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Abstract: Compressed sensing (CS) offers a framework for image acquisition, which has excellent
potential in image sampling and compression applications due to the sub-Nyquist sampling rate and
low complexity. In engineering practices, the resulting CS samples are quantized by finite bits for
transmission. In circumstances where the bit budget for image transmission is constrained, knowing
how to choose the sampling rate and the number of bits per measurement (bit-depth) is essential
for the quality of CS reconstruction. In this paper, we first present a bit-rate model that considers
the compression performance of CS, quantification, and entropy coder. The bit-rate model reveals
the relationship between bit rate, sampling rate, and bit-depth. Then, we propose a relative peak
signal-to-noise ratio (PSNR) model for evaluating distortion, which reveals the relationship between
relative PSNR, sampling rate, and bit-depth. Finally, the optimal sampling rate and bit-depth are
determined based on the rate-distortion (RD) criteria with the bit-rate model and the relative PSNR
model. The experimental results show that the actual bit rate obtained by the optimized sampling rate
and bit-depth is very close to the target bit rate. Compared with the traditional CS coding method
with a fixed sampling rate, the proposed method provides better rate-distortion performance, and the
additional calculation amount amounts to less than 1%.

Keywords: compressive sensing; CS acquisition; quantization; rate-distortion optimization; bit-rate
model; relative PSNR model; image processing

1. Introduction

Compressed sensing (CS), also known as compressive sensing or compressive sampling, shows
that a small group of linear, non-adaptive measurements can reconstruct finite-dimensional signals
with sparse or compressible representations [1–6]. By simultaneous sampling and data compression, a
CS-based imaging system abandons the traditional architecture so that the encoder does not require
too much time and hardware [7–10].

Many compressive sensing studies describe the constraints of the measurement budget, such as
allocating sensing resources for regions of interest [11,12] and adaptive sampling for block compressive
sensing [13,14]. However, real-valued CS measurements must be quantified in CS-based imaging
systems, and there is a given bit-budget constraint rather than a measurement budget.

In a classical imaging system, the quantizer determines the bit rate and the distortion [15]. However,
compressive sensing is different from that situation. The bit rate and distortion are determined by the
sampling rate and bit-depth in the CS-based imaging system. Therefore, there is a tradeoff between the
sampling rate and the bit-depth in CS-based imaging systems with bit-budget constraints [16].

In order to obtain a high-quality image, rate-distortion optimization (RDO) must be performed
on the encoder to allocate the optimal sampling rate and bit-depth to minimize the distortion of the
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reconstructed image. As far as we know, there are few research results on the joint optimization of
sampling rate and bit-depth. Liu et al. [17] proposed a distortion model of compressive video sampling
for optimizing sampling rate and bit-depth, but the parameters of the model were closely related
to the video sequence. Jiang and Yang [18] proposed an improved Lagrange multiplier method to
optimize the number of measurements and quantization step size, but the method did not consider
the computational complexity of rate-distortion cost, which is not conducive to practical applications.
Some problems occur when calculating the bit rate of the CS encoder. In [14], the bit rate was calculated
directly by the sampling rate and the bit-depth. The effect of entropy coding was ignored, which
reduces the utilization of the target bit rate. Although entropy coding was introduced in [13], there
was more computational complexity for the encoder because the bit-rate cost was calculated through
the actual coding results.

Due to the low computational complexity of CS, the computational complexity of rate-distortion
optimization cannot be too high at the encoder. In this paper, we introduce a uniform scalar
quantization and entropy coder to the CS, developing a CS-based imaging framework with RDO
wherein the sampling rate and bit-depth are jointly optimized. One of the main contributions of this
paper is the bit-rate model, which reveals the relationship between bit rate, sampling rate, bit-depth,
and characteristics of partial measurements. Another contribution is to introduce a relative peak
signal-to-noise ratio (PSNR) model and use a feedforward neural network to teach the relative PSNR
model to estimate distortion. Finally, a method of optimizing sampling rate and bit-depth is proposed
by using the bit rate and the relative PSNR model.

The rest of this paper is organized as follows. Section 2 introduces the rate-distortion optimization
problem for the parameters of the CS-based imaging system, which are the sampling rate and the
bit-depth. The proposed bit-rate model and relative peak signal-to-noise ratio (PSNR) model are
discussed in more detail in Sections 3 and 4, respectively. Section 5 describes and discusses the
rate-distortion optimization method for the sampling rate and bit-depth with the bit-rate model and the
relative PSNR model. Section 6 describes the experiments and results, and we draw some conclusions
in Section 7.

2. Problem Formulation

Let x ∈ RN×1 represent the vector form of the image after raster scanning. Assume θ ∈ RN×1 is the
coefficient of x in the orthogonal transform Ψ ∈ RN×N, that is x = Ψθ. When x can be approximately
represented by only K of N non-zero coefficients, x is called a K-sparse signal. Natural images are
usually sparse in discrete cosine transform (DCT) and discrete wavelet transforms [19,20]. The CS
theory states that the sparse signal x can be accurately reconstructed through M(M < N) linear and
non-adaptive measurements with an overwhelming probability. The measurement vector y ∈ RM×1 is
obtained by the following:

y = Φx, (1)

where Φ ∈ RM×N is the measurement matrix which should satisfy restricted isometry property (RIP)
and incoherence property [1,6,21], and a Gaussian random matrix is often used [5]. When reconstructing
the image signal x from the measurement vector y, y = Φx is an ill-posed problem with infinite
solutions. In order to obtain a unique solution, the sparsity [1,5] of images is usually used as the prior
condition to constrain the solution space of y = Φx. Some other prior conditions exist, such as total
variational (TV) minimization [22] and non-local similarity [23], which are also considered as sparsity
of an image in a particular transform domain. Moreover, a usual requirement is that the number of
measurements meet at least M = O(K log(N)) to ensure high-quality reconstructed images. m = M

N is
often called the measurement rate or sampling rate.

