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Abstract: The “conservatively perturbed equilibrium” (CPE) technique for a complex chemical system
is computationally analyzed in a batch reactor considering different linear mechanisms with three
and four species. Contrary to traditional chemical relaxation procedures, in CPE experiments only
some initial concentrations are modified; other conditions, including the total amount of chemical
elements and temperature are kept unchanged. Generally, for “unperturbed” species with initial
concentrations equal to their corresponding equilibrium concentrations, unavoidable extreme values
are observed during relaxation to the equilibrium. If the unperturbed species is involved in one step
only, this extremum is a momentary equilibrium of the step; if the unperturbed species is involved in
more reactions, the extremum is not a momentary equilibrium. The acyclic mechanism with four
species may exhibit two extrema and an inflection point, which corresponds to an extremum of the
rate of the species change. These facts provide essential information about the detailed mechanism of
the complex reaction.
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1. Introduction

A new kinetic technique, Conservatively Perturbed Equilibrium (CPE), was analyzed theoretically
in previous studies [1,2]. It is formulated within a new paradigm of chemical kinetics, the so-called
“Joint Kinetics”, which was developed during the last decade (see the papers [3–8] and the most recent
review [9]). In a batch reactor, in the CPE experiment, the total amounts of chemical elements and the
temperature are maintained constant. Then, the CPE procedure is performed as follows:

1. The equilibrium concentration values of all species are determined.
2. Some of the species, at least two, are chosen to have their concentration perturbed from the

equilibrium value.
3. At least one species is not chosen, with its concentration value being kept at the equilibrium value.
4. The perturbations mentioned in point 2 are required to satisfy all conservation laws applicable to

the system reactions.
5. The evolutions of all species concentrations are observed as they tend towards equilibrium.

It should be stressed that within the CPE procedure, different from the traditional relaxation
method, finite perturbations are used, not the small ones. Additionally, the CPE approach is not limited
by the linear cases, only by possibilities to meet the balance requirements.
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It was shown [1,2] that in such CPE experiments, the concentration of any unperturbed species
first evolves away from its initial value, which equals the equilibrium value, and then back to this
value as time tends to infinity, via an unavoidable first extreme value (maximum or minimum),
possibly followed by other extreme values. These extreme concentration values and the times of their
occurrences present essential information:

(a) on the detailed mechanism
(b) on the values of the kinetic parameters
(c) on the possibility of new regimes with an improved yield and selectivity.

The physico-chemical foundations of the CPE technique are the uniqueness and stability of the
chemical equilibrium composition, which are basic properties of complex reactions occurring in a
closed chemical system. These properties were first qualitatively proven by Zeldovich in 1938 [10,11];
from 1960 onwards, many researchers studied these problems and presented rigorous proofs of the
uniqueness and stability of the equilibrium composition, such as Shapiro and Shapley [12], Aris [13,14],
Horn and Jackson [15], Vol’pert and Khudyaev [16,17], Gorban [18], and Gorban and Yablonsky [19,20].
An essential trait of the equilibrium of reversible complex reactions is that it is actually a detailed
equilibrium—i.e., for every step considered separately, the rate of the forward reaction equals the rate
of the corresponding reverse reaction. Reviews of these results are available in the books [21,22] and in
the paper [23].

The developed CPE approach is not limited to the networks of only unimolecular, linear reactions
which are utilized as examples in the present work. In recent experiments (B. Peng [24]), the CPE
technique was experimentally verified in a batch reactor for a nonlinear complex esterification reaction:

Alcohol + Acid 
 Ester + Ester,

in which ethanol and benzyl alcohol react with acetic acid, producing two different esters and water.
Three possible CPE cases (acetic acid and water unperturbed; ethanol and ethyl acetate unperturbed;
benzyl alcohol and benzyl acetate unperturbed) were systematically investigated. For the unperturbed
species, the unavoidable extreme values were experimentally observed during the relaxation towards
equilibrium. These extreme values were larger than the equilibrium concentration. Generally, the CPE
technique accompanied by unavoidable extrema may lead to processes limited by thermodynamic
equilibrium achieving a yield higher than the equilibrium. This is probably highly important for some
industrial processes—for example, processes of the pharmaceutical industry.

