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Abstract: The complexity of a heart rate variability (HRV) signal is considered an important nonlinear
feature to detect cardiac abnormalities. This work aims at explaining the physiological meaning
of a recently developed complexity measurement method, namely, distribution entropy (DistEn),
in the context of HRV signal analysis. We thereby propose modified distribution entropy (mDistEn)
to remove the physiological discrepancy involved in the computation of DistEn. The proposed
method generates a distance matrix that is devoid of over-exerted multi-lag signal changes. Restricted
element selection in the distance matrix makes “mDistEn” a computationally inexpensive and
physiologically more relevant complexity measure in comparison to DistEn.
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1. Introduction

Heart rate variability (HRV) analysis is a powerful non-invasive method used to examine the
functioning of the autonomic nervous system (ANS). It is useful to understand the interplay between
the sympathetic and parasympathetic wings of ANS that serve to speed up and slow down the
heart rate respectively [1]. HRV, a variation of the time period between consecutive heart beats
(RR intervals), is thought to reflect the heart’s adaptability to changing physiological conditions.
Various HRV measures are considered to be critical bio-markers for understanding and diagnosing
cardiac health [2,3]. Popular non-linear entropy statistics such as ApEn and SampEn are significant
bio-markers that measure the extent of irregularities contained in HRV signals [4–6]. Physiological
signals are highly non-linear in nature, so it is important to use non-linear tools of analysis over the
linear ones [7–10].

The functioning of a healthy cardiac system is associated with higher complexity than one with
some sort of cardiac ailment. A high level of complexity does not necessarily indicate a high level of
irregularity [11]. ApEn and SampEn, being measures of irregularity [12,13], do not always translate to
the level of complexity contained in the underlying system. ApEn and SampEn assess a signal’s state
of orderliness (or chaos) by surveying existential patterns interpreted from the signal. An irregular
signal may not always be associated with a high level of complexity and vice versa. For example, when
an original time series (say, one that represents an underlying complex system) is randomized to form
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its surrogate time series, ApEn or SampEn will be higher for the surrogate series than the original.
However, is this increase in randomness (or entropy) also a reflection of increase in complexity of the
representative system? No, because technically, randomization breaks the inherent structure of the
originally complex series, leading to information loss, in other words a loss of content/complexity [14].
Many previous studies have reported higher irregularity in arrhythmic cardiac signals than their
healthy counterparts [11,15]. However, an arrhythmic heart functions with a much lower level of
complexity than a healthy one. In such a case, analyzing complexity apart from irregularity becomes
very significant.

Distribution entropy (DistEn) is a recently introduced measure of signal “complexity.” It is
calculated from the empirical probability distribution function (ePDF) of vector-to-vector distances of
the signal [16]. DistEn has been used to extract complexity information (rather than irregularity) from
HRV signals [16–18]. DistEn follows the same conceptual strategy as ApEn and SampEn. However,
unlike ApEn or SampEn, DistEn (1) quantifies complexity, not irregularity and (2) is computationally
superior, since it does not require use of the most critical [4,19] parameter r (tolerance) like ApEn or
SampEn do [16].

DistEn is a function of three parameters:m data length N, embedding dimension m and number
of bins M used in the probability distribution. In most cases, DistEn is known to be less influenced
by changes in N ad M [16,20]. Additionally, DistEn performs better than other entropy measures,
especially for short length signals [16]. DistEn’s efficiency as a complexity measure and bio-marker
has been tested and proved good in the cases of both synthetic and physiological signals [16].

In this study, we explore the physiological relevance of DistEn in HRV analysis. We hypothesized
that such an exploration could answer significant questions. For instance: (1) Is the quantified
DistEn value a direct consequence of any underlying physiological mechanism? (2) In DistEn
measurement, can the distance between template vectors be mapped to change in a physiological
factor? Consequently, we introduce a variant of DistEn; “modified distribution entropy (mDistEn),”
which is defined considering the underlying physiology of a HRV signal. Finally, the efficacy of
mDistEn is compared to that of DistEn, as a bio-marker of cardiac health.