In practice, real-valued CS measurements must be mapped to discrete bits by a quantizer.
Therefore, the CS acquisition model with quantization [16] is as follows:

yQ = Qb(y) = Qb(Φx), (2)
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where Qb : R→ Q is a scalar quantization function of b-bit that maps real-valued measurements to
discrete setsQwith |Q| = 2b. Considering the low complexity requirements of CS encoders, the uniform
scalar quantization method is often used [17,18].

In order to improve the compression performance, entropy coding is performed after the
quantizer [18]. The encoded data is as follows:

cenc = fenc
(
yQ

)
, (3)

where fenc : Q→ C is the encoding function that maps the quantized measurements to the binary
codeword cenc; arithmetic coding is used in this paper.

After the image is compressed by CS measurement, quantizer, and entropy coder, the average
number of bits per pixel (bpp) in the image can be expressed as follows:

R = m · LyQ , (4)

where R is called bit rate and LyQ represents the average codeword length after entropy coding of yQ.
In practice, we are often constrained by a bit budget when transmitting or storing the compressed

data. At this point, the sampling rate and bit-depth must be balanced [16]. On the one hand, we can
increase the depth of the quantization bits by reducing the sampling rate, thereby improving the
reconstruction quality. On the other hand, when we reduce the sampling rate, the reconstruction
quality will decrease. How to allocate the sampling rate m and the quantization bit-depth b is expressed
as an optimization problem based on the rate-distortion criterion and is given as the following:

min
m,b

D(x, m, b)

s.t. R(x, m, b) ≤ Rmax
, (5)

where D(x, m, b) represents the distortion for the image x with sampling rate m and bit-depth b,
R(x, m, b) represents the bit rate for the image x with sampling rate m and bit-depth b, and Rmax

represents the budget for the bit rate of the image compression data.
Compressed sensing can significantly reduce the complexity of the encoder. When solving model

(5), the computational complexity is very important for CS-based imaging systems. If the complexity
of rate-distortion optimization is too high, this will run counter to our original intention of using
CS coding. Because the calculation of the bit rate and distortion far exceeds the calculation of CS
acquisition, we proposed a bit-rate model estimating R(x, m, b) and a relative PSNR model estimating
distortion. Based on the sampling method in the adaptive compression video sampling framework
of [17], we designed a CS-based image coding framework, as shown in Figure 1. The proposed CS
framework contains two measurement processes. The first one is a partial measurement whose purpose
is to extract the image features for the bit-rate model and relative PSNR model by using a small
number of measurements. The second one is complementary CS measurement, which completes CS
measurement according to the sampling rate obtained by the rate-distortion optimization.
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Figure 1. Proposed adaptive compressive sampling framework with rate-distortion optimization. 
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3. Bit-Rate Model

According to Equation (4), the average codeword length LyQ of the entropy coder is the key to
calculating the bit rate. The average codeword length can be approximated by information entropy [24].
However, the calculation of information entropy requires the use of all measured value information,
which cannot be achieved before the sampling rate is determined. In order to calculate the information
entropy of the measurements sampled by a sampling rate m, we proposed estimating the information
entropy based on a small number of measured values from the first sampling. However, the information
entropy is only the lower boundary of the average codeword length for entropy coding, and there are
some errors between the real information entropy and the information entropy estimated by a few
measurements. Therefore, we used the second-order Taylor expansion method to approximate the
estimation model of information entropy, in which the model can be expressed as the additive model
of each characteristic variable. Then, we modified the coefficients of the additive model by fitting
off-line data, which can improve the estimation accuracy of the average codeword length LyQ .

3.1. Estimation of Information Entropy

When sampling with the Gaussian random matrix, the CS measurements obey the Gaussian
distribution [25]. Moreover, the density function of the quantized CS measurements follows the
distribution of the corresponding real-value CS measurements [26], that is, the quantized measurements
also obey the Gaussian distribution, so the information entropy [27] of the quantized CS measurements
can be estimated as follows:

HyQ ≈
1
2

log2(2πeV0), (6)

where V0 is the variance of the quantized CS measurements.
In order to facilitate the uniform quantization, the measurements are first scaled to the integer

interval corresponding to the quantization bit-depth, and then the rounding operation is used. The
uniform quantization function can be expressed as follows:

Q(yi) = round
(

yi − ymin

(ymax − ymin)
(2b
− 1)

)
, (7)

where yi is a measurement, ymax is the maximum element of the measurement vector y, and ymin is the
minimum element of the measurement vector y. We used the independent random variables ε that
obey uniformly distributed U[−0.5, 0.5] to represent the rounding error in the uniform quantization
function [28], then Q(yi) ≈

yi−ymin
(ymax−ymin)

(2b
− 1) + ε. Let σ2

m denote the variance of the measurements

when the sampling rate is m and σ2
ε denote the variance of the random variable ε, and σ2

ε =
1
12 can be

calculated. Assuming that the variable yi obeys a Gaussian distribution with a variance of σ2
m, and the

rounding error variable ε is independent of the variable yi, the variance of Q(yi) can be expressed as
follows:

V0 ≈
(2b
− 1)

2
σ2

m

(ymax − ymin)
2 + σ2

ε. (8)

Combining Equations (6) and (8), the information entropy HyQ of the b-bit quantized measurements
with sampling rate m is the following:

HyQ ≈
1
2

log2

2πe
(2b
− 1)

2
σ2

m

(ymax − ymin)
2 +

2πe
12

. (9)

According to Equation (9), in addition to the bit-depth b, the variance σ2
m, the maximum

measurement ymax, and the minimum measurement ymin are the keys to calculating HyQ .
The measurements must be sampled according to the known sampling rate m, which means that the
variance σ2

m, maximum measurement ymax, and minimum measurement ymin of the measurements
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cannot be obtained before the sampling rate m is determined. Therefore, we proposed to perform
the first sampling to obtain a small number of measurements before the rate-distortion optimization,
and then to use this part of the measurements to extract the features that we needed.

In statistical theory, the characteristics of a sample are often used to estimate the characteristics of
the population. Since measurements of different sampling rates can be considered as different samples
in the population of measurements, there is a close relationship between the characteristics of the
different samples. In this paper, the characteristics of the first sampled measurements were used to
estimate the characteristic of the measurement with the sampling rate m. We used the maximum
measurement y′max and the minimum measurement y′min obtained by the first sampling to estimate
the maximum measurement ymax and the minimum measurement ymin of the sampling rate m. When
using the sample to estimate the population variance, there is an unbiased estimate of the variance [29]:

s2 =

Num∑
i=1

(pi − p)2

Num− 1
, (10)

where pi(i = 1, . . . , Num) is a sample, p is the mean of the samples, and Num is the number of samples.
According to the definition of variance, we know that s2 = Num

Num−1σ
2. Suppose σ2

0 is the variance
of the measurement with the sampling rate m0 for the first sampling and σ2

m is the variance of the
measurement with the sampling rate m. We used s2 of the first sampled measurement to estimate the
s2 of the measurement with the sampling rate m, that is:

Mm
Mm−1σ

2
m ≈

M0
M0−1σ

2
0

σ2
m ≈

M0(Mm−1)
(M0−1)Mm

σ2
0 ≈

(
Nm0

(Nm0−1) +
−m0

(Nm0−1) ×
1
m

)
σ2

0,
(11)

where Mm= round(Nm) is the number of the measurement with sampling rate m and M0= round(Nm0)

is the number of the measurement with sampling rate m0. Let ∆y0 =
(
y′max − y′min

)
, combined with

HyQ ≈ LyQ and Equations (6)–(11); we then obtain the following:

LyQ ≈
1
2

log2

(2b
− 1)

2
2πeσ2

0

(
Nm0

(Nm0−1) +
−m0

(Nm0−1) ×
1
m

)
∆2

y0

+
2πe
12

. (12)

3.2. Simplified Model of Average Codeword Length LyQ

Model (12) takes the variance as well as the maximum and minimum of the measurements obtained
by the first sampling as the main features of estimating the average codeword length. However, there
is a particular error between the information entropy and the average codeword length of the entropy
coder. In this paper, we constructed an additive model of the average codeword length according to
model (12) and solved the coefficients of the additive model by the least-squares method. The obtained
additive model minimizes the mean squared error (MSE) between the estimated and actual values of
the average codeword length, which improves the accuracy of the estimated average codeword length.

In approximating model (12), we performed a second-order Taylor expansion on functional form

log2(a
n∏

i=1
xi + C) for the variable xi, then obtained an addition form as follows:

log2(a
n∏

i=1

xi + C) ≈
n∑

i=1

log2(xi) +
n∑

i=1

cixi + cn+1, (13)

where ci(i = 1, . . . , n + 1) is the second-order Taylor coefficient (see Appendix A).
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Consider (2b
− 1)

2
, σ2

0, 1
∆2

y0

,
(

Nm0
(Nm0−1) +

−m0
(Nm0−1) ×

1
m

)
in model (12) as variables; according to

Equation (13), LyQ is approximated as follows:

LyQ ≈
1
2 log2

(2b
− 1)

2 2πeσ2
0

(
Nm0

(Nm0−1)+
−m0

(Nm0−1)×
1
m

)
∆2

y0


+c1(2b

− 1)
2
+ c2σ2

0 + c3
1

∆2
y0

+ c4

(
Nm0

(Nm0−1) +
−m0

(Nm0−1) ×
1
m

)
+ c5

, (14)

where ci(i = 1, . . . , 5) is the Taylor coefficient and can be obtained according to the appendix. The first
item in Equation (14) can be expanded as follows:

1
2 log2

(2b
− 1)

2 2πeσ2
0

(
Nm0

(Nm0−1)+
−m0

(Nm0−1)×
1
m

)
∆2

y0


= 1

2 log2

(
Nm0

(Nm0−1) +
−m0

(Nm0−1) ×
1
m

)
+ 1

2 log2

(
(2b
− 1)

2
)
+ 1

2 log2(σ
2
0) −

1
2 log2(∆

2
y0
) + 1

2 log2(2πe)

(15)

Due to the limited range of parameters, we approximated the logarithmic function in Equation

(15) by the square root function, and approximated 1
2 log2

(
(2b
− 1)

2
)
= log2(2

b
− 1) ≈ log2(2

b) = b.

Combining Equations (12), (14) and (15), we constructed an additive model of average codeword
length as follows:

LyQ = c′1b + c′2(2b
− 1)

2
+

c′3
m

+ c′4σ2
0 + c′5∆y0

+
c′6
∆2

y0

+ c′7, (16)

where c′1 ∼ c′7 are model coefficients which are obtained by using the training dataset to fit model
(16). Combining Equation (4) with model (16), we obtained the following bit-rate model:

R = m · LyQ = m(c′1b + c′2(2b
− 1)

2
+ c′4σ2

0 + c′5∆y0
+

c′6
∆2

y0

+ c′7) + c′3. (17)

Model (17) has no logarithmic operation, and the maximum y′max, the minimum y′min, and the
variance σ2

0 of the first sampling can be used to estimate the bit rate at the sampling rate m and bit-depth
b, which significantly reduces the computational complexity for estimating the bit rate.

4. Relative PSNR Model

As the objective function of the optimization problem (5), distortion is often measured by the
error between the original image and the reconstructed image, such as the sum of absolute difference
(SAD), mean squared error (MSE), and peak signal-to-noise ratio (PSNR). Due to the complexity of the
CS reconstruction algorithm is much higher than the complexity of CS sampling, directly calculating
the distortion loses the advantage of low complexity. Therefore, estimating the distortion ensures
low complexity for the CS-based encoder. However, in addition to measurement, factors affecting the
reconstructed image include the reconstruction algorithm and the degree to which the original image
matches the prior constraints. The latter two factors cannot be described objectively, which makes it
difficult to directly estimate the error between the original image and the reconstructed image. Since
distortion is used to judge the quality of CS coding parameters, the best CS coding parameters can also
be solved by the level of distortion. Therefore, we proposed relative peak signal-to-noise ratio (relative
PSNR) instead of distortion as the objective function. Relative PSNR is used to measure the difference
of PSNR between the reconstructed image and the original image with different parameters in the
same image. Although the relative PSNR cannot represent the error between the original image and
the reconstructed image, it can be used to evaluate the quality level of the reconstructed image under
different parameters. The relative PSNR comes from the PSNR comparison of the same reconstruction
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algorithm, where we can abandon the impact of the reconstruction algorithm. Thus, the factors that
estimate the relative PSNR come mainly from the sampling rate m, the bit-depth b, and the image.

4.1. Relative PSNR

The relative PSNR reflects the level of the peak signal-to-noise ratio, which can achieve the
same effect as the PSNR for the optimization of sampling rate m and the bit-depth b. The peak
signal-to-noise ratio is often used to evaluate the visual quality of the reconstructed image. The relative
PSNR not only reflects the level of distortion but also demonstrates the quality of the decoded visual

quality. Let f (b, m, x) = 10 × log10

(
2552N
‖x′−x‖22

)
denote the PSNR between the original image x and the

image x′ reconstructed by the measurements obtained by the parameter (b, m). Several relative peak
signal-to-noise ratios can be constructed according to f (b, m, x), denoted as F(b, m, x), as in Equations
(18)–(21).

F1(b, m, x) = f (b, m, x) − f (b1, m1, x), (18)

F2(b, m, x) =
f (b, m, x)

f (b1, m1, x)
, (19)

F3(b, m, x) =
f (b, m, x) − f (b1, m1, x)

f (b1, m1, x)
, (20)

F4(b, m, x) =
f (b, m, x) − f (b1, m1, x)∣∣∣ f (b2, m2, x) − f (b1, m1, x)

∣∣∣ , (21)

where b1, m1 and b2, m2 are reference parameters for the relative PSNR and are known fixed values.
It is easy to prove that the optimization result using F1F2F3F4 is consistent with the optimization result
using f for the parameters (b, m).

4.2. Relative PSNR Model with Feedforward Neural Network Learning

In order to accurately reveal the mapping model between relative PSNR, sampling rate m, and
bit-depth b, we used a four-layered feedforward neural network to train the map between relative
PSNR and its factors. The four-layered feedforward neural network is not necessary to reveal the
mapping relationship between variables in advance, and the backpropagation algorithm is used to
learn the mapping between input and output [30,31]. The feedforward neural network can minimize
the loss function between the estimated value and the real value, and is widely used in regression
prediction [32,33].

The input of the four-layered feedforward neural network is significant for estimating the accuracy
of the relative PSNR. The CS image reconstruction model typically consists of measurement data
fidelity and sparsity of an image in a particular transform domain. When the sampling rate and the
bit-depth are fixed, the reconstruction quality of the image is closely related to the sparsity. According
to the large-scale random matrix spectrum analysis theory, the literature [34] infers that the sparsity of
the signal can be estimated based on the average energy of the measurements, because the average
energy of the measurements can be calculated based on the variance and the mean (Equation (22)).
To increase the diversity of the input variables, we used the variance and the mean as an alternative to
sparsity as follows:

M0∑
i=1

y2
i

M0
= σ2

0 + y2
0. (22)

Therefore, we proposed the sampling rate m, the bit-depth b, the variance σ2
0 of the first sampled

measurements, and the mean y0 of the first sampled measurements as input variables of the relative
PSNR model. In this paper, we designed four neurons in the input layer, one neuron in the output
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layer, and two layers in the hidden layer for the relative PSNR network, as shown in Figure 2. The
mathematical form of the relative PSNR model can be expressed as follows:

u1 = [m, b, σ2
0, y0]

T

u j = g(W j−1u j−1 + d j−1) , 2 ≤ j < 4
F = W j−1u j−1 + d j−1 , j = 4,

(23)

where g(v) = 2
1+e−2v − 1 is an activation function, u1 is the input variable vector, F is the relative PSNR

as the output, j is the number of network layers, and W j, d j is the model parameter. When training
the network, the loss function uses the mean squared error (MSE) between the actual value and the
estimated value.Entropy 2020, 22, x FOR PEER REVIEW 9 of 20 
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5. Rate-Distortion Optimization for Sampling Rate and Bit-Depth

In this part, we use the designed bit-rate model and relative PSNR model to optimize the sampling
rate and bit-depth jointly.

5.1. Rate-Distortion Optimization Algorithm

We introduced the relative PSNR substitution distortion into problem (5). The optimization
problem of sampling rate m and bit-depth b can be expressed as follows:

maxF(b, m, x)
s.t. R ≤ Rmax

(24)

From bit-rate model (17), let R = Rmax; there is a correspondence between the sampling rate and
the quantization depth as follows:

m =
Rmax − c′3

c′1b + c′2(2b − 1)2
+ c′4σ2

0 + c′5∆y0
+ c′6

∆2
y0

+ c′7
. (25)

The number of bit-depth b is less than the number of sampling rate m, and is much less than the
number of combinations for bit-depth and sampling rate. According to Equation (25), the number of
candidate parameters of problem (5) can be reduced to the same number as the bit-depth.

Therefore, the proposed adaptive CS image coding framework with rate-distortion optimization
follows the main steps below:

(1) Input: Rmax

(2) First sampling.

Sampling rate is m0, and the original image is measured to obtain partial measurements
y0 ∈ Rround(Nm0)×1.

(3) Extracting features.
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Calculate the mean y0, the variance σ2
0, the maximum y′max and the minimum y′min of y0.

(4) Reducing the candidate set.

Calculate the sampling rate m corresponding to each bit-depth b based on Equation (25), obtaining
a candidate parameter set

{
(b1, m1), . . . , (bλ, mλ)

}
, where λ represents the number of quantization

depths.

(5) Estimating the optimal parameters.

Estimate the relative PSNR of all candidate parameters according to the four-layered feedforward
neural network, and select the parameter (b∗, m∗) for which relative PSNR is best. m∗ is the optimized
sampling rate and b∗ is the optimized bit-depth.

(6) Second sampling.

Sampling rate is m = m∗ −m0, and the original image is measured to obtain the remaining
measurements.

(7) Quantization and entropy coding.

The measurements of the two samplings are quantized using the bit-depth b∗, and then are
entropy encoded.

5.2. Model Parameter Estimation for the Bit-Rate Model and the Relative PSNR Model

In order to estimate the model parameters of the proposed average codeword length model and
the relative PSNR model, 100 images in the BSDS500 dataset [35] were randomly selected for training,
and the BSD68 dataset [36] was used for testing, each image being cropped to a 256 × 256 size. During
training, the quantization bit-depth took eight values in {3, 4, . . . , 10}, and the sampling rate used
49 values which included 40 values in {0.01, 0.02, . . . , 0.4} and 9 values in {1/30, 1/35, 1/40, . . . , 1/80}.
Each image collected 392 samples, which included the average codeword length, the relative PSNR,
and their affecting factors. A total of 39,200 samples were collected for model training. At the encoder,
the same orthogonal Gaussian measurement matrix was first used for block CS sampling, in which the
image block size was 32 × 32 (the measurement still obeys the approximate Gaussian distribution [26]),
and then uniform quantization and arithmetic coding were performed. At the decoder, arithmetic
decoding and inverse quantization were first performed, and then CS reconstruction was performed
using a non-local low-rank algorithm (NLR-CS) [23], in which the initial image was reconstructed total
variation iterative threshold regularization image reconstruction algorithms (BCS-TVIT) [37].

The initial sampling rate m0 determines the accuracy of the image features estimated by σ2
0 and

y0. The larger it is, the better it is to estimate the bit rate and PSNR accurately. However, if m0

is too large, there may be unnecessary measurements and calculations. When a Gaussian random
matrix is used, the number of measured values for reconstructing a high-quality signal is at least
M = O(K log(N)) [21], so the best choice of the initial sampling rate m should be O(K log(N))/N,
which is difficult to estimate it accurately. We analyzed the sample data of the training set and found
that when the sampling rate was lower than 0.013, the visual quality of all reconstructed images was
bad, and the PSNR value did not exceed 15 dB. Therefore, we used m0 = 0.013.

As shown in Table 1, the parameters of our model (16) were obtained by least square fitting with
the LyQ in the training set. To quantify the accuracy of the fitting, we also measured the mean squared
error (MSE), the Pearson correlation coefficient (PCC), and R-squared (R2) [38] between actual LyQ and
predicted LyQ in the test set. The closer R2 and PCC are to 1, the better the degree of fit of the model.

Table 1. Parameters of the average codeword length model (16).

c
′

1 c
′

2 c
′

3 c
′

4 c
′

5 c
′

6 c
′

7

1.06741 1.65688 × 10−7 0.012574 4.48157 × 10−5 −0.001619 0 −0.769651
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As can be seen from Table 1, all parameters are non-zero except for the value of c′6, which verifies
the mapping relationship between the sampling rate m, bit-depth b, variance σ2

0, interval ∆y0
, and

average codeword length LyQ . c′6 is the coefficient of 1
∆2

y0

, and the value of 1
∆2

y0

is very small. When

there is a fifth term c′5∆y0
, the correlation between 1

∆2
y0

and LyQ is very weak. c′6 = 0 indicates that the

influence of 1
∆2

y0

can be ignored in model (16).

In Table 2, the R-squared of model (12) reaches 0.9809 and the PCC reaches 0.9904. The R-squared
of model (16) reaches 0.9903 and the PCC reaches 0.9952, which is better than the estimation of model
(12). The results show that both model (12) and model (16) can describe well the relationship between
sampling rate m, bit-depth b, variance σ2

0, mean y0, and the average codeword length LyQ , and that
model (16) is better than model (12). Moreover, bit-rate model (17) based on model (16) has no
logarithmic operation, and can quickly calculate the sampling rate based on the bit-depth b and the
Rmax to narrow the parameter candidate set, which is more conducive to practical application.

Table 2. Fitting accuracy of model (12) and model (16).

R2 PCC MSE

Model (12) 0.9809 0.9904 0.10574
Model (16) 0.9903 0.9952 0.05035

When collecting data about the relative PSNR, we took b1 = 3, m1 = 0.013, b2 = 8, m2 = 0.4 for
F1F2F3F4. We used the “newff” function in MATLAB 2018b software for training PSNR, F1, F2, F3

and F4, respectively, where the input and the four-layered feedforward neural network are the same.
The training and testing performances are shown in Table 3.

Table 3. Fitting accuracy of F1F2F3F4

Output
Training Set Test Set

R2 PCC R2 PCC

PSNR 0.7014 0.847 0.6994 0.8449
F1 0.8174 0.9041 0.8653 0.9302
F2 0.9002 0.9488 0.8317 0.9120
F3 0.9002 0.9488 0.8302 0.9112
F4 0.9385 0.9687 0.9571 0.9783

Table 3 shows that the effect of fitting the PSNR using the same input variables and network
structure is the worst, because PSNR is calculated from the difference between the original image and
the reconstructed image. In addition to being related to the sampling rate m, quantized bit-depth
b, and the variance σ2

0 and average y0 of some measurements, PSNR is also closely related to other
factors. Compared with the estimated PSNR, the performance of the estimated F1, F2, F3, and F4

is improved. Among them, the effect of estimating F4 is the best, which shows that the mapping
relationship between sampling rate m, bit-depth b, variance σ2

0, mean y0, and F4 is closer than that with
F1, F2, and F3. Therefore, we chose F4 to evaluate distortion.

5.3. Computational Complexity of the Rate-Distortion Optimization Algorithm

The additional computational complexity of the rate-distortion optimization for sampling rate and
the bit-depth is mainly derived from feature extraction, rate estimation, and relative PSNR estimation.

The calculation of extracting features is mainly from the σ2
0, y0, y′max, and y′min values. Assuming

the image size is I× I and the block size is 32 × 32, the number of measurements obtained by the first
sampling is 0.013× I2. The calculation of y0 requires 0.013× I2

− 1 additions and one multiplication.
The calculation of σ2

0 requires 0.013× I2
× 2− 1 additions and 0.013× I2+1 multiplications. The y′max
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and y′min require a total of up to
(
0.013× I2

−1
)
× 2 comparisons. Assuming that a comparison requires

two subtractions, a total of
(
0.013× I2

−1
)
× 4 subtractions are required. The first sampling requires

0.013× I2
× 1023 additions and 0.013× I2

× 1024 multiplications. Assuming the same computational
complexity of subtraction and addition, extracting features require a total of 0.078× I2

− 6 additions
and 0.013× I2 + 2 multiplications. The extracted feature additionally adds 0.11% multiplication and
0.59% addition compared to the first sampling.

The calculation of the rate estimation process mainly comes from the calculation of Equation (25).
Since the bit-depth is a finite discrete value, (2b

− 1)
2

can be calculated using a lookup table in the
equation. At this point, calculating Equation (25) requires seven additions and seven multiplications.
We chose seven bit-depths as candidate values, and then Equation (25) had to calculate a total of 49
additions and 49 multiplications.

The calculation of the relative PSNR estimation process mainly comes from the calculation of
the neural network model (23). The network input layer has four neurons, and the output layer has
one neuron. The network has two hidden layers, each with six neurons. The number of network
parameters is 4 × 6 + 6 + 6 × 6 + 6+6 × 1 + 1 = 79. Networks without activation functions include
4 × 6 + 6 × 6 + 6 × 1 = 66 multiplications and 3 × 6 + 6 + 5 × 6 + 6 + 5 + 1 = 66 additions. The hidden
layer uses the sigmoid activation function. It is assumed that the series approximation calculates the
exponential power. When the precision is 10−7, it takes about 60 multiplications and 10 additions
to calculate an activation function. Calculating 12 activation functions requires 720 multiplications
and 120 additions. The calculation of the network model once is about 782 multiplications and
182 additions. If we select seven bit-depths as candidate values, we must calculate the relative PSNR of
seven candidate parameters. In this case, we had to calculate 5474 multiplications and 1274 additions
in total.

A measurement requires 1024 multiplications and 1023 additions. The computation of the
estimated bit rate and relative PSNR does not exceed the multiplications of six measurements and the
additions of two measurements. When compressing an image of size 256 × 256, the first sampling can
obtain 852 measurements. The computation of the estimated bit rate and relative PSNR increases the
multiplications by 6/852 ≈ 0.7% and the additions by 2/852 ≈ 0.23%. Compared with the computation
of the first sampling, the additional computation of the entire rate-distortion optimization process
increases by 0.81% multiplication and 0.82% addition.

6. Numerical Results and Analysis

We performed some numerical tests to check the performance of the proposed algorithm. In our
simulation, we tested Monarch, Cameraman, Peppers, and Lena (as shown in Figure 3), as well as
68 images from the BSD68 dataset, which were cut to a size of 256 × 256. All simulations were run on
MATLAB 2018b software on a Core i5 machine with 8 GB of RAM.
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Figure 3. Four testing images. (a) Monarch; (b) Cameraman; (c) Peppers; (d) Lena.

In order to verify the accuracy of the bit-rate model, we set the target bit rate to 0.1, 0.2, ..., 1 bit
per pixel (bpp), where the bit-depth set was {3, 4, ..., 9}. The actual bit rate of the optimized result with
the proposed algorithm is shown in Tables 4 and 5.

In Table 4, the error represents the difference of the actual bit rate minus the target bit rate, the error
percentage represents the percentage of the error in the target bit rate, and the absolute error percentage
is the absolute of the error percentage. Table 4 shows that the actual bit rate is very close to the target
bit rate for Monarch, Cameraman, Peppers, and Lena coded by the proposed method. When the target
bit rate is 0.1, although the bit-rate error percentage is the largest, the error is between 0.0017 bpp and
0.0027 bpp, which belongs to a smaller range.

Table 4. Comparison of target bit rate with actual bit rate for Monarch, Cameraman, Peppers, and Lena.

Image Target Bit Rate 0.1 0.2 0.3 0.4 0.5

Monarch Actual bit-rate 0.1027 0.2020 0.3023 0.3992 0.4990
error 0.0027 0.0020 0.0023 −0.0008 −0.0010

Error percentage (%) 2.67 1.01 0.76 −0.19 −0.19
Cameraman Actual bit-rate 0.1017 0.1990 0.2956 0.3921 0.4872

error 0.0017 −0.0010 −0.0044 −0.0079 −0.0128
Error percentage (%) 1.74 −0.50 −1.47 −1.97 −2.56

Peppers Actual bit-rate 0.1012 0.1996 0.2986 0.3964 0.4937
error 0.0012 −0.0004 −0.0014 −0.0036 −0.0063

Error percentage (%) 1.24 −0.19 −0.47 −0.91 −1.26
Lena Actual bit-rate 0.1018 0.2038 0.3030 0.4015 0.5011

error 0.0018 0.0038 0.0030 0.0015 0.0011
Error percentage (%) 1.76 1.90 1.01 0.38 0.22

Average of absolute error percentage (%) 1.85 0.90 0.93 0.86 1.06

Image Target Bit Rate 0.6 0.7 0.8 0.9 1

Monarch Actual bit-rate 0.6033 0.7054 0.8088 0.9093 1.0169
error 0.0033 0.0054 0.0088 0.0093 0.0169

Error percentage (%) 0.55 0.77 1.10 1.03 1.69
Cameraman Actual bit-rate 0.5944 0.6899 0.7932 0.8931 0.9994

error −0.0056 −0.0101 −0.0068 −0.0069 −0.0006
Error percentage (%) −0.93 −1.44 −0.86 −0.77 −0.06

Peppers Actual bit-rate 0.5994 0.6975 0.8037 0.9035 0.9931
error −0.0006 −0.0025 0.0037 0.0035 −0.0069

Error percentage (%) −0.10 −0.36 0.46 0.39 −0.69
Lena Actual bit-rate 0.6071 0.7071 0.8085 0.9091 0.9980

error 0.0071 0.0071 0.0085 0.0091 −0.0020
Error percentage (%) 1.19 1.02 1.06 1.01 −0.20

Average of absolute error percentage (%) 0.69 0.90 0.87 0.80 0.66



Entropy 2020, 22, 125 13 of 19

Table 5. Comparison of target bit rate with actual bit rate for BSD68 test set.

Image Target Bit Rate 0.1 0.2 0.3 0.4 0.5

BSD68 test set Actual bit rate

Maximum 0.1039 0.2079 0.3126 0.4151 0.5191
Minimum 0.0757 0.1653 0.2451 0.3321 0.4158
Average 0.0997 0.2003 0.3003 0.3965 0.4953

Average of absolute
error percentage (%) 2.33 2.06 1.98 1.88 1.81

Image Target Bit Rate 0.6 0.7 0.8 0.9 1

BSD68 test set Actual bit rate

Maximum 0.6242 0.7271 0.8352 0.9398 1.0484
Minimum 0.5104 0.5977 0.6839 0.7682 0.8494
Average 0.5963 0.6987 0.7986 0.8975 0.9954

Average of absolute
error percentage (%) 1.79 1.84 1.85 1.90 1.92

It can be seen from Table 5 that the average of the actual bit rate is very close to the target bit
rate for the BSD68 test set coded by the proposed method. The average absolute error percentage in
the BSD68 test set is between 1.81% and 2.33%, which is slightly higher than the results in Table 4.
According to specific data, it can be observed that the bit-rate error of image “test20” is the largest in
the BSD68 test set. This is due to a large number of white background areas in image “test20”, which
leads to multiples of the entropy coder far exceeding other images for quantized measurements. Even
so, the compression performance of “test20” is still better than the CS encoding method without the
entropy coder.

In order to verify the validity of the relative PSNR model, we first calculated the parameter
candidate set

{
(b1, m1), . . . , (bnum, mnum)

}
based on Equation (25) for each image in the test set (BSD68),

then performed compression decoding on each parameter and calculated the PSNR value of the
decoded image, and finally compared the real PSNR and the degree of PSNR based on the relative
PSNR model. The results are shown in Table 6.

Table 6. Performance of the relative PSNR.

Target Bit Rate 0.1 0.2 0.3 0.4 0.5

Optimal percentage (%) 69.12 45.59 33.82 50.00 48.53
Suboptimal percentage (%) 30.88 47.05 61.77 42.65 45.59

Sum of the above (%) 100.00 92.65 95.59 92.65 94.12
Average PSNR error (dB) 0.174 0.134 0.226 0.128 0.146

Target Bit Rate 0.6 0.7 0.8 0.9 1

Optimal percentage (%) 42.65 50.00 47.06 57.35 45.59
Suboptimal percentage (%) 51.47 45.59 48.53 35.29 42.65

Sum of the above (%) 94.12 95.59 95.59 92.65 88.24
Average PSNR error (dB) 0.216 0.184 0.212 0.204 0.299

In Table 6, the optimal percentage indicates the percentage of the number of images in which
the relative PSNR model selects the optimal parameters from the candidate set. The suboptimal
percentage indicates the percentage of the number of images in which the relative PSNR model selects
the suboptimal parameters from the candidate set. The average PSNR error represents the average of
the PSNR errors for all test images. When calculating the PSNR error of an image, we first calculated
the candidate parameter

{
(b1, m1), . . . , (bnum, mnum)

}
based on the target bit rate and Equation (25).

Second, we calculated the PSNR of decoded images for all candidate parameters, then estimated the
optimal parameters based on the relative PSNR model and found the corresponding PSNR. Finally, we
took the absolute difference between the PSNR of the estimated parameters and the maximum PSNR
as the PSNR error. Table 6 shows that the percentage of the optimal parameters and the suboptimal
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parameters is between 92.65% and 100%. When the target bit rate is 1 bpp, the ratio of successful
selection of the optimal and suboptimal is at least 88.24%. This occurs because, with the increase in the
target bit rate, the PSNR difference between different parameters is small, resulting in estimation errors.
Although the optimal percentage is not very high, the average PSNR error is between 0.128 dB and
0.299 dB, which is a small range. There is some error in the optimization result of the relative PSNR
model, and it is acceptable compared to the computational complexity of undergoing the distortion
cost of all candidate parameters.

In order to verify the rate-distortion (RD) performance of the proposed method, a comparative
experiment was performed with the conventional CS coding method. In the traditional method,
we first used the fixed m = 0.1 and verified b to obtain different bit rates; we then obtained different
RD curves by using m = 0.2, 0.3, and 0.4, respectively. Taking the images Cameraman and Lena as
examples, we easily obtained the five different RD curves shown in Figure 4.
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As can be seen from Figure 4, the rate-distortion performance of the proposed method is the
best. The main reason is that the method of fixed sampling rate cannot adjust the sampling rate.
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Nevertheless, the proposed method can adaptively select the sampling rate according to the bit-rate
model and the bit-depth, and we combined the relative PSNR model for parameter optimization.
The proposed method has therefore the best rate-distortion performance.

7. Conclusions

Both quantization and CS sampling cause distortion in a CS-based imaging scheme. Given a bit
budget, it is essential to assign quantization bit-depth and sampling rate. Rate-distortion optimization
plays a crucial role for the image/video encoder. In this work, we proposed a low-complexity
rate-distortion optimization method to jointly optimize the sampling rate and the quantization
bit-depth through the proposed bit-rate model and distortion model. First, we proposed a simple
bit-rate model based on the information entropy and the second-order Taylor expansion. The bit-rate
model can estimate the sampling rate according to the quantization bit at a given target bit rate, thereby
reducing the range of the parameter candidate set. Second, we introduced the relative PSNR as the
equivalent function of distortion. We proposed a four-layered feedforward neural network to learn the
relative PSNR model, where the model can improve the accuracy of estimating the level of distortion.
The experimental results show that the actual bit rate of compression with the proposed method is very
close to the target bit rate. Compared with the traditional CS coding method, this method provides a
better rate-distortion performance with very little extra computation.
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Appendix A

The logarithmic function log2(a
n∏

i=1
xi + C) has a second-order approximate expression function

and is given as follows:

log2(a
n∏

i=1

xi + C) ≈
n∑

i=1

log2(xi) +
n∑

i=1

cixi + cn+1

Proof. Let

g1(x1, x2, . . . , xn) = log2(a
n∏

i=1

xi + C), g2(x1, x2, . . . , xn) = log2(a
n∏

i=1

xi + C)

when n = 1, g1(x1) = log2(ax1 + C), g2(x1) = log2(ax1).

It is easy to find two points x(1)1 and x(2)1 , which satisfy ax(1)1 + C = ax(2)1 .
Using Taylor’s second-order expansion formula, we obtain the following:

g1(x1) = g1(x
(1)
1 ) +

∂g1(x
(1)
1 )

∂x1
(x1 − x(1)1 ) +

∂2g1(x
(1)
1 )

∂x1∂x1
(x1 − x(1)1 )

2

g2(x1) = g1(x
(2)
1 ) +

∂g1(x
(2)
1 )

∂x1
(x1 − x(2)1 ) +

∂2g1(x
(2)
1 )

∂x1∂x1
(x1 − x(2)1 )

2
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According to ax(1)1 + C = ax(2)1 , we obtain the following:

g1(x
(1)
1 ) = g1(x

(2)
1 ),

∂g1(x
(1)
1 )

∂x1
=
∂g1(x

(2)
1 )

∂x1
,
∂2g1(x

(1)
1 )

∂x1∂x1
=
∂2g1(x

(2)
1 )

∂x1∂x1

so,

g1(x1) − g2(x1) =
∂g1(x

(1)
1 )

∂x1
(x(2)1 − x(1)1 ) +

∂2g1(x
(1)
1 )

∂x1∂x1
(2x(2)1 − 2x(1)1 )x1 +

∂2g1(x
(1)
1 )

∂x1∂x1

((
x(1)1

)2
−

(
x(2)1

)2
)
.

Therefore,
log2(ax1 + C) ≈ log2(ax1) + c1x1 + c2

where

c1 =
∂2g1(x

(1)
1 )

∂x1∂x1
(2x(2)1 − 2x(1)1 ) =

−a2(2x(2)1 − 2x(1)1 )(
ax(1)1 + C

)2

and

c2 =
∂g1(x

(1)
1 )

∂x1
(x(2)1 − x(1)1 ) +

∂2g1(x
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(
x(2)1

)2
)
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a
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x(2)1 − x(1)1

)
(
ax(1)1 + C

) − a2
((

x(1)1

)2
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(
x(2)1

)2
)

(
ax(1)1 + C

)2 .

when n = 2, g1(x1, x2) = log2(ax1x2 + C), g2(x1, x2) = log2(ax1x2).

We can also find two points (x(1)1 , x(1)2 ) and (x(2)1 , x(2)2 ), which satisfy

ax(1)1 x(1)2 + C = ax(2)1 x(2)2

Using Taylor’s second-order expansion formula, we obtain the following:

g1(x1, x2) = g1(x
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∂g1(x
(1)
1 ,x(1)2 )

∂x2
(x2 − x(1)2 )

+
∂2 g1(x

(1)
1 ,x(1)2 )

2∂x1∂x1
(x1 − x(1)1 )

2
+

∂2 g1(x
(1)
1 ,x(1)2 )

2∂x2∂x2
(x2 − x(1)2 )

2

+
∂2 g1(x

(1)
1 ,x(1)2 )

∂x1∂x2
(x1 − x(1)1 )(x2 − x(1)2 )

g2(x1, x2) = g2(x
(2)
1 , x(2)2 ) +

∂g2(x
(2)
1 ,x(2)2 )

∂x1
(x1 − x(2)1 ) +

∂g2(x
(2)
1 ,x(2)2 )
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The k-order partial derivative of g1(x1, x2) at point (x(1)1 , x(1)2 ) are equal to the k-order partial

derivative of g2(x1, x2) at point (x(2)1 , x(2)2 ) based on ax(1)1 x(1)2 + C = ax(2)1 x(2)2 and g1(x
(1)
1 , x(1)2 ) =

g2(x
(2)
1 , x(2)2 ), where k = 1, . . . , n. So

g1(x1, x2)− g2(x1, x2) =
∂g1(x

(1)
1 ,x(1)2 )

∂x1
(x(2)1 − x(1)1 ) +
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[
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]
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[
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]
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[
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]
Therefore, log2(ax1x2 + C) ≈ log2(ax1x2) +

2∑
i=1

cixi + c3, where
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In the same way, we only need to find two sets of points that satisfy a

n∏
i=1

xi + C = a
n∏

i=1
xi, and use

the second-order Taylor series expansion to obtain the following:

log2(a
n∏

i=1

xi + C) ≈ log2(a
n∏

i=1

xi) +
n∑

i=1

cixi + cn+1

According to log2(a
n∏

i=1
xi) =

n∑
i=1

log2(xi) + log2(a), we can obtain the following:

log2(a
n∏

i=1

xi + C) ≈
n∑

i=1

log2(xi) +
n∑

i=1

cixi + cn+2

where cn+2 = cn+1 + log2(a). �
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