In the 1950s and 1960s, fundamental progress in the analysis of chemical relaxations was achieved by
Manfred Eigen (Nobel Price 1967 [25]). An excellent review of results of chemical relaxation studies of the
1950–1970s is presented in Bernasconi’s monograph [26]. Typically, in the transient regimes described
by Bernasconi, the “perturbed” system goes to the different final composition—i.e., the perturbations
of temperature or pressure change the final chemical state. Contrary to classical chemical relaxation
procedures, in our CPE approach only some initial concentrations are modified—the “perturbed” ones.
Other characteristics, such as the total amounts of chemical elements and the temperature or any other
factors that could interfere with the final composition, are kept unchanged to ensure the system returns to
the same equilibrium. In the CPE approach, the transient kinetic dependence of unperturbed substances
exhibit unavoidable extremum, which are fingerprints of the CPE technique.

1.1. Previous Study Review

In the paper [1], the CPE phenomenon was studied computationally and analytically using the
two-step linear mechanism as an example
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It exhibits the following properties:
Unavoidability of the concentration extremum of unperturbed species: this fact is independent on

the linearity or nonlinearity of the model studied (see Figure 1).
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1.2. Achieving Momentary Equilibrium (ME) at Some Extrema

Preliminarily, the concept of the “equilibrium” must be explained in more detail with some of
its modifications. Typically, the equilibrium is understood as the final state of the non-steady-state
chemical reaction which occurs in the closed chemical system.

The “equilibrium of the single step” means that the rate of the forward reaction of this step equals
the rate of the corresponding reverse reaction. Consequently, the net rate of this step equals zero,
and the equilibrium chemical composition is governed by the equilibrium constant. The “detailed
equilibrium” means that every chemical step of the complex chemical reaction at the final state is under
equilibrium conditions. As the momentary equilibrium of some reaction, we define such temporal
behavior when the rate of some step at that moment equals zero.

At the ME point of a linear step, the quotient of the step (i.e., the ratio of the product concentration
to reactant concentration) equals the equilibrium constant. However, the absolute values of the
concentrations are not equal to the corresponding concentrations at the final detailed equilibrium.

For systems of linear reactions, this holds for so-called end species, which participate only in a
single reaction. For example, in the mechanism

A
 B
 C



Entropy 2020, 22, 1160 4 of 16

momentary equilibrium occurs at any extremum of species A and C. In the mechanism

A
 B
 C
��

D

momentary equilibrium holds at any extremum of the species A, C and D. For species that participate
in several-step reactions the concentration maximum is not a momentary equilibrium.

The time at which the CPE extremum occurs is independent of the perturbation; in the
linear mechanism

A
 B
 C

these extrema occur at a time that is independent of the magnitude of the perturbation.
The goal of this paper is to study further the dynamic properties of CPE experiments, formulating

new questions and new problems, in linear models with three and four species, focusing on the
following topics:

1. What is the influence of the mechanism structure on the CPE properties?
2. Which differences exist between noncyclic reactions and cyclic ones? Or four cycles with a

diagonal step?
3. What is the influence of the strategy of perturbation—i.e., the distribution of perturbed and

unperturbed species, their vicinity and interconnectivity within the mechanism?
4. Is it possible to observe more complex dynamic behavior, such as the evolution of events, two

extrema, overshooting the equilibrium value, etc.?

2. Materials and Methods

For this study, computational simulations were performed using MATLAB, with ode45 and
ode15s as time integration methods for systems of ordinary differential equations that model systems
of reactions in batch reactors.

3. Results

As mentioned in the introduction, we distinguish two groups of species, “perturbed” and
“un-perturbed”. In correspondence with the CPE experiment, the initial concentrations of these species
were chosen as equal to the equilibrium concentration (“unperturbed species”) or different from the
equilibrium ones (“perturbed” species).

Since the perturbation of a single species cannot be conservative (maintaining the same total
amount of each element), and at least one species must remain unperturbed, the number of perturbed
species allowed in a CPE experiment ranges from 2 to N-1, where N is the total number of species
participating in a mechanism. The number of degrees of freedom of the perturbation equals the number
of perturbed species minus the number of independent conservation laws—see [1].

For a linear three-species (N = 3) mechanism, the number of perturbed species is 2, of unperturbed
is 3−2 = 1, and there are 2−1 = 1 degrees of freedom. For linear four-species (N = 4) mechanisms, the
number of perturbed species can be two or three, but in this study, all perturbations will involve only
two species, so that there are 4−2 = 2 unperturbed species and still 2−1 = 1 degrees of freedom.

Additionally, for the purpose of future analysis, it is important to distinguish the subset of
special unperturbed species that have only unperturbed neighbors, thus being “shielded” from the
perturbation. However, among all species, there must be at least one “neighboring pair” of perturbed
and unperturbed species; otherwise, the perturbation would have no effect on the unperturbed species.
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3.1. Analysis of Perturbed Species in a Three-Species Acyclic Mechanism (Two-Step Mechanism)
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The previous work [1] discussed the transient behavior of the unperturbed species only in two-step
mechanisms. As a continuation of that analysis, we now consider the perturbed species. A series of
simulation experiments with different kinetic constants was performed, from which two experiments
were selected as examples—see Table 1.

Table 1. Two-step mechanism, Simulation Experiments 1 and 2.

Experiment Settings Experiment #1 Experiment #2

Kinetic Parameters (s−1):
k1

+ = 5, k1
− = 4

k2
+ = 12, k2

− = 6
k1

+ = 16, k1
− = 4

k2
+ = 12, k2

− = 6
Perturbed species: A, B A, B
Unperturbed species: C C

The transient trajectories of the three species in the two experiments are plotted in Figure 2.
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New Findings—Perturbed Species May Experience Either Monotone Relaxation or Behavior with one
Extremum Peak

Changing the kinetic constants may modify the extremum behavior for the perturbed species. In
this case, species A and B both exhibit monotone relaxation when k1

+ is chosen in a small range. As
the forward kinetic constant becomes larger, species B shows transition to more complex behavior. Its
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transient regime will come to contain one peak (extremum). Additionally, the concentration of B will
overshoot its equilibrium value (in the graphs, this is where conversion = 0).

The concentration extremum indicates the rate of change of the corresponding species when the
timepoint is zero. Since this behavior occurs on species B, which is participating in two reactions
simultaneously, this extremum is not a momentary equilibrium. It was discovered in a series of
computational simulations for this mechanism that when the kinetic constant is above some value, a
concentration extremum for species B will become available.

3.2. Three-Species Cyclic Mechanism

The three-species cyclic mechanism (see Figure 3 and Table 2) presents an additional connectivity
from species A to species C. The kinetic constants must satisfy the following Onsager condition: the

ratio of the third pair of kinetic constants,
k+3
k−3

, which is also the thermodynamic equilibrium constant

of the third reaction K3, must satisfy the condition
k+1
k−1
·

k+2
k−2

=
k+3
k−3

.
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Table 2. Three-species cyclic conservatively perturbed equilibrium (CPE) example.

Experiment Settings Value

Kinetic Parameters (s−1):
k1

+ = 16 k1
− = 4

k2
+ = 12 k2

− = 6
k3

+ = 8 k3
− = 1

Perturbed species: A, B
Unperturbed species: C

Experiments were performed as described in Table 2 and plotted in Figure 4, setting the same
first two pairs of reaction parameters as in Experiment 2 above, and in adding the third reaction with
kinetic constants satisfying the Onsager condition.
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3.2.1. New Findings on the Three-Species Cyclic Mechanism—The Extremum Time for the Cyclic
Mechanism Has the Same Analytical Expression as for the Acyclic

Since a three-species mechanism has three eigenvalues, one of which is 0, and the discrepancy from
equilibrium of an unperturbed substance is zero both at times zero and infinity, it must be proportional
to the difference eλpt

− eλmt. Therefore, the extremum time, when its derivative with respect to time
vanishes, is given by

texe =
log

(
λp/λm

)
λm − λp

,

which is the same as those in the acyclic mechanism case. This is because there are only two nonzero
eigenvalues in any linear three-species system, and since there are two boundary conditions at t = 0
and as t approaches infinity, the linear combinations of exponentials are fixed up to a factor for the
unperturbed species.

3.2.2. The Cyclic Mechanism’s Extremum Time is Shorter than that of the Acyclic Mechanism

The cyclic and acyclic exhibit similar properties, however, the major difference between them is
the extremum time caused by the reaction between A and C. As mentioned before, the cycle must

satisfy the Onsager relation
k+1
k−1
·

k+2
k−2

=
k+3
k−3

, otherwise, there are possibilities of complex eigenvalues. To

compare the cyclic and the acyclic mechanisms, a simulation is performed fixing k1
+ = 0.16 s−1, k1

− =

0.04 s−1, k2
+ = 0.12 s−1, k2

− = 0.06 s−1, and selecting the value of k3
+, which in turn determines the

value of k3
− from the thermodynamic condition. The comparison results are illustrated in Figure 5.
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A detailed proof of the faster evolution in a three-species cyclic mechanism is given in Appendix A.
There is No momentary equilibrium due to no single-step species.
All three species are involved in two steps, which means that they cannot exhibit a momentary

equilibrium in any of the steps. Nevertheless, for this three-species cyclic mechanism the concentration
extremum will occur for unperturbed species during the transient regimes, and some special cases
such as unitary kinetic parameters would generate special results. This feature will be explored in a
future paper with focus on CPE for reaction systems with special parameters.

3.3. Four-Species Acyclic Mechanism

The results of this case are summarized in Figures 6 and 7 and Table 3.
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Figure 7. Four-species acyclic mechanism, species B and C unperturbed, (a) conversion of unperturbed
species B, (b) conversion of unperturbed species C.

Table 3. A four-species acyclic example.

Experimental Settings Value

Kinetic parameters (s−1):
k1

+ = 2 k1
− = 1

k2
+ = 3 k2

− = 1
k3

+ = 1 k3
− = 1

Perturbed species: A, D
Unperturbed species: B, C

3.3.1. New Findings—Possibility of Two Extrema and an Inflection Point

Unperturbed species can exhibit two concentration extrema during CPE, a maximum and a
minimum, located before and after the point of crossing the equilibrium value in the transient regime.
Which extremum occurs first depends on the sign of the perturbations. The times at which the extrema
are reached are not dependent upon initial conditions. An inflection point occurs between them, where
the second derivative becomes zero for the unperturbed species concentration; the physical meaning is
a maximum or minimum of the rate of the substance.

This mechanism leads to six different cases of perturbation when choosing two unperturbed
species among four. The simulation settings for all the six combinations are listed in Tables 4 and 5, and
two representative cases are plotted in Figure 8. In these experiments, all simulations are performed
under the same parameters; only the choice of perturbed species varies.
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Table 4. Experiment settings of CPE for a four-species acyclic mechanism.

Experimental Settings Values

Kinetic parameters (s−1):
k1

+ = 2 k1
− = 1

k2
+ = 3 k2

− = 1
k3

+ = 1 k3
− = 1

Table 5. Cases and results of CPE for a four-species acyclic mechanism.

Experiment Perturbed Species Unperturbed Species Behavior

1 A, B C, D 2 extrema of [C], 1 of [D]
2 A, C B, D 1 extremum of [B], 1 of [D]
3 A, D B, C 2 extrema of [C], 1 of [B]
4 B, C A, D 1 extremum of [A], 1 of [D]
5 B, D A, C 1 extremum of [A], 1 of [C]
6 C, D A, B 1 extremum of [A], 1 of [B]
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3.3.2. The Initial Rate is Zero for Unperturbed Species that are Connected only with Other
Unperturbed Species

In the cases where species A and B are perturbed (i.e., C, D unperturbed), the initial slope of the
trajectory of species D is 0 (rate of reaction is 0). The same phenomenon is also observed in species A
when C and D are perturbed (A and B unperturbed). See Figure 9.
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In these cases, when the unperturbed species is not connected directly with perturbed species, the
initial momentary equilibrium established between the unperturbed species produces a zero initial
rate for the species, making the species appear “shielded” by the other species. Nevertheless, this
momentary equilibrium will immediately be broken as the other species participate in reactions with
perturbed species. The first derivatives of concentrations (i.e., reaction rates) in experiment #1 are
plotted in Figure 10. When an initial rate is zero, the extremum rate is unavoidable since the final rate
is zero as well. Consequently, an inflexion point of transient concentration is unavoidable.
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3.3.3. Evolution of Events: Change of the Number of Extrema due to Change in Kinetic
Parameter Values

In Experiment #3, species C has two extrema and one inflection point under the given kinetic
parameter set. Varying a kinetic parameter such as k1

+ will lead to a change in the number of extrema,
as is plotted in Figure 11.

This shows that a threshold located between k1
+ = 1.5 and k1

+ = 1.6 acts as bifurcation point
where switching from the one-extremum to the two-extrema case. This passage from one case to
the other may be helpful to identify the source of complexity in this linear dynamic system. Similar
bifurcations are discovered for parameters k1

−, k2
+ and k3

−. These questions will motivate future
studies of the evolution of events in CPE experiments.
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3.4. Four-Species Cyclic Mechanism

The mechanism is shown in Figure 12. The parameter values used for the simulations are listed in
Table 6, along with the choices of perturbed species. Example time evolutions are plotted in Figure 13.
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Table 6. Kinetic specs of four-species cyclic mechanism.

Experiment Settings Value

Kinetic parameters (s−1):

k1
+ = 2 k1

− = 1
k2

+ = 3 k2
− = 1

k3
+ = 1 k3

− = 1
k4

+ = 1 k4
− = 6

Perturbed species: A, D
Unperturbed species: B, C
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3.4.1. New Findings—Similarity with Four-Species Acyclic Mechanism: Occurrence of Two Extrema
and an Inflection Point

Since the four-species acyclic mechanism is a limit of four-species cyclic mechanisms, it is not
surprising to find that the four-species cyclic CPE shares similarity in transient behavior for unperturbed
species. Unperturbed species can also exhibit two extrema and one inflection point, as well as crossing
their equilibrium concentration during the transient regime. The additional connectivity did not overly
modify the complexity of the system behavior.

3.4.2. Zero Initial Rate Behavior for Unperturbed Species Does not Occur

The four-species cyclic mechanism no longer has “end” species participating in only one step; the
example plots of rates in Figure 14 illustrates a case where species C and D are unperturbed.
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3.5. Four-Species Cyclic Mechanism with Additional Diagonal Connectivity

To investigate further the effect of the mechanism on the behavior of CPE trajectories, we consider
systems that are square but connected diagonally, such as the mechanism shown in Figure 15. It is
made of two triangles joined into a square, which means that it must satisfy three Onsager relationships:
k+1
k−1
·

k+2
k−2
·

k+3
k−3

=
k+4
k−4

,
k+1
k−1
·

k+2
k−2

=
k+5
k−5

, and
k+5
k−5
·

k+3
k−3

=
k+4
k−4

, of which only two are independent.
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An interesting question could be asked regarding the effect of k+
5 (and k−5 ) on the trajectories. In

Figure 16, we see that a system with a larger k+
5 will behave more akin to a triangular mechanism (or

two triangular mechanisms) while a system with a smaller k+
5 will behave more akin to a square. In

particular, when k+
5 is large, the two extrema become only one.
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Figure 16. (a) Small diagonal kinetic constant k+5 , (b) large diagonal kinetic constant k+5 .

4. Discussion

4.1. Comparing Structural Differences: Number of Species in Mechanism

Four-species mechanisms, in comparison with three-species mechanisms, demonstrate additional
complex behavior (i.e., two extrema in concentration instead of one, and an inflexion point in
concentration, which is an extremum in rate). Although the mechanisms in the current studies are all
linear systems, a series of observable transient complexities can still be interesting to show further
detailed information on the mechanism.

4.2. Evolution of Events: Effects of Kinetic Parameters on Complexity

Some complex behaviors only occur in parameter subdomains. Finding the boundary point
between a lower and higher complexity (e.g., transition from one extremum to two) remains challenging
because it entails the analysis of linear combinations of exponentials, which becomes complicated
beyond three-species mechanisms. Overall, the importance of effects determined by kinetic parameters
will be an important aspect in further studies of CPE experiments.

5. Conclusions and Future Applications of CPE

The conservatively perturbed equilibrium technique was studied for a given set of chemical
mechanisms, featuring acyclic and cyclic mechanisms involving three or four species. Additional
structures with different connectivities were also analyzed. The CPE approach allowed to find a link
between the type of mechanism and properties of the system relaxation, contributing to decoding the
behavior of dynamical systems and relating the observed phenomena to the underlying complexities.

When an unperturbed species is not connected directly with perturbed species, the initial rate is
zero, and a rate extremum is unavoidable, which is an inflexion point of transient concentration.

Future applications of CPE could be in catalysis, in simulating isotope exchange reactions, or even
more widely, in analyzing large biological systems.
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and agreed to the published version of the manuscript.
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Appendix A

Analysis of the three-species cyclic mechanism: we want to show that with the addition of
k+

3

(
and k−3 which is dependent on k+

3

)
, the less negative eigenvalue of the cycle transition matrix is

more negative than that of the acyclic transition matrix.
First, we can obtain the expression of the nonzero eigenvalues of the cyclic case:

λp · λm = k+
1 k+

2 + k+
1 k+

3 + k+
2 k+

3 + k+
1 k−2 + k+

3 k−1 + k+
2 k−3 + k−1 k−2 + k−1 k−3 + k−2 k−3

λp, λm = −
1
2

k+
1 + k−1 + k+

2 + k−2 + k+
3 + k−3 ±

√(
k+

1 + k−1 + k+
2 + k−2 + k+

3 + k−3
)2
− 4

(
λp · λm

)
Let A = k+

1 + k−1 + k+
2 + k−2 , C = k−1 k−2 + k+

1 k−2 +k+
1 k+

2 , then

λp · λm = C + k1 k3 + k2 k3 + k3 k−1 + k2 k−3 + k−1 k−3 + k−2 k−3

Only terms related to k+
3 and k−3 are left in the expression, and, from the previous results regarding

the expression for the three-species acyclic mechanism, its two nonzero eigenvalues are

λp, λm = −
1
2
(A±

√
A2
− 4C)

Since k−3 can be expressed as K · k+
3 , where K is a constant composed of only k+

1 , k−1 , k+
2 , k−2 , we

can observe that the expression can be simplified as

λp, λm = −
1
2
(A + Bk+

3 ±

√(
A + Bk+

3

)2
− 4

(
C + Dk+

3

)
)

where the A, B, C, D are constants that only consist of k+
1 , k−1 , k+

2 , k−2 , and are fixed in the comparison
between acyclic and cyclic mechanisms.

We can now consider only the expression A + Bx −
√
(A + Bx)2

− 4(C + Dx) for the less
negative eigenvalue.

Observe that

lim
x→0

A + Bx−
√
(A + Bx)2

− 4(C + Dx) = A−
√

A2
− 4C

The right-hand side of the equation is exactly the expression for the three species linear case. So,
as k+

3 and k−3 converge to 0, the cyclic mechanism becomes the acyclic, which makes physical sense
as well.

To show that the less negative eigenvalue of the cyclic transition matrix is more negative than that
of the acyclic transition matrix, we need to show that

A + Bx−
√
(A + Bx)2

− 4(C + Dx) > A−
√

A2
− 4C for all x > 0

First, since the eigenvalues of chemical systems are real,

(A + Bx)2
− 4(C + Dx) > