proposed for solving minimization problems. In the Section 6, the hybrid model is tested, and the
main conclusions of the research are stipulated in Section 7. The paper ends with the references list.

2. State-of-the-Art

Over the time, the development and advancements made in linear programing have produced a
series of advantages for companies acting in different parts of the world. Even though this approach
comes with a series of assumptions, such as the linearity of the mathematical functions with the model,
it has been extensively used in practical applications as it provides the best (optimal) solution when
considering the limited amount of resources and by taking into account all the feasible alternatives.

Since 1951 when the first programmed solution code based on Dantzig’s simplex method was
developed, a series of papers have discussed the different aspects related to linear programming
and simplex method such as: computational aspects [1,2], adapting the simplex approach to bilevel
linear programming [3,4], applying simplex method for singularly perturbed linear programs [5],
determining the conditions for reachability on a simplex algorithm [6], and computing experimental
designs using simplex method [7].

As for the applications, a series of papers envisioned the fusion between artificial intelligence
techniques and simplex algorithm for solving the issues under investigation. Among the artificial
intelligent techniques used alongside the simplex algorithm are genetic algorithms [8–12], support
vector machines [13,14], neural networks [15,16], and fuzzy sets theory [17].
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Nevertheless, the scientific community has extensively used artificial intelligence techniques in
decision-making problems as these techniques allow a proper data analysis through specific intelligent
algorithms [18]. Among them, fuzzy theory has a particular place as it succeeds in ensuring the
comparability of the variables and the used criteria, providing often robust algorithms and a simple
reasoning process [19]. Even more, in some cases, a series of randomized optimization algorithms can
be considered for the fuzzy logic design as suggested in [20].

A series of fuzzy numbers have been proposed and used over the time in economic analysis [21],
such as triangular fuzzy numbers [22,23], interval fuzzy numbers [24], type-2 fuzzy numbers [25,26],
and trapezoidal fuzzy numbers [27]. Also, with the appearance of the neutrosophic theory [28–30],
neutrosophic fuzzy numbers were created and used in economic applications related to the
decision-making process [23,31].

According to Wang and Tong [21], the triangular fuzzy numbers are the most widely used in
decision-making problems as their membership functions are better modeled for mapping different
uncertainty levels. In their work, the authors focused on the multiplicative consistency and group
decision-making when the triangular fuzzy numbers were considered and proposed a procedure for
solving group decision-making problems.

In the same area of decision-making, Karimi et al. [32] proposed a method involving a linear
mathematical model, fuzzy triangular numbers, and considering best-worst situations. As a result, the
authors underlined a high efficiency of the proposed method when compared with a fuzzy analytic
hierarchy process (AHP).

Liu et al. [33] focused their research on the construction of the triangular fuzzy additive reciprocal
matrixes used in a group decision model. The authors proposed a new algorithm for triangular fuzzy
additive reciprocal matrices and used a numerical example in order to support their proposed approach.

Wan et al. [34] proposed new generalized aggregation operators for triangular intuitionistic fuzzy
numbers and presented some applications for multi-group decision-making. Other papers in the area
of decision-making which considers the use of triangular fuzzy numbers are, but not restricted to:
Krohling and Pacheco [35] by providing an improved accuracy function; Wan et al. [36] by extending
the Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method; Yuan and Luo [37]
by developing a novel intuitionistic fuzzy entropy and evidential reasoning; Chen and Li [38] by
considering a dynamic model; and Qin et al. [39] by the extending TODIM (acronym in Portuguese for
interactive and multicriteria decision-making) method.

Referring strictly to the fuzzy decision variables used within the classical operations research
problems, it can be observed that a series of researchers have chosen the fuzzy representation of decision
variables and tried to solve real-life applications by combining the classical operations research theory
with the advantages offered by the fuzzy approach. Transportation problems are a major category of
problems within the operations research area which have been extensively studied using the fuzzy
numbers approach. As mentioned by Ebrahimnejad [40] in “real-life situations, the parameters of
transportation problems may not be known precisely because of uncontrollable factors”, which makes
the use of the fuzzy numbers, for representing transportation costs, supply, and demand quantities,
more appealing. After defining the new fuzzy transportation problem, the author converted the
proposed problem into four transportation problems, which were afterwards solved through the use
of a standard simplex algorithm [40]. As a result, the author stated that proceeding in this way, the
efficiency of solving this category of problems increased and was kept as simple as possible.

Also, in the area of transportation problems, Baykasoglu and Subulan [41] proposed a fuzzy
arithmetic approach for solving fully fuzzy balanced and unbalanced transportations problems when
all the parameters and decision variables are fuzzy numbers. Based on the decision maker’s risk
attitude, various fuzzy solutions can be generated. By considering a series of practical applications
presented in their paper, the authors underlined the fact that more precise solutions to transportation
problems are received when the decision maker is either risk-averse or partially risk-averse, while in
the case of risk-seekers, the proposed approach provided acceptable solutions [41].
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Kocken and Sivri [42] considered in their research a transportation problem in which all the cost
coefficients, supplies, demands, and conveyances are assumed to be fuzzy quantities represented
through triangular fuzzy numbers and proposed a method for determining all the optimal solutions.
Based on a numerical example, the authors demonstrated that the proposed procedure produces good
results and provides a more general perspective over the decision-making process.

More generally, referring to the whole class of linear programming problems, Ebrahimnejad and
Tavana [43] stated that, over time, “fuzzy sets theory has been extensively used to represent imprecise
data in linear programming by formalizing the inaccuracies inherent in human decision-making”.
In this context, the authors proposed a general approach to solve fuzzy linear programming problems
when the coefficients of the objective function and the values of the B vector are symmetric trapezoidal
fuzzy numbers. Even in this case, the authors stated that the proposed method is simpler and more
efficient from a computational point of view than other approaches from the literature.

A special class of fuzzy linear programming problems, consisting of both fuzzy inequalities
and fuzzy coefficients and decision variables, described through trapezoidal fuzzy numbers, was
considered by Stanojevic et al. [44]. The proposed method was based on an order relation used for
ranking the intervals of the optimization problem. Using a numerical example, the authors showed that
for a given fixed value of the acceptance degree established by the decision maker, the decision maker
can make more informed decisions in relationship with the problem needed to be completed [44].

Other results in the area of sensitivity analysis in fuzzy number linear programming were obtained
in a paper written by Ebrahimnejad [45]. The author used sensitivity analysis for determining changes
in the optimal solution in which changes in data may occur [45].

Based on the works mentioned above in the area of fuzzy linear programming, it can be observed
that a fuzzy approach to linear programming problems can be beneficial to the decision maker as this
approach provides insight into the analyzed problem while also modeling the problem more closely to
the considered real-life situation.

3. Fuzzy Modeling and the Company’s Investment Decision

The investment decisions in tangible assets represent capital assets for different periods of time
in order to be used in the organic activity of the company, but also to obtain economic benefits that
consolidate the financial status of the company. A modern view on the tangible assets acquisition
policy would involve capital assets that enable the stakeholders to recover the invested capital from
the economic benefits that these categories of assets produce during their use. Therefore, the concept
of investment in assets is added to the concept of economic benefits generated by any category of
tangible assets that were the subject of a purchase on the market.

Thus, the corporal assets of the companies are based on two fundamental concepts, namely: the
concept of economic performance that is the result of the economic and technical characteristics that a
corporal asset has, and the concept of economic benefits which in turn is the result of the cash-flows
generated by a tangible asset during its use in the organic activity of the company.

The economic benefits of a tangible asset are influenced by its economic performance. Therefore,
a tangible asset with poor economic performance and an acceptable purchase price will generate low
economic benefits that may cause problems for the financial sustainability of the asset.

The economic performance of a tangible asset is the result of the economic characteristics which
can include the acquisition cost of the asset, its production capacity, the productivity of the tangible
asset, as well as the technical characteristics which may also include maintenance expenses, operating
expenses of the asset, the useful life of the asset, or the warranty duration provided by supplier.

In this respect, a company which decides to invest in tangible assets, by acquiring them from
a competitive market, has to ensure the best combination between the economic characteristics and
technical characteristics of the asset, in order to maximize the benefits generated by the asset during its
lifetime. Following this rule, the company can achieve a reasonable ratio between the assets’ acquisition



Entropy 2020, 22, 121 5 of 27

costs and the economic benefits generated, without affecting the financial sustainability of the tangible
asset, but also contributing to the consolidation of the financing status of the company.

The economic benefits and the economic performance generated by the tangible assets consider
the constraints which emerge from the organic activity of the company. These constraints mainly refer
to the resources available to the company. No matter the type of resource—financial, material, human,
or technical—they are limited in nature.

In this context, the fuzzy variables and fuzzy coefficients are used in the application of the primal
simplex algorithm, which allows the company to sort the tangible assets according to the criteria
hierarchy for the acquisition of tangible assets, ensuring the comparability of the criteria for the
acquisition of the tangible assets with different units of measurement and allowing the flexibility
of the decision-making process resulting from the acquisition of tangible assets on a competitive
market. In the following, the fuzzy numbers are discussed along with their use for constraints and
acquisition criteria.

3.1. Fuzzy Numbers for Acquisition Criteria and Constraints

Fuzzy modeling, in substantiating the investment decisions of companies, intervenes, as mentioned
above, in shaping the acquisition criteria of tangible assets but also in modeling the company specific
restrictions. Fuzzy modeling of both the acquisition criteria and constraints has several advantages for
substantiating investment decisions at the level of the companies.

For fuzzy modeling, three categories of fuzzy numbers are used, namely: fuzzy numbers
for modeling economic asset acquisition criteria (Ce), fuzzy numbers for modeling technical asset
acquisition criteria (Ct), as well as fuzzy numbers for modeling company constraints, or restrictions
(CR). The fuzzy numbers used are in the form of triangular fuzzy numbers as they best describe the
acquisition criteria for tangible assets, or company constraints.

Definition 1: Let the discourse universe be represented by the multitude of economic criteria for the
acquisition of assets (Ce) that can take various forms (acquisition cost, production capacity, productivity),
and F [0,1] the set of rules for fuzzy numbers. The fuzzy number (C e) is called the triangular fuzzy
number of the economic criteria for the asset acquisition and takes the form: Ce =

{
ce,

µce
ce
∈ Ce

}
, where

µce : Ce → [0, 1] if the membership function is defined by the relation [23,46,47]:

µce(e)
=


1− cex−cea

ceb−cea
, f or cea ≤ cex ≤ ceb

1, f or cex = ceb

1− cec−cex
cec−ceb

, f or ceb ≤ cex ≤ cec

0, f or values outside the range [cec ; cea ]

(1)

Definition 2: Let the triangular fuzzy number that defines the set of economic criteria for the
acquisition of tangible assets be in the following form: Cei =

{
cei,

µcei
cei
∈ Cei

}
for any i = 1, n. We will

say that the set [Ce]
α = [Ce1(α); Ce2(α)] for any α ∈ [0,1] is called the level set of the triangular fuzzy

number [46,48] Ce, where:
Ce1(α) =

(
ceb − cea

)
α+ cea (2)

Ce2(α) = cec −

(
cec − ceb

)
α (3)

Observation 1: The economic criteria can take values in the range: [cex − ce ≤ ce ≤ ce + cea ], where
cex ∈ R.

Definition 3: Let the discourse universe consist of the technical criteria set for asset acquisition (Ct)
and the set of rules F [0,1] valid for fuzzy numbers. The fuzzy number Ct is called the triangular fuzzy
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number of the form Ct =
{
ct,

µct
ct
∈ Ct

}
, where µct : Ct → [0, 1], if the membership function is defined

by the relation [23,46,47]:

µct(x)
=


1− ctx−cta

ceb−cea
, f or cta ≤ ctx ≤ ctb

1, f or ctx = ctb

1− ctc−ctx
ctc−ctb

, f or ctb ≤ ctx ≤ ctc

0, f or values outside the range [ctc ; cta ]

(4)

Observation 2: The technical criteria for asset selection can take various forms such as: maintenance
expenses (Emi), operating expenses of the asset (Eoi), the useful life of the asset (Uli), or the warranty
duration provided by the supplier (Wdi).

Definition 4: It is considered the level set of the fuzzy triangular number Cti =
{
cti,

µcti
cti
∈ Cti

}
,

for any i = 1, n, of the form: [Ct]
α = [Ct1(α); Ct2(α)] for α ∈ [0, 1] where:

Ct1(α) =
(
ctb − cta

)
α+ cta (5)

Ct2(α) = ctc −

(
ctc − ctb

)
α (6)

Observation 3: The technical criteria can take values in the range [ctx − ct ≤ ct ≤ ct + ctx ], where
ctx ∈ R.

Definition 5: Let the discourse universe consist of the constraints set determined by the resource
limited character (CR) and the set of rules F [0,1] valid for fuzzy numbers. The fuzzy number CR

is called the triangular fuzzy number of the form CR =
{
cR,

µcR
cR
∈ CR

}
where µcR : CR → [0, 1] , if the

membership function is defined by the relation [23,46,47]:

µcR(x)
=


1− cRx−cRa

cRb−cRa
, f or cRa ≤ cRx ≤ cRb

1, f or cRx = cRb

1− cRc−cRx
cRc−cRb

, f or cRb ≤ cRx ≤ cRc

0, f or values outside the range [ctc ; cta ]

(7)

Definition 6: It is considered the level set of the triangular fuzzy number [23,46,47,49], CR ={
cR,

µcR
cR
∈ CR

}
, for any i = 1, n of the form: [CR]

α =
[
CR1(α); CR2(α)

]
for any α ∈ [0, 1], where:

CR1(α) =
(
cRb − cRa

)
α+ cRa (8)

CR2(α) = cRc −

(
cRc − cRb

)
α (9)

Observation 4: The constraints are determined by the limited character of financial resources (CR f ),
by the limited character of material or technical resources (C_Rt), but also by the limited character of
human resources (CRU).

3.2. Common Rules for Fuzzy Modeling

The rules for fuzzy modeling were introduced due to the diversity of criteria that intervenes
in substantiating investment decisions at the company level, but also to facilitate the calculations
involved in fuzzy modeling. These criteria, as mentioned above, include the economic criteria for the
assets acquisition, the technical criteria for the assets acquisition, and the constraints determined by
the organic activity of the company [46,47,49].

Rule 1: The fuzzy triangular numbers are represented by:

(a) the economic criterion for the assets acquisition Ce =
{
ce,

µce
ce
∈ Ce

}
, where µce : Ce → [0, 1] ;

(b) the technical criterion for the assets acquisition Ct =
{
ct,

µct
ct
∈ Ct

}
, where µct : Ct → [0, 1] ;
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(c) the limited character of the resources available to the company CR =
{
cR,

µcR
cR
∈ CR

}
, where

µcR : CR → [0, 1] ;

and noted in the linear programming calculations with=
{
c, µc

c ∈ C
}
, where µc : C→ [0, 1], representing

the triangular fuzzy number for the linear programming problems constraints (according to Figure 1),
for which the membership function is [23,47]:

µ(c) =


1− cx−ca

cb−ca
, f or ca ≤ cx ≤ cb

1, f or cx = cb
1− cc−cx

cc−cb
, f or cb ≤ cx ≤ cc

0, f or values outside the range [cc; ca]

(10)

Observation 5: In situations where linear programming restrictions require the use of specific
criteria for tangible assets acquisition or constraints, these are represented by the three triangular
fuzzy numbers previously presented [46,50], of the form: Ce =

{
ce,

µce
ce
∈ Ce

}
, Ct =

{
ct,

µct
ct
∈ Ct

}
, and

CR =
{
cR,

µcR
cR
∈ CR

}
.

Rule 2: The level set for the triangular fuzzy number C =
{
c, µc

c ∈ C
}
, where µc : C→ [0, 1] is of

the form: [C]α = [C1(α); C2(α)], for any α ∈ [0,1] where:

C1(α) = (cb − ca)α+ ca (11)

C2(α) = cc − (cc − cb)α (12)
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Rule 3: Let two fuzzy numbers be of the form: C1 = (ca1, cb1) and C2 = (ca2, cb2) with
a1, a2, b1, b2 ∈ R. The following arithmetic operations are valid [46,47,51]:

• Fuzzy numbers addition

C1 + C2 = [ca1, cb1] + [ca2, cb2] = [ca1 + ca2, cb1 + cb2] (13)

• Fuzzy numbers subtraction

C_1−C_2 = [c_a1, c_b1] − [c_a2, c_b2] = [c_a1− c_a2, c_b1− c_b2] (14)
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• Fuzzy numbers multiplication

C1 ×C2 = [ca1, cb1] × [ca2, cb2] =

[min(ca1ca2, ca1cb2, cb1ca2, cb1cb2 ), max(ca1ca2, ca1cb2, cb1ca2, cb1cb2)]
(15)

• Fuzzy numbers division

C1

C2
=

[ca1, cb1]

[ca2, cb2]
=

[
min

(
ca1

ca2
,

ca1

cb2
,

cb1

ca2
,

cb1

cb2

)
, max

(
ca1

ca2
,

ca1

cb2
,

cb1

ca2
,

cb1

cb2

)]
(16)

• The inverse of fuzzy numbers

1
C1

=
1

ca1, cb1
=

[
min

(
1

ca1
;

1
cb1

)
, max

(
1

ca1
;

1
cb1

)]
(17)

1
C2

=
1

ca2, cb2
=

[
min

(
1

ca2
;

1
cb2

)
, max

(
1

ca2
;

1
cb2

)]
(18)

Rule 4: The level set of the triangular fuzzy number C =
{
c, µc

c ∈ C
}

for any i = 1, n is of the form:
[C]α = [C1(α); C2(α)] [47], for any α ∈ [0,1] where:

C1(α) = (cb − ca)α+ ca (19)

C2(α) = cc − (cc − cb)α (20)

Rule 5: The average value of the fuzzy number C =
{
c, µc

c ∈ C
}
, where µc : C→ [0, 1] is of the

form [46,47,51]:

E f (Ci) =
1
2

∫ 1

0
(C1(α) + C1(α)) f (α)dα (21)

where f (α) is a weight function f : [0,1]→ R which satisfies the following conditions:

• It is a monotonically increasing function, respectively ∀ x, y ∈ R and x ≤ y, it follows that
f (x) ≤ f (y);

• Checks the normality condition, namely:
∫ 1

0 f (α)dα =
∫ 1

0 2αdα = 2α
2

2
1

0 = 1..

The weigh function is used to calculate the main indicators of the fuzzy numbers, respectively the
arithmetic mean, the squared deviations from the mean, and the covariance. The most commonly used
weight function is f (α) = 2α, which meets the conditions imposed above, namely:

• It is a monotonically increasing function. ∀ α1,α2 ∈ R with α1 ≤ α2 results that f (α1) ≤ f (α2).
From this condition it appears that 2α1 ≤ 2α2, respectively α1 ≤ α2.

• Checks the normality condition, namely:
∫ 1

0 f (α)dα =
∫ 1

0 2αdα = 2α
2

2
1

0 = 1.

Rule 6: The average value of the fuzzy triangular number of the form C =
{
c, µc

c ∈ C
}
, is given by

the relation [46,47,51]:

E f (Ci) =
1
6
(ca1 + cc1) +

2
3

cb1 (22)

Demonstration: According to rule 6, the average value of the fuzzy number C is calculated with
the relation:

E f (Ci) =
1
2

∫ 1

0
(C1(α) + C1(α)) f (α)dα
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It is determined:
C1(α) + C2(α) = (cb1 − ca1)α+ ca1 + cc1 − (cc1 − cb1)

= cb1α− ca1α+ ca1 + cc1 − cc1α+ cb1α
C1(α) + C2(α) = ca1(1− α) + 2cb1α+ cc1(1− α)

The above formula can be written as:

C1(α) + C2(α) = (1− α)(ca1 + cc1) + 2cb1α

The mean value of the fuzzy triangular number becomes:

E f (Ci) =
1
2

∫ 1
0 (C1(α) + C1(α)) f (α)dα = 1

2

∫ 1
0 [(1− α)(ca1 + cc1) + 2cb1α]2αdα

E f (Ci) = (ca1 + cc1)
∫ 1

0

(
α− α2

)
dα+ 2cb1

∫ 1
0 α

2dα

= (ca1 + cc1)
α2

2
1

0 − (ca1 + cc1)
α3

3
1

0 + 2cb1
α3

3
1

0
E f (Ci) =

1
6 (ca1 + cc1) +

2
3 cb1

4. Graphical Method for Solving Linear Programming Problem with Fuzzy Optimization: The
Case of Two Tangible Assets

Two tangible assets are considered, (A1, A2), to be purchased from a competitive market. Each of the
two assets (A1, A2) has a series of economic characteristics (Cei), with i = 1, 2, as well as a series of technical
characteristics (Cti), with i = 1, 2, which either are part of the mathematical model’s objective function,
or are part of the company’s constraints, along with others resulting from the current activity, such as:
budget for investments, budget for operating expenses of the tangible assets during their operation, etc.

The mathematical model of the linear programming problem with fuzzy variables becomes:

minz = min f (x) = Ca1x1 + Ca2x2 (23)

In this linear programming problem [52,53], z = Ca1x1 +Ca2x2 represents the objective function that
has to be minimized, the cost coefficients Ca1, Ca2 represent the acquisition cost of the two assets (A1, A2)
modeled using triangular fuzzy numbers of the form Ca =

{
ca, µca

ca
∈ Ca

}
and x1, x2 represent the problem

variables to be determined. The restrictions of the problem resulting from the constraints are of the form:
C11x1 + C12x2 ≤ B1

C21x1 + C22x2 ≤ B2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Cn1x1 + Cn2x2 ≤ Bn

x1, x2 ≥ 0

(24)

The inequality
∑n

j=1 Ci jx j ≤ B j represents the restriction i of the company which may be, as
mentioned before, the restriction of the assets acquisition criteria or the restriction of the activities
carried out by the company [52,53]. The coefficients Ci j with i = 1, n and j = 1, m are triangular fuzzy
numbers of the form: C =

{
c, µc

c ∈ C
}
, where µc : C→ [0, 1] represented by intervals of variation of

company constraints or criteria for the acquisition of tangible assets.

The vector B =


B1

B2

. . .
Bn

 is also composed of triangular fuzzy numbers of the form B =
{
b, µb

b ∈ B
}
,

where µb : B→ [0, 1] representing the maximum limits admissible for the linear programming problem
restrictions (for further explanations related to vector B see [52,53]). The restrictions for variables
x1, x2 ≥ 0 are non-negative restrictions. The set = {x1, x2} that checks all the constraints of the linear
programming problem is called the admissibility domain and the point (x1, x2) is called the admissible
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point. Since the set X is formed by hyperplanes’ intersection (equality constraints) and closed half-space,
it turns out that X is a polyhedron.

Solving the linear programming problem using the graphical method [53] thus implies determining
the admissibility domain (of the problem’s solutions) by graphically representing the constraints of the
problem, respectively determining the coordinate point (x1, x2) that satisfies all the constraints and the
objective function is of minimum/maximum after case. Each constraint of the linear programming
problem of the form Ci1x1 + Ci2x2 ≤ Bi is thus represented by a half-space Ci1x1 + Ci2x2 < Bi and a
fuzzy equation of the form: Ci1x1 +Ci2x2 = Bi. Thus, each constraint involves solving a fuzzy equation
and determining the corresponding half-space in which the solution of the constraint is found.

The next step is to solve the fuzzy equation of the form: Ci1x1 + Ci2x2 = Bi. The solution of the
fuzzy equation is obtained by giving values of x1 = 0 and x2 = 0 and by successively solving the fuzzy
equations that are formed in variables x1 and x2.

If x1 = 0, then Ci2x2 = Bi, respectively the level sets for the triangular fuzzy number
Ci2 =

{
ci2,

µci2
ci2
∈ Ci2

}
for any i = 1, n are of the form: [Ci2]

α = [C12(α); C22(α)] for any α ∈ [0,1] where:

C12(α) = (cb2 − ca2)α+ ca2 (25)

C22(α) = cc2 − (cc2 − cb2)α (26)

For the triangular fuzzy number Bi =
{
bi,

µbi
bi
∈ Bi

}
for any i = 1, n , is of the form: [Bi]

α = [B1(α); B2(α)]

for any α ∈ [0,1] where:
B1(α) = (bb − ba)α+ ba (27)

B2(α) = bc − (bc − bb)α (28)

The solution of the fuzzy equation is obtained from the equals:

((cb2 − ca2)α+ ca2)xαs = (bb − ba)α+ ba (29)

and respectively,
(cc2 − (cc2 − cb2)α)xαd = bc − (bc − bb)α (30)

The solutions of the above fuzzy equation, namely the determination of the left part of the fuzzy
number (xαs ) and the right part of the fuzzy number (xαd ), are obtained by applying the level set method
and is of the form:

xαs =
(bb − ba)α+ ba

(cb2 − ca2)α+ ca2
(31)

and respectively,

xαd =
bc − (bc − bb)α

cc2 − (cc2 − cb2)α
(32)

The solutions above verify the condition xαs < xαd and for any α,α′ ∈ [0, 1] with α < α′, it turns out
that xαs ≤ xα

′

s and xαd ≤ xα
′

d . For α = 0 the crisp solution of the fuzzy equation is obtained as follows:

xαs =
ba

ca2
(33)

and respectively,

xαd =
bc

cc2
(34)

The fuzzy number resulting from solving the fuzzy equation has the coordinates X =(
xαs =

(bb−ba)α+ba
(cb2−ca2)α+ca2

; xαd =
bc−(bc−bb)α

cc2−(cc2−cb2)α

)
for anyα∈ [0,1] of the form X =

{
x, µx

x ∈ X
}
, where µx : X→ [0, 1].

If x2 = 0 results in the fuzzy Ci1x1 = Bi, respectively for the triangular fuzzy numbers Ci1 and
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respectively Bi the following levels sets are obtained: Ci1 =
{
ci1,

µci1
ci1
∈ Ci1

}
for any i = 1, n are of the

form: [Ci1]
α = [C11(α); C21(α)] for any α∈ [0,1] where:

C11(α) = (cb1 − ca1)α+ ca1 (35)

C21(α) = cc1 − (cc1 − cb1)α (36)

For the fuzzy triangular number Bi =
{
bi,

µbi
bi
∈ Bi

}
for any i = 1, n the level sets are of the form shown

above, respectively: [Bi]
α = [B1(α); B2(α)] for any α ∈ [0,1] where [B_i] ˆ α = [B_1 (α); B_2 (α)] for any

α ∈ [0,1] where:
B1(α) = (bb − ba)α+ ba (37)

B2(α) = bc − (bc − bb)α (38)

The solution of the fuzzy equation, as in the situation presented above, is obtained from the
equals: ((cb1 − ca1)α+ ca1)yαs = (bb − ba)α+ ba and respectively (cc1 − (cc1 − cb1)α)yαd = bc − (bc − bb)α.
The fuzzy solutions of the above equation are of the form:

yαs =
(bb − ba)α+ ba

(cb1 − ca1)α+ ca1
(39)

yαd =
bc − (bc − bb)α

cc1 − (cc1 − cb1)α
(40)

For α = 0, the crisp solution of the fuzzy equation is:

yαs =
ba

ca1
(41)

yαd =
bc

cc1
(42)

Solving the above fuzzy equation results in the triangular fuzzy number Y =(
yαs =

(bb−ba)α+ba
(cb1−ca1)α+ca1

; yαd =
bc−(bc−bb)α

cc1−(cc1−cb1)α

)
with µx : X→ [0, 1] for any α ∈ [0,1] of the form Y =

{
y,
µy
y ∈ Y

}
where µy : Y→ [0, 1] . The half-space that is formed to identify the admissible solution of the linear
programming problem is presented in Figure 2.
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In order to check the half-space corresponding to the restriction of the linear programming
problem, we verified if the solution of the linear programming problem is found in one of the lower or
upper half-spaces. For this we substitute the coordinates of the origin O : (0, 0) in the constraint of the
problem of the form: Ci1x1 + Ci2x2 ≤ Bi, from which will result: Ci10 + Ci20 ≤ Bi, respectively 0 ≤ Bi.
The solution of the linear programming problem for which the objective function must be minimized,
is identified in the lower half-space [53].

From the intersection of the half-spaces generated by the triangular fuzzy numbers, as a solution
of the fuzzy equations (Figure 2), a fuzzy region is formed where the optimal solution of the linear
programming problem is found. Its optimum is to determine the minimum or maximum distance as
the objective function is the minimum or maximum between the line of the form ∆ : Ca1x1 + Ca2x2 = d,
passing through origin O: (0,0) to the coordinate point (x0, y0).

d((x0, y0), ∆) =
|Ca1x0 + Ca2x0 − d|√

C2
a1 + C2

a2

(43)

By substituting the coordinates of the origin O: (0,0) in the above equation, we obtain: the
coordinates of the origin O: (0,0) is obtained:

d((x0, y0), ∆) =
|d|√

C2
a1 + C2

a2

(44)

In conclusion, the solution of the linear programming problem depends on the value of d, which
represents precisely the optimal function of the objective solution that respects all the restrictions
resulting from the current activity of the company.

The coordinates of the fuzzy number result from the intersection of the lower half-space denoted
by Z =

{
z, µz

z ∈ Z
}
, where µz : Z→ [0,α] is of the form: Z =

(
zαs = ba

ca1
; zαd = bc

cc2

)
for values of α given

by the equality:
(bb − ba)α+ ba

(cb1 − ca1)α+ ca1
=

bc − (bc − bb)α

cc2 − (cc2 − cb2)α
(45)

The above equality leads to the solution of the equation in α of the form:

[(bb − ba)α+ ba][cc2 − (cc2 − cb2)α] = [bc − (bc − bb)α][(cb1 − ca1)α+ ca1] (46)

cc2(bb − ba)α− (bb − ba)(cc2 − cb2)α
2 + bacc2 − ba(cc2 − cb2)α

= bc(cb1 − ca1)α+ bcca1 − (bc − bb)(cb1 − ca1)α2
− ca1(bc − bb)α

(47)

α2[(bb − ba)(bc − bb)(cc2 − cb2)(cb1 − ca1)]

+ α[cc2(bb − ba) − ba(cc2 − cb2) − bc(cb1 − ca1) + ca1(bc − bb)]

+ bacc2 − bcca1 = 0
(48)

We note that:
β = (bb − ba)(bc − bb)(cc2 − cb2)(cb1 − ca1) (49)

γ = cc2(bb − ba) − ba(cc2 − cb2) − bc(cb1 − ca1) + ca1(bc − bb) (50)

δ = bacc2 − bcca1 (51)

With these notations the above equation becomes:

βα2 + γα+ δ = 0 (52)
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The solution of the above equation becomes:

α =
−γ±

√
γ2 − 4βδ

2β
(53)

Under these conditions, the membership degree of fuzzy number µz : Z→ [0,α] , becomes

µz : Z→
[
0,
−γ±
√
γ2−4βδ

2β

]
. The fuzzy number Z is the solution of the linear programming problem for

both maximum and minimum problems.
The graphical solution of the linear programming problem must be analyzed from the perspective of

the intersection of the semi-spaces that determine the admissible solution of the problem. For constraints
that determine the intersection of the upper semi-space, the solution of the linear programming problem
is an intuitive fuzzy number, while the intersection of the upper semi-space with the lower semi-space
generates a polyhedron in which the admissible solution is at one of the polyhedron peaks.

5. The Primal Simplex Algorithm with Fuzzy Variables for Minimization Problems: The Case
with N-Tangible Assets

As it is known, a linear programming problem consists of minimizing or maximizing a linear
objective function in relation to observing certain restrictions determined by the operating activity of
the company, or as determined by the assets’ acquisition criteria. To base the primal simplex algorithm,
the objective function is minimized. The linear programming problem has the canonical form [54]:

min f (x) =
n∑

j=1
Cajx j

n∑
j=1

Cajx j ≤ Bi

j = 1, n and i = 1, m
x j ≥ 0 with j = 1, n

(54)

In the linear programming problem, f (x) =
∑n

j=1 Cajx j represents the objective function
minimized, the cost coefficients Caj represent the asset acquisition cost A j, modeled using the
triangular fuzzy numbers of the form Ca =

{
ca,µca/ca ∈ Ca

}
and x j represents the variables of

the problem to be determined [52,54]. The problem variables are also fuzzy variables of the
form: X =

{
x,µx/x ∈ X

}
; X = (x1, x2).

The inequality
∑n

j=1 Ci jx j ≤ B j represents the restriction i of the company which may be, as
mentioned before, the restriction of the assets acquisition criteria, or the restriction of the activities
carried out by the company. The coefficients Ci j with i = 1, n and j = 1, m are triangular fuzzy
numbers of the form: C =

{
c,µc/c ∈ C

}
, where µc : C→ [0, 1] is represented by the value ranges of the

assets acquisition criteria or the restrictions of the company’s activity, but also of their membership
degrees (µc). The variables (x j) are also fuzzy variables of the form: X =

{
x,µx/x ∈ X

}
; X = (x1, x2) to

be determined.

The vector B =


B1

B2

. . .
Bn

 is also composed of triangular fuzzy numbers of the form B =
{
b,µb/b ∈ B

}
,

where µb : B→ [0, 1] , represented by the maximum admissible limits for the restrictions of the linear
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programming problem. Restrictions for variables x1, x2 ≥ 0 are non-negative restrictions. The standard
form [52,54] of the linear programming problem is:

min f (x) =
n∑

j=1
Cajx j

n∑
j=1

Cajx j = Bi

j = 1, n and i = 1, m
x j ≥ 0 with j = 1, n

(55)

A linear programming problem is brought to the standard form by the following successive
mathematical transformations known in the specialized literature [17,52–54]:

• A minimization problem is transformed into a maximization problem by changing the signs of
the fuzzy coefficients from the respective objective function;

maxCT
a x = −min

[
−CT

a

]
x (56)

• The sign of an inequality changes by multiplying it by (−1), respectively by multiplying the
constraint with fuzzy variables and fuzzy coefficients by (−1).

• An inequality of the form CT
i x ≤ Bi with {Ci, Bi}} specific fuzzy sets, is written as an equality of

the form CT
i x + Y = Bi, with Y ≥ 0, by adding the offset fuzzy variable Y =

{
y,µy/y ∈ Y

}
, where

µy : Y→ [0, 1] . An inequality of the form CT
i x ≥ Bi, with {Ci, Bi} specific fuzzy sets is written as an

equality of the form CT
i x + Y = Bi, with Y ≥ 0, by subtracting the offset fuzzy Y =

{
y,µy/y ∈ Y

}
,

where µy : Y→ [0, 1] .
• An equality of the form CT

i x = Bi is transformed into two fuzzy inequalities of the form CT
i x ≤ Bi

and respectively CT
i x ≥ Bi.

A negative fuzzy variable x j ≤ 0 is transformed into a positive fuzzy variable x j ≥ 0 by replacing
with −x j. An unsigned fuzzy variable is replaced by the difference of two fuzzy variables
x j = x′j − x′′j , where x′j ≥ 0 s, i x′′j ≥ 0.

The above transformations lead to the standard mathematical model, with fuzzy coefficients
Ci j with j = 1, n and i = 1, m and also fuzzy variables to be determined, x j with j = 1, n. The linear
programming problem is thus summarized in determining the fuzzy vector ∈ Rn, which satisfies the
condition minz =

∑n
j=1 Cajx j regarding the restrictions

∑n
j=1 Ci jx j ≤ Bi and this is possible only if the

mathematical model is brought to the standard fuzzy form. To solve the linear programming problem
the following definitions are valid [47,48,52,54]:

• Definition 1: A fuzzy vector X = (x1 x2 . . . xn)
T
∈ Rn whose components satisfy all the constraints

of the linear programming problem is called an admissible program or admissible fuzzy solution
or possible fuzzy solution.

• Definition 2: An admissible solution of the form X = (x1 x2 . . . xn)
T
∈ Rn whose components

minimize the objective function or, as the case may be, satisfy the condition imposed for the
objective function, is called an optimal fuzzy program or optimal fuzzy solution.

• Definition 3: An admissible solution of the form X = (x1 x2 . . . xn)
T
∈ Rn, whose column vectors

C j corresponding to the nonzero components x j are linearly independent, is called te fuzzy basis
program or fuzzy base solution.

• Definition 4: If a base program has nonzero fuzzy m-components (rank C = m), then the base
program is called undesirable fuzzy. If a base program does not have null m-components
(rank C = m) then the base program is called a fuzzy degenerate.

• Definition 5: The matrix B formed by m ×m columns corresponding to the nonzero components of
the fuzzy matrix C, of a non-degenerate base program X is called the fuzzy base of the program X.
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Let be the linear programming problem mentioned above with fuzzy coefficients, with a

non-degenerate basic program of the form X∗ =
(
x∗1, x∗2, x∗3, . . . , x∗m, 0, 0, 0, . . . 0

)T
, where the main

fuzzy variables are (x1, x2, x3, . . . , xm), while (xm+1, xm+2, . . . , xn) are the secondary fuzzy variables and
the column vectors are the fuzzy numbers (C1, C2, C3, . . . , Cm) that form the base B of the non-degenerate
basic program X∗. Let S =

{
Cm+1, Cm+2, . . . , Cn

}
represent the column vector of the fuzzy numbers that

are not part of the base B. S is formed of non-basic fuzzy variables. It is noted with:

XB =


x1

x2

. . .
xm

 and XS =


xm+1

xm+2

. . .
xn

 (57)

CaB =


Ca1

Ca2

. . .
Cam

 and CaS =


Cam+1

Cam+2

. . .
Can

 (58)

XT = (x1 x2 . . . xm xm+1 xm+2 . . . xn) (59)

We also note the following matrices as follows:

C =


C11 C12 . . . C1m
C21 C22 . . . C2m

. . . . . . . . . . . .
Cn1 Cn2 . . . Cnm

C1m+1 C1m+2 . . . C1n
C2m+1 C2m+2 . . . C2n

. . . . . . . . . . . .
Cnm+1 Cnm+2 . . . Cnn

 (60)

B =


C11 C12 . . . C1m
C21 C22 . . . C2m

. . . . . . . . . . . .
Cn1 Cn2 . . . Cnm

; S =


C1m+1 C1m+2 . . . C1n
C2m+1 C2m+2 . . . C2n

. . . . . . . . . . . .
Cnm+1 Cnm+2 . . . Cnn

; BF =


B1

B2

. . .
Bn

 (61)

The matrices with the notations above have the coefficients Ci j with j = 1, n and i = 1, m, as well
as the fuzzy coefficients Bi with i = 1, n. The linear programming problem is of the form:

min f (x) =
n∑

j=1
Cajx j

n∑
j=1

Ci jx j ≤ Bi

j = 1, n and i = 1, m
x j ≥ 0 with j = 1, n

(62)

It is written in base B with fuzzy variables as follows:
min f (x) = CaBXB + CaSXs

BXB + SXS = BF

X ≥ 0
(63)

For the restriction part, we multiply the system of restrictions to the left and right with B−1,
thus obtaining:

B−1BXB + SB−1XS = B−1BF (64)
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Since matrix B is an invertible matrix by multiplying B by B−1 we obtain the unit matrix I,
respectively B−1B = I so that the above relation is written as follows:

XB + SB−1XS = B−1BF or XB = B−1BF − SB−1XS (65)

where XB are the fuzzy variables of base B also called the main fuzzy variables, while XS are the fuzzy
variables of the matrix S also called the secondary fuzzy variables. The following notations are used:

XB = B−1BF and CB
ij = B−1C j (66)

where C j represents the column j in the matrix C corresponding to the secondary variables j ∈ Js ={
j/C j ∈ S

}
. In these conditions, the relationship XB = B−1BF − SB−1XS is rewritten as:

XB = XB −

n∑
j=1

CB
ijx j (67)

where j ∈ JB; JB = {i/Ci ∈ B}. The components above are written as follows:

xi = xB
j −

n∑
j=1

CB
ijx j (68)

Regarding the objective function, this is written using the main fuzzy variables XB and the secondary
fuzzy variables XS as follows:

f (x) = CT
a X =

n∑
j=1

C jx j =
m∑

i∈JB

Caixi +
n∑

j∈JS

Cajx j (69)

f (x) =
m∑

i∈JB

Cai

xB
j −

n∑
j=1

CB
ijx j

+ n∑
j∈JS

Cajx j (70)

The above relation is written as:

f (x) =
m∑

i∈JB

CaixB
j −

n∑
j∈JS

 m∑
i∈JB

CajCB
ij −Caj

x j (71)

The following notations are used:

ZB =
m∑

i∈JB

CaixB
j = CT

aBxB (72)

ZB
j =

m∑
i∈JB

CajCB
ij = CT

aBCB
j (73)

In these conditions, the objective function is rewritten as:

Z = ZB −

n∑
j∈JS

(
ZB

j −Caj
)
x j (74)
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The linear programming problem with fuzzy variables and fuzzy coefficients, after these
calculations and notations, is rewritten as follows:

Z = ZB −
n∑

j∈JS

(
ZB

j −Caj

)
x j

XB = XB −
n∑

j=1
CB

ijx j

xi = xB
j −

n∑
j=1

CB
ijx j

xi ≥ 0; i ∈ 1, n

(75)

For the linear programming problem with fuzzy variables and fuzzy coefficients, for the foundation
of the primal simplex algorithm the following theorems are valid [38,39,48,50,51]:

Theorem 1: If the fuzzy difference of the objective function is negative, respectively ZB
j −Caj ≤ 0

for any j ∈ JS, then the program is optimal and the basic solution XB = B−1BF and XS = SB−1XS = 0 is
the optimal solution to the linear programming problem.

Demonstration: For any program of the linear programming problem, the condition for the fuzzy
variables x j ≥ 0 must be met as a condition of non-negativity which means that:

n∑
j∈JS

(
ZB

j −Caj
)
x j ≤ 0

In conditions of ZB
j −Caj ≤ 0 and x j ≥ 0. From the objective function relation, we obtain that:

Z = ZB
−

n∑
j∈JS

(
ZB

j −Caj
)
x j

It is known that the term:
∑n

j∈JS

(
ZB

j −Caj

)
x j ≤ 0, which determines the objective function value.

Z = ZB −

n∑
j∈JS

(
ZB

j −Caj
)
x j ≥ 0

The solution thus determined is optimal and causes an increase in the objective function Z.
Theorem 2: If there is a fuzzy variable xk ∈ Js for which the difference ZB

j − Caj > 0, then the

solution generated by the basic program XB = B−1BF and XS = SB−1XS = 0 is not optimal and is
improved if the fuzzy variable takes positive values xk > 0.

Demonstration: It is supposed that the value of the secondary fuzzy variable reaches the value x∗k
for which we have x∗k > 0 and the fuzzy variable xk > x∗k. For the two fuzzy variables we determine the
value of the objective function. The objective function value for xk > 0 is of the form:

Z = ZB −

n∑
j∈JS

(
ZB

j −Caj
)
x j

For x∗k > 0, the value of the objective function changes and becomes the form of:

Z∗ = ZB −

n∑
j∈JS

(
ZB

j −Caj
)
x∗j → Z∗ < Z
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In conclusion, increasing x∗k > 0 results in an improvement in the value of the Z function since
Z∗ < Z. The program Z∗ is not a basic program because it has m + 1 strictly positive components,
respectively xi with i ∈ JB and xk. When xk > 0 grows, the question is how much xk can grow so that it
remains in the set of basic solutions.

Theorem 3: If there is a fuzzy variable xk, k ∈ JS, such that the difference ZB
j − Caj > 0 and all

Ci j ≤ 0 for any j ∈ JB, then the linear programming problem has an infinite optimal.
Demonstration: We know that:

XB = XB −

n∑
j=1

CB
ijx j

The above relation written in components is of the form:

xi = xi −Cikxk∀ i ∈ JB

With x j = 0 for any j ∈ JS and xk ≥ 0.
The value of the objective function under these conditions becomes:

Z = ZB −
(
ZB

k −Ck
)
x∗k

lim
x∗k→∞

ZB −
(
ZB

k −Ck
)
x∗k = −∞

So, the objective function is of the form:

Z = ZB −

n∑
j∈JS

(
ZB

j −Caj
)
x j → −∞

In conclusion, it can be stated that for large values of fuzzy variables x∗k →∞ , the value of the
objective function Z is very small.

Theorem 4: If the fuzzy difference in the objective function is positive ZB
j −Caj > 0 and there is

Cik ≥ 0, then the value of the fuzzy variable xk increases until it reaches the value:

xk = min
j∈JB

{ x j

Ci j

}
, Cik ≥ 0 (76)

Demonstration: We know that the main fuzzy variables are written as:

XB = XB −

n∑
j=1

CB
ijx j

Also, the main fuzzy variables are written as components:

xi = xi −Cikxk∀ i ∈ JB

xi −Cikxk = 0

xk =
xi

Cik
∀ i ∈ JB

If Cik > 0, then we need xk = min
j∈JB

{
x j
Ci j

}
to maintain the value of xi in the set of base programs.

In conclusion, increasing the value of the fuzzy variable xk can occur until xk ≤
x j
Ci j

(∀) i ∈ JB and
Cik > 0. For the obtained value of xk, the value of xi is canceled and a new program is obtained in
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which the basic variables are xk and respectively xi, with i ∈ JB − {k}. Corresponding to the increase of

xk ≤
x j
Ci j

, a decrease in the value of the objective function is obtained by the value
x j
Ci j

(
ZB

j −Caj

)
.

Based on the above theorems, the primal simplex algorithm [7,52–54] with fuzzy coefficients
and fuzzy variables, for minimum problems, as established by the mathematical model of the linear
programming problem, involves the following steps:

• Step 1: Determine an admissible primal base B and determine its specific sizes, namely: XB; ZB;

CB
ij; ZB

j −Caj. Determining these specific sizes is necessary to determine the value of the objective
function Z and the solution of problem XB, as:

Z = ZB −

n∑
j∈JS

(
ZB

j −Caj
)
x j (77)

XB = XB −

n∑
j=1

CB
ijx j (78)

• Step 2: Analyze all the fuzzy differences resulting from the objective function following the rules
of the fuzzy differences operator ZB

j −Caj (the entry criterion). There are the following situations:

# 2.1: If all fuzzy differences are negative ZB
j − Caj ≤ 0, then the program is optimal.

Subtracting the fuzzy numbers ZB
j and Caj is done as follows:

ZB
j −Caj =

[
zB

ja1, zB
jb1

]
−

[
caj1, caj2

]
=

[
zB

ja1 − caj1, zB
jb1 − caj2

]
(79)

# 2.2: If there is at least one index j ∈ JS, for which the fuzzy difference is ZB
j −Caj > 0, then

k ∈ JS is determined for which:

ZB
k −Cak = max

(
ZB

j −Caj
)

(80)

• Step 3: Establish the vector for the base exit (the base exit criterion), according to the following
algorithm:

# 3.1: If all the fuzzy coefficients are negative Ci j ≤ 0 and the fuzzy difference is positive
ZB

j −Caj > 0 for any j ∈ JB, then the linear programming problem has an infinite optimal
according to Theorem 3 presented above.

# 3.2: If all the fuzzy coefficients are positive Ci j > 0 and the fuzzy difference is positive
ZB

j −Caj > 0, for any j ∈ JB, then the vector xl is chosen which replaces the vector xk and

determines a new allowable basis B̃ with the value:

xl = min
j∈JB

{
xi

Cik

}
; Cik > 0 (81)

• Step 4: The vector xl is replaced by the vector xk in base B determined as the new allowable base

B̃ for which XB̃; ZB̃; CB̃
i j; ZB̃

j −Caj. The determination of specific values XB̃; ZB̃; CB̃
i j; ZB̃

j −Caj for

the new allowable base B̃ is made according to the values of the allowable base B as follows. We
know that the components of the main variable are written as follows:

xi = xB
j −

n∑
j=1

CB
ijx j (82)
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For i = l we obtain the expression by components of the main variable values as follows:

xl = xB
l −

n∑
j∈S−{k}

CB
ljx j −CB

ikxk (83)

From the above relationship, because CB
ik , 0 we get its value (xk) of the form:

xk =
xB

l −
∑n

j∈S−{k} C
B
ljx j − xl

CB
ik

(84)

xk =
xB

l

CB
ik

−

∑n
j∈S−{k} C

B
ljx j

CB
ik

−
xl

CB
ik

(85)

Since the variable xk becomes a basic variable we also write that:

xk = xB̃
k −

n∑
j=1

CB̃
ikx j (86)

From the calculation relation for the fuzzy vector xk, the specific calculation relations for xB̃
k and CB̃

ik are
obtained as follows:

xB̃
k =

xB
l

CB
ik

si CB̃
ik =

CB
lj

CB
ik

(87)

On the other hand, from: xl = xB
l −

n∑
j∈S−{k}

CB
ljx j −CB

ikxk and xk =
xB

l −
∑n

j∈S−{k} C
B
ljx j−xl

CB
ik

we obtain that:

xl = xB
l −

n∑
j∈S−{k}

CB
ljx j −CB

ik


xB

l −
∑n

j∈S−{k} C
B
ljx j − xl

CB
ik

 (88)

Since the variable xl becomes a basic variable we also write that:

xl = xB̃
l −

n∑
j=1

CB̃
ilx j (89)

Under these conditions, the computation relation for xB̃
i and CB̃

il are obtained, which is determined as
follows:

xB̃
i = xB

i −
CB

ikxB
l

CB
ik

si CB̃
il = CB

ij −
CB

ikCB
lj

CB
ik

(90)

For the new admissible basis B̃ the calculation relation that is the basis for determining the value of the
objective function is obtained as follows:

ZB̃ = ZB
k −

(
ZB

k −Ck
) xB

l

CB
ik

(91)

ZB̃
j −C j = ZB

j −C j −
(
ZB

k −Ck
)CB

lj

CB
ik

(92)
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In conclusion, it can be stated that the specific elements of the new admissible basis B̃ can be
written according to the specific elements of the admissible basis B, according to the algorithm that was
presented previously. If the solution is not optimal, the primal fuzzy algorithm from Step 2 is resumed.
For the ordering of the manual calculations, simplex tables [7,52–54] are used in the practical application
of the simplex algorithm, with m + 1 lines and n + 1 columns, for each admissible calculation base.
The first m-lines corresponding to the allowable basis B contain the components of the column vectors
XB and CB

j with 1 ≤ j ≤ n and the last line contains the values ZB and ZB
j −C j with 1 ≤ j ≤ n.

The fuzzy simplex table is presented in Table 1.

Table 1. The simplex table corresponding to base B.

The Start
Admissible Base (B)

The Fuzzy Coefficients
from Base B

The Objective
Function Coefficients Ca1 Ca2 Can

Variable Values BF x1 x2 . . . xn

xB
1 CB

1 B1 C11 C21 . . . Cn1

xB
2 CB

2 B2 C21 C22 . . . C2n

. . . . . . . . . . . . . . . . . . . . .

xB
n CB

n Bn Cn1 Cn2 . . . Cnn

ZB *** ZB(BF) ZB(x1) ZB(x2) . . . ZB(xn)

ZB
j −Cj *** *** ZB(x1)−

Ca1

ZB(x2) −
Ca2

. . .
ZB(xn) −

Can

The values for ZB are obtained according to the calculation formula ZB(BF) =
∑n

i=1 CB
i Bi and

similarly the value of ZB is obtained for the fuzzy variables xi following the rule of fuzzy multiplication,
according to the computation relation ZB(xi) =

∑n
i=1 CB

i Ci j with j = 1, n and i = 1, m. The values for
ZB

j −C j are obtained according to the relation ZZB
j −C j = ZB(xi) −Cai after deduction from the value

of ZB(xi) the value related to the fuzzy coefficient of the objective function Cai.
In order to perform an iteration, to move from one simplex table to another [7,52–54], we must

take into account the vector xk entering the base, as well as the vector xl leaving the base, since at the
intersection of the vector entering the base xk and the vector that comes out of the base xl is the element
Ckl called pivot. For the simplex table [7,52–54], in order to obtain the fuzzy components, the following
rules are observed:

Rule 1: All the elements in the line with the pivot Ckl are divided by the pivot;
Rule 2: All the elements in the pivot column become zero, except the pivot whose value becomes 1;
Rule 3: All the other elements of the table are obtained according to the rule of the rectangle;

C̃i j = Ci j −
Cl jCik

Ckl
(93)

The simplex table is prepared for each iteration of the calculation until the differences ZB
j − C j =

ZB(xi)−Cai ≤ 0 in which, according to Theorem 1, the program is optimal [7,52–54]. The entire process
presented above is summarized in the flowchart in Figure 3.
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6. Case Study on the Application of the Primal Simplex Algorithm with Fuzzy Coefficients

For the application of the primal simplex algorithm, three tangible assets (A1, A2, A3) were taken
into account, which specify that they are characterized by a series of acquisition criteria but also by
constraints resulting from the current activity of the company. The acquisition criteria, consisting
mainly of the purchase price or the operating expenses of the three tangible assets, are presented in the
form of fuzzy triangular numbers with a single value range. The constraints of the company’s activity
are represented by the financial constraints resulting from the budgets allocated by the company for
different categories of activities or are represented by technical constraints. Regardless of their nature,
the constraints of the company’s activity are also presented in the form of fuzzy triangular numbers.
Table 2 presents the acquisition criteria, as well as the constraints resulting from their activity.

Table 2. Fuzzy numbers values for acquisition criteria and constraints.

Criterion

Criterion Type:
Acquisition/Constraint

Resulting from
Company’s Activity

Notation
The Value
for Asset

(A1)

The Value
for Asset

(A2)

The Value
for Asset

(A3)

Acquisition cost Acquisition criteria Ca(Ai)

(
$1000,
$1500

) (
$2000,
$3000

) (
$5000

$10, 000

)
The allocated budget for the
tangible assets acquisition Activity constraint Binv ($100, 000, $200, 000)

The mounting surface/asset Activity constraint Sm(Ai) 10 m2 50 m2 100 m2

The total surface for mounting Activity constraint Stm
(
5, 000 m2, 10, 000 m2

)
The operating expenses Acquisition criteria Ch f (Ai)

(
$100,
$150

) (
$200,
$300

) (
$500,
$1000

)
The allocated budget for the

operating expenses Activity constraint BCh f ($25, 000, $50, 000)

Based on the data presented in the previous table, it is required to establish, with the help of the
primal simplex algorithm, the quantities of tangible assets to be purchased from the market so that the
acquisition cost of the tangible assets is minimized and the constraints of the linear programming problem
are met. The mathematical model for applying the primal simplex algorithm is established as follows:

• The objective function with fuzzy coefficients and variables is of the form:

f (x) = (1000, 1500)x1 + (2000, 3000)x2 + (5000, 10, 000)x3 → min (94)
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• The constraints of the linear programming problem with fuzzy coefficients are:
(1000, 1500)x1 + (2000, 3000)x2 + (5000, 10, 000)x3 ≤ (100, 000, 200, 000)

10x1 + 50x2 + 100x3 ≤ (5000, 10, 000)
(100, 150)x1 + (200, 300)x2 + (500, 1000)x3 ≤ (25, 000, 50, 000)

(95)

• The non-negativity conditions of the linear programming problem are of the form:

x1 ≥ 0,x2 ≥ 0, x3 ≥ 0;

In the linear programming problem the objective function formed by the acquisition costs of the
three assets (A1, A2, A3) must be minimized f (x)→min, while the fuzzy variables x1, x2, x3 represent
the quantities of tangible assets to be acquired from the market and must be determined. According to
the mathematical model of the linear programming problem, the next step is to bring the problem to
the standard form, that occurs by introducing the fuzzy offset variables x4, x5, x6. Bringing the problem
to the standard form has the following form:

• The objective function with fuzzy deviation variables is set as follows:

f (x) = (1000, 1500)x1 + (2000, 3000)x2 + (5000, 10, 000)x3 + 0x4 + 0x5 + 0x6 → min (96)

• The constraints of the linear programming problem with the help of the fuzzy offset variables are
established as follows:

(1000, 1500)x1 + (2000, 3000)x2 + (5000, 10, 000)x3 + x4 = (100, 000, 200, 000)
10x1 + 50x2 + 100x3 + x5 = (5000, 10, 000)

(100, 150)x1 + (200, 300)x2 + (500, 1000)x3 + x6 = (25, 000, 50, 000)
(97)

• The non-negativity conditions for the mathematical model, completed with the help of the offset
variables are of the form: x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0.

The first simplex table corresponding to the admissible starting base B resulting from the first
iteration of the primal simplex algorithm is presented in Table 3.

Table 3. Simplex table corresponding to the admissible starting base.

The
Admissible

Starting
Base (B)

The Fuzzy
Coefficients
from Base B

The
Coefficients

of the
Objective
Function

(
1000,
1500 ) (

2000,
3000 ) (

5000,
10,000 ) (0,0) (0,0) (0,0)

BF x1 x2 x3 x4 x5 x6

xB
4 (0, 0)

(
100, 000,
200, 000

) (
1000,
1500

) (
2000,
3000

) (
5000,

10, 000

)
(1, 1) (0, 0) (0, 0)

xB
5 (0, 0)

(
5000,

10, 000

)
(10) (50) (100) (0, 0) (1, 1) (0, 0)

xB
6 (0, 0)

(
25, 000,
50, 000

) (
100,
150

) (
200,
300

) (
500,
1000

)
(0, 0) (0, 0) (1, 1)

ZB *** (0, 0) (0, 0) (0, 0) *** *** ***

ZB
j −Cj *** ***

(
−1000,
−1500

) (
−2000,
−3000

) (
−5000,
−10, 000

)
*** *** ***
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The other iterations of the primal simplex algorithm have the simplex table drawn up according
to the rules presented in Section 5. The admissible starting base B of linear programming problem
consists of the main fuzzy variables:

x4 = (100, 000, 200, 000)
x5 = (5000, 10, 000)

x6 = (25, 000, 50, 000)
(98)

The secondary fuzzy variables of the initial admissible base are:
x1 = (0, 0)
x2 = (0, 0)
x3 = (0, 0)

(99)

The calculations corresponding to ZB are shown below as well as the calculations corresponding to
ZB

j −C j.

ZB(BF) = (0, 0)(100, 000, 200, 000) + (0, 0)(5000, 10, 000) + (0 , 0)(25, 000, 50, 000) (100)

ZB(x1) = (0, 0)(1000, 1500) + (0, 0)(10) + (0, 0)(100, 150) = (0, 0) (101)

ZB(x2) = (0, 0)(2000, 3000) + (0, 0)(50) + (0, 0)(200, 300) = (0, 0) (102)

ZB(x3) = (0, 0)(5000, 10, 000) + (0, 0)(100) + (0, 0)(500, 1000) = (0, 0) (103)

The values for ZB
j −C j are obtained as:

ZB
1 −C1 = (0, 0) − (1000, 1500) = (−1000,−1500) (104)

ZB
2 −C2 = (0, 0) − (2000, 3000) = (−2000,−3000) (105)

ZB
3 −C3 = (0, 0) − (5000, 10, 000) = (−5000,−10, 000) (106)

After all the iterations, the fuzzy values for the quantities of tangible assets that should be purchased
are obtained as follows:

x1 = (2.73, 3.33) (107)

x2 = (5.47, 6.67) (108)

x3 = (16.67, 17.91) (109)

The value for the objective function is obtained as:

f (x)
= (1000, 1500)(2.73, 3.33) + (2000, 3000)(5.47, 6.67) + (5000, 10, 000)(16.67, 17.91)
+0x5 + 0x6

= (min(2730, 3330, 4095, 4995); max(2730, 3330, 4095, 4995))
+(min(10, 940, 13, 340, 16, 410, 20, 010); max(10, 940, 13, 340, 16, 410, 20, 010))
+(min(83, 350, 89, 550, 166, 700, 170, 910); max(83, 350, 89, 550, 166, 700, 170, 910))

(110)

f (x) = (2730, 4995) + (10, 940, 20, 010) + (83, 350, 170, 910) = (100, 020, 195, 515) (111)

The economic interpretation of the obtained results indicates that the company is able to purchase
within the limit of the budget allocated for the investment activity, respectively between ($100,000;
$200,000) the quantities of approximately x1 = (2.73, 3.33) of the first asset A1, x2 = (5.47, 6.67) from asset
A2 and x3 = (16.67, 17.91) from asset A3. The limits resulting from the linear programming calculations
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for assets quantities (A1, A2, A3) assure the company that all the restrictions imposed by its current
activity are respected and that the objective function is minimized.

7. Concluding Remarks

This paper studies the substantiation of the investment decision for the acquisition of tangible
assets necessary for the company’s activity by using linear programming, respectively, by implementing
two methods that underpin linear programming, namely: the graphical method and the primal simplex
algorithm. Both the graphical method and the primal simplex algorithm are based on decision variables,
coefficients from the objective function, but also from the matrix of constraints in the form of triangular
fuzzy numbers. The primal simplex algorithm was presented theoretically and practically implemented
by using fuzzy variables and fuzzy coefficients, which ultimately obtained the results of the linear
programming problem in the form of fuzzy variables that underpin the investment decision-making
process of the companies. The major advantage of these results is that they are presented as value
ranges. From these value ranges, the company can select any of the results values as they satisfy
two basic requirements, namely: minimize/maximize the objective function and satisfy the basic
requirements regarding the constraints resulting from the activity of the company.

The management tool created with the help of linear programming and with the help of the fuzzy
variables and fuzzy coefficients solves complex decision problems for companies, by ensuring the
combination of three fundamental elements underlying the acquisition of assets, namely: the available
financial resources of the company, which are limited in character; the constraints of the current activity
determined in particular by the technological flow, but also by the budgets allocated on activities; and
the economic performance of the assets acquired.

The fuzzy optimization in linear programming problems for substantiating the investment
decisions of the company is both useful and necessary as it allows the decisions selection that respond
to the fundamental requirements mentioned in this paper, namely the assets economic performance,
the economic benefits generated during their operation period, and the company’s constraints. The
algorithm can be extended to other specific situations resulting from the substantiation of the investment
decisions, according to the specific needs of the company.

Future research directions will include the development of a new financial risk mitigation
model, using the primal simplex algorithm and neutrosophic fuzzy numbers with applications on
financial markets.
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