The novelty of this modified algorithm lies in the way mDistEn takes advantage of the distances
between vectors within a certain time lag instead of collecting the distances across all vectors in the
state space, the way original DistEn does.

2. Data and Methods

2.1. Data

1. Synthetic: Logistic time series at two different levels of irregularity were used for the study.
The data were generated using the logistic map xn+1 = axn(1− xn) using MATLAB R2019b.
The initial value xn was set as 0.5. The constant a represents the level of irregularity in the
generated signal; a = 3.5 for a “periodic” time-series and a = 4 for a “chaotic” one. While
generating the time-series, the function also adds a random noise to the signal as follows:
Xlogistic = xn+1 + xnoise, where xnoise = [xrandom ∗ noiseLevel ∗ SD(xn+1)]. Here xrandom is a
normally distributed signal of random numbers, of the same length as xn+1. The noiseLevel
(noise standard deviation divided by the standard deviation of the noise-free time series) of the
function is set at 0.1. SD represents the standard deviation. Ten different realizations (difference
being created by the new random noise added each time) were synthesized at each level of
irregularity, namely, “periodic” and “chaotic.” We only used logistic map to produce time-series
with chaotic and periodic regimes since it has been the simplest and most widely used on
synthetic data examples to demonstrate entropy level variations [5,16,21–23]. Data lengths of 50,
100, 200, 500 and 1000 were used for the generation.

2. Physiological: All real time RR interval data were obtained from the PhysioNet database [24].
Corrected beat annotation files were available from the database. These were further manually
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corrected to remove the ectopic beats. The data included: (i) Healthy: RR interval time-series of
72 normal sinus rhythm subjects were obtained from PhysioNet, which included 18 subjects from
the MIT-BIH Normal Sinus Rhythm database (nsrdb) and 54 subjects from Normal Sinus Rhythm
RR Interval database (nsr2db). (ii) Diseased: RR interval time-series of diseased subjects were
obtained from the MIT-BIH database of PhysioNet, constituting (a) 48 arrhythmic data extracted
from 47 subjects [25]. The recordings were digitized at 360 samples per second per channel with
1-bit resolution over a 10 mV range; (b) 25 atrial fibrillated data [25], each sampled at 250 samples
per second with 12-bit resolution over a range of 10 millivolts. Atrial fibrillation is a specific
category of arrhythmia related to paroxysmal atrial malfunctions. Atrial fibrillation is the most
common form of arrhythmia and can occur as a post-surgical event, unlike many other common
arrhythmias. After direct extraction of RR interval series from all data, each signal segment was
selected from the beginning by varying length from 50 to 1000 (total 5 different lengths—50, 100,
200, 500 and 1000 beats).

2.2. Distribution Entropy

Distribution entropy (DistEn) is calculated based on the empirical probability distribution
function (ePDF) of distances among vectors formed from a given time series [16]. For given time series
data {x(n) : 1 ≤ n ≤ N} of length N and embedding dimension m, DistEn is calculated as follows:

1. Form (N −m) vectors of length m each, given by

{Xm
i : 1 ≤ i ≤ (N −m)}

where
Xm

i = {x(i + k) : 0 ≤ k ≤ m− 1} (1)

2. Take each Xm
i vector of step 1 as a template vector and find its distance from every vector Xm

j ,
where the distance is given by

dm
ij = {max|Xm

i − Xm
j |: 1 ≤ j ≤ (N −m), j 6= i} (2)

3. This when repeated for all i-th template vectors where 1 ≤ i ≤ (N − m), a distance matrix D of
dimension (N −m) ∗ (N −m− 1) is formed as shown below

D =



dm
12 dm

13 · · · dm
1(N−m)

dm
21 dm

23 · · · dm
2(N−m)

...
... · · ·

...
...

... · · · dm
(N−m−1)(N−m)

dm
(N−m)1 dm

(N−m)2 · · · dm
(N−m)(N−m−1)


(3)

4. From matrix (3), it is evident that elements in D are being repeated twice, i.e., dm
ij = dm

ji . This is true
because the distances are absolute values as can be seen from Equation (2). Thus, in formulating
DistEn, it becomes sufficient to use either the upper triangle or lower triangle of D [16]. Here,
we use the upper triangle only and denote the resulting matrix as D

′
, where

D
′
=



dm
12 dm

13 · · · · · · dm
1(N−m)

dm
23 dm

24 · · · dm
2(N−m)

dm
34 · · · dm

3(N−m)
...
...

dm
(N−m−1)(N−m)


(4)
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5. The elements of distance matrix D
′ are now divided equally into M number of bins and the

corresponding histogram is obtained.
6. Now, at each bin t of the histogram, its probability is estimated as

pt =
count in bin t

total number of elements in matrix D
(5)

for 1 ≤ t ≤ M. pt is the probability of the i-th bin in the histogram.
7. By the definition of Shannon entropy, the normalized DistEn of a given time series x(n) is defined

by the expression

DistEn(m, M) =

M
−1

log2(M) ∑ pt log2(pt)

t = 1

(6)

2.3. Modified Distribution Entropy

2.3.1. Physiological Explanation of Distance dm
ij in DistEn Measurement for HRV Signal

Let an inter-heartbeat RR interval time series of length N be defined as

RR = { RR1 RR2 RR3 . . . RRN } (7)

For an embedding dimension m, (N −m) template vectors can be defined using Equation (1) and
for m = 1 the template vectors of RR will be:

X1
1 = RR1, X1

2 = RR2, X1
3 = RR3,

. . . . . . X1
(N−1) = RR(N−1)

(8)

Now, the distance of vectors {X1
j |2 ≤ j ≤ N − 1} from template vector X1

1 can be computed using
Equation (2) as follows:

d1
12 = |X1

1 − X1
2 | = max(|RR1 − RR2|)

= |RR1 − RR2| = ∆RR1
1

d1
13 = |X1

1 − X1
3 | = max(|RR1 − RR3|)

= |RR1 − RR3| = ∆RR2
1

. . .
d1

1(N−1) = |X
1
1 − X1

(N−1)| = max(|RR1 − RRN−1|)
= |RR1 − RRN−1| = ∆RRN−2

1

(9)

where ∆RRl
i = |RRi − RRi+l | and i denotes the i-th RR interval and l is the lag or delay used to calculate

the change between RR intervals (shown in Figure 1). Similarly, for embedding dimension m = 2,
the template vectors can be defined as:

X2
1 = (RR1, RR2), X2

2 = (RR2, RR3),
X2

3 = (RR3, RR4),
. . . X2

(N−2) = (RR(N−2), RR(N−1))

(10)

Now, the distance of vectors {X2
j |2 ≤ j ≤ N − 2} from template vector X2

1 can be computed using
Equation (2) as follows:
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d2
12 =

|X2
1 − X2

2 | = max(|RR1 − RR2|, |RR2 − RR3|)
= max(∆RR1

1, ∆RR1
2)

d2
13 =

|X2
1 − X2

3 | = max(|RR1 − RR3|, |RR2 − RR4|)
= max(∆RR2

1, ∆RR2
2)

. . .
d2

1(N−2) =

|X2
1 − X2

(N−2)| = max(|RR1 − RRN−2|, |RR2 − RRN−1|)
= max(∆RRN−3

1 , ∆RRN−3
2 )

(11)

This signifies that d2
ij quantifies the maximum of changes of individual RR interval from its

l(1 ≤ l ≤ N−m− 1) lagged or delayed RR interval for embedding dimension m = 2 (shown in Figure 1).
Therefore, the generalized distance Equation (2) can be rewritten with respect to RR interval signal as:

dm
ij = {max(∆RRl

i , ∆RRl
i+1, . . . , ∆RRl

i+m−1})

: 1 ≤ i, j ≤ (N −m), j 6= i, l = |i− j|} (12)

                   𝑋1 =  (𝑅𝑅1       𝑅𝑅2     𝑅𝑅3        𝑅𝑅4        𝑅𝑅5        𝑅𝑅6 …          𝑅𝑅(𝑁−1)) 

              

                                               

 

                                  ∆𝑅𝑅1
1      ∆𝑅𝑅1

2   ∆𝑅𝑅1
3    ∆𝑅𝑅1

4     ∆𝑅𝑅1
5 …       ∆𝑅𝑅1

(𝑁−2)     

 

 

𝑋2 =  (𝑅𝑅1, 𝑅𝑅2) (𝑅𝑅2, 𝑅𝑅3) (𝑅𝑅3, 𝑅𝑅4) (𝑅𝑅4, 𝑅𝑅5) … (𝑅𝑅(𝑁−2), 𝑅𝑅(𝑁−1)) 

 

 

                    max ( ∆𝑅𝑅1
1, ∆𝑅𝑅2

1)    max ( ∆𝑅𝑅1
2, ∆𝑅𝑅2

2) … max ( ∆𝑅𝑅1
(𝑁−3)

, ∆𝑅𝑅2
(𝑁−3)

)   

 

   

 𝒍 = 𝟏 
 𝒍 = 𝟐 

 𝒍 = 𝟑 
 𝒍 = 𝟒 

 𝒍 = 𝟓 
 𝒍 = (𝑵 − 𝟐) 

 𝒍 = 𝟏 
 𝒍 = 𝟐 

 𝒍 = (𝑵 − 𝟑) 

𝑚 = 1 

𝑚 = 2 

Figure 1. Changes of individual RR intervals from their l lagged RR interval for embedding dimension
m = 1, 2.

Therefore, DistEn is a measure of the Shannon entropy of change of an RR interval calculated for
lags ranging from 1:(N −m− 1). The embedding dimension m controls the calculation of change by
defining the number of candidates for maximum change calculation.

2.3.2. Elimination of lags > 10

From the analytical explanation of DistEn, it is obvious that it measures the entropy of the change
or the derivative of the HRV signal at all lags 1:(N −m− 1). Therefore, the maximum lag at which the
change is measured depends on the data length N and embedding dimension m. Since N � m, we
can say that the maximum lag predominantly depends on the length of the signal. The physiological
discrepancy in defining DistEn lies behind this dependency of lag on data length. If we consider
the physiological mechanism of heart rate variability, the effect of the present heart beat on future
heart beats is defined by the properties of cardiovascular mechanisms rather than recording length or
number of heart beats. Therefore, the use of lags based on data length (for calculating change in HRV)
may mostly assess random phenomena rather than physiological information. In previous studies,
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it has been reported that a heartbeat’s influence is felt on an average of only 6–10 beats following
it [26,27]. Thus it becomes physiologically irrelevant to find the change between a given beat and all
other beats following it, as is done in the case of DistEn. Thus, from D

′
, it is physiologically justified

to remove all changes corresponding to lags > 10. This modification to D
′

results in D
′′
.

D
′′
=

d12 d13 · · · d1(11)
d23 d24 · · · d2(12)

d34 · · · · · ·
d46 · · ·

d(N−m−10)(N−m)
...

d(N−m−1)(N−m)


(13)

This modified distance matrix D
′′

(13) is now subjected to Shannon entropy calculation using
steps 5 to 7 of Section 2.2 for evaluation of modified distribution entropy (mDistEn) of the signal.

2.4. Statistical Analysis

In order to test the efficiency of regularity measures as classification features, we need to find
their strength in separating data belonging to different classes. In our study, we have used the
statistical test parameters p and AUC for the purpose. The p-value obtained using Mann–Whitney U
test represents the probability of X and Y belonging to continuous distributions of the same median,
where X and Y are samples taken from two independent populations. p can take values from 0 to 1
and in this study we have considered p < 0.05 as statistical significance. AUC, the area under the
ROC (receiver operating characteristic) curve is the probability that a classifier ranks a randomly
chosen instance X higher than a randomly chosen instance Y—X and Y being samples taken from
two independent populations. An AUC value of 0.5 indicates that the distributions of the features
are similar in the two groups with no discriminatory power. Conversely, an ROC area value of 1.0
would mean that the distributions of the features of the two groups do not overlap at all. The statistics
toolbox of MATLAB R2019b was used to perform all statistical tests.

3. Results

3.1. Effect of Eliminating lags > 10 from D
′

For a data of length N = 100, the average DistEn was calculated for each lag l ranging from 1
to 99; the histogram consisted of elements of D corresponding to lags 1:l. The embedding dimension
value was 2 and the value of parameter M wass kept fixed at 500. As can be seen from Figures 2–4,
the entropy values obtained using lags from 1 to 10 (i.e., mDistEn) were 0.4838, 0.9066 and 0.3885
(marked by a vertical blue line in each sub graph) for periodic, chaotic and healthy RR interval time
series respectively. These values increased by 0.0804, 0.0665 and 0.0266 respectively using DistEn
measure, i.e., considering lags from 1:98. The increase in entropy values due to the addition of elements
corresponding to lags over 10 was negligible compared to the already attained values from the first
10 lags.
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Figure 2. Average DistEn of periodic data (10 realizations) as a function of lag. Blue line indicates
the end of first 10 lags. mDistEn calculated using the first 10 lags was 0.4838, while DistEn calculated
using all lags was 0.5642.
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Figure 3. Average DistEn of chaotic data (10 realizations) as a function of lag. Blue line indicates the
end of first 10 lags. mDistEn calculated using the first 10 lags was 0.9066, while DistEn calculated
using all lags was 0.9731.
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Figure 4. Average DistEn of healthy RR interval data (72 RR interval time-series) as a function of
lag. Blue line indicates the end of first 10 lags. mDistEn calculated using the first 10 lags was 0.0.3885,
while DistEn calculated using all lags was 0.4151.

This supports our hypothesis that the entropy of underlying physiological mechanism can be
captured from a change of the signal of up to 10 lags rather than using all lags based on data length.
Another benefit of using maximum lag as 10 is it reduces computational cost from O(N2) to O(N).
From Equation (3) it is obvious that for any data length N the number of elements to be calculated
is (N −m)(N −m− 1) ≈ O(N2). On the other hand, for mDistEn the number of elements in D

′′
is

10(N −m) ≈ O(N). Therefore, mDistEn reduces the computational burden and is suitable for energy
constrained devices such as mobile or sensor devices.

3.2. mDistEn as a Classification Feature: Comparison with DistEn

The mean ± SD values of DistEn and mDistEn corresponding to synthetic and physiological
data are shown in Figures 5–7. It can be seen that both the measures classify synthetic data very
significantly and consistently across data length N, while for the physiological data, the significance of
classification varies with data length N. A better sense of the classification can be gotten by calculating
the corresponding p-values of significance (listed in Table 1). As can be seen from the table, for (a) the
healthy vs. arrhythmic case, both DistEn and mDistEn classify the data set significantly at all data
lengths. The significance is slightly more (smaller p-values) in the case of mDistEn. On the other hand,
for (b) the healthy vs. atrial fibrillation case, DistEn shows significant classification only at the higher
data lengths (N ≥ 500). However, mDistEn shows significant classification from N as low as 100.
Thus, mDistEn is surely better than DistEn at handling shorter lengths of data.

For further clarity here, the AUC values of DistEn and mDistEn corresponding to synthetic
and physiological data are shown in Figure 8 and tabulated in Table 2. For synthetic signals, the
AUC values of both mDistEn and DistEn are the same and consistent with respect to data length N.
This shows that mDistEn performs equally to DistEn and supports the previous finding that DistEn
is less affected by data length [20].
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Figure 5. Periodic vs. chaotic data: mean± SD values of DistEn and mDistEn.
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Figure 6. Healthy vs. arrhythmic HRV data: mean± SD values of DistEn and mDistEn.
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Figure 7. Healthy vs. atrial fibrillation HRV data: mean± SD values of DistEn and mDistEn.

Looking at healthy vs. arrhythmia data, the AUC values of mDistEn are higher than those of
DistEn and consistent with data length N. Therefore, mDistEn performs better than DistEn for all N
and this improvement can be attributed to physiologically motivated selection of lags for evaluation
of change in mDistEn measurement. Similarly, for healthy vs. atrial fibrillation data the AUC values
show that mDistEn performs better than DistEn for all N ≥ 100. At the lowest used data length
of 50, the performances of the two methods are equal and not significant (NS). Overall, the results
indicate that increasing lags in DistEn (with increasing data length) negatively affects the classification
performance, which is avoided in mDistEn by choosing physiologically relevant number of lags.
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Figure 8. AUC values of DistEn and mDistEn in classification of data at various data lengths.



Entropy 2020, 22, 1077 11 of 15

Table 1. p values of DistEn and mDistEn in classification of data at various data lengths.

p-Value

DistEn mDistEn

N 50 100 200 500 1000 50 100 200 500 1000

Periodic vs. Chaotic 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5 1.59 × 10−5

Healthy vs. Arrhythmic 5.64 × 10−16 1.75 × 10−15 4.14 × 10−15 7.56 × 10−17 1.30 × 10−16 5.02 × 10−17 2.10 × 10−17 4.97 × 10−18 1.09 × 10−18 3.78 × 10−19

Healthy vs. Atrial
Fibrillated

NS NS NS 0.03 0.01 NS 0.05 0.01 0.004 0.002

Table 2. AUC values of DistEn and mDistEn in classification of data at various data lengths.

AUC

DistEn mDistEn

N 50 100 200 500 1000 50 100 200 500 1000

Periodic vs. Chaotic 1 1 1 1 1 1 1 1 1 1

Healthy vs. Arrhythmic 0.94 0.93 0.92 0.95 0.95 0.95 0.96 0.97 0.98 0.98

Healthy vs. Atrial
Fibrillated

0.61 0.61 0.60 0.64 0.66 0.61 0.64 0.67 0.69 0.71



Entropy 2020, 22, 1077 12 of 15

4. Discussion

Complexity analysis of HRV signals has significant prognostic value. It could be used as
an important non-invasive predictor of adverse cardiovascular events, such as arrhythmia and
atrial fibrillation [28–30]. Many non-linear algorithms have been used to assess HRV complexity,
especially the entropy methods [31]. Among these, DistEn is a recently introduced measure that is less
parametric compared to traditional entropy formulations such as ApEn and SampEn [16].

Different methods capture one or several different aspects of signal complexity,
including irregularity and fractal dynamics. DistEn captures irregularity of spatial structures
(of a given time-series) in the state space that is unique for different dynamics [16].This represents
one aspect of signal complexity. If, on the other hand we are interested in a measure of randomness,
DistEn may not show the differentiation of a signal from its surrogate. However, this is true only when
the surrogate data are generated by random shuffling of the original time series, not for surrogate
data based on phase randomization. DistEn relies on the distribution of inter-vector distances that is
retained theoretically after random shuffling but perturbed by other randomization processes. We may
also interpret that DistEn appears sensitive to the irregularity of signal dynamics since it goes up as
the number of random dynamics increases in the MIX process. This concept is in keeping with the two
well-studied entropy ancestors ApEn and SampEn [16]. Thus, DistEn is not a complete measure of
signal complexity and captures just a few aspects of it, each interpreted independently. In this study,
we interpret complexity as the irregularity of spatial structures in the state space.

DistEn is an algorithm that focuses particularly on short-term data [16,20]. The idea behind
DistEn is to map length-N RR intervals to an inter-vector distance matrix of dimension (N −m + 1)×
(N −m + 1) in the state space. This logarithmically expands the limited information contained in the
original RR interval time-series [16]. Examinations on both bench mark synthetic and real clinical
data have indicated significantly improved stability and reliability of DistEn [16,20] over traditional
methods. This is because DistEn uses the probability distribution of the entire inter-vector distance
matrix; a global quantification as compared to the partial quantification seen in ApEn or SampEn [16].

In the present study, we have mapped inter-vector distances to the given RR intervals, using a
limited time lag. In other words, we have reformed the estimation procedure of inter-vector distances
in the original DistEn algorithm. The reformation was reminiscent of the possibility of not all elements
in the distance matrix being physiologically significant. This is because the influence of a heartbeat
may last until only 6–10 beats following it [26,27]. A modified DistEn (mDistEn) algorithm has been
developed accordingly to restrict the time lag to a fixed value, thereby counting only those that are
physiologically relevant to the template vector.

Our simulation tests on logistic and RR interval time series suggest that the proposed mDistEn
(using only lags up to 10) accounts for ~90% (the ratios of mDtistEn/DistEn in Figures 2–4 are
close to 0.9) of what DistEn (using all possible lags) measures. This only indicates that the vectors
corresponding to time lags > 10 contribute to a very small portion (less than 10%) of DistEn quantified
information. Our tests also prove that the information captured by mDistEn (∼90%DistEn) has
sufficient prognostic value to classify distinct data sets—in fact, more than that of DistEn. We have
shown that mDistEn is a better classification feature than DistEn in differentiating arrhythmic or atrial
fibrillation patients from healthy controls. Using physiologically insignificant lags (as DistEn does)
only increases computational expense, adding absolutely no informative value. Consequently, a big
advantage of our limited-lag algorithm is the reduction of computational complexity, giving it the
potential to be embedded in modern, battery-driven wearable devices that are becoming increasingly
popular these days.

An interesting question here would be about the role of the inter-vector distances corresponding to
the larger lags (lags > 10). These appear to be largely negligible when comparing the absolute difference
between DistEn and mDistEn. Looking from a physiological perspective, we understand that vagal
and sympathetic mediation on RR intervals happen through the synaptic release of acetylcholine
and noradrenaline, respectively. The vagal effects are almost immediate on a beat-by-beat basis as
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the turnover rate of acetylcholine is high. On the contrary, the noradrenaline is reabsorbed and
metabolized relatively slowly, which results in a long effect latency of sympathetic mediation [32].
Therefore, it may seem necessary to use larger lags in entropy measurement (DistEn). However,
the negligible difference between mDistEn and DistEn in presented scenarios clearly showed that
most of the information can be captured with lag = (1...10). In this study, we have not used RR time
series of very long durations such as ≥ 24 h, and therefore, the impact of very long duration HRV
time series on the proposed mDistEn is currently unknown. This is a limitation of the current study
and future exploration on continuous data from ambulatory monitoring could bring more light to the
use of mDistEn for analyzing long-term HRV time series. For physiological signal other than HRV, a
respective physiological mechanism should be considered to find the memory effect for determining
range of lag. Therefore, we propose this modification to DistEn only for HRV analysis.

A second limitation of our study is that mDistEn was proposed in the context of HRV complexity
analysis, after we had prior knowledge of the possible effect time (6–10 subsequent beats). Given a
completely different data set to study (e.g., EEG data), mDistEn cannot be used unless there are clear
implications on the restriction of effect time pertaining to the data. On the other hand, the original
DistEn algorithm can still be used, irrespective of the data that are picked.

In conclusion, the better performance indicated by mDistEn in the current study does imply that
in future, the design of algorithms could take "physiological context" into consideration too, in order
for better accuracy and reduced computation, thereby maximizing the benefits of such algorithms.

5. Conclusions

This study examined distribution entropy (DistEn) measurement on HRV signal and modified
the method to better reflect the complexity of underlying physiological mechanisms. We explained
what the inter-vector distances in DistEn represent, when mapped to the given RR interval time
series. DistEn uses multiple time lags to measure the Shannon entropy of changes in HRV signal.
In this paper, we propose modified distribution entropy (mDistEn), a physiologically significant
alternative to DistEn for HRV complexity analysis. Our experiments and analyses indicate that in
comparison to DistEn, mDistEn could reduce computational costs and perform better in classifying
both synthetic and physiological signals. Thus, mDistEn is a more pragmatic option over DistEn since
it is (i) physiologically more relevant, (ii) computationally less expensive and (iii) a better classification
feature, for HRV complexity analysis.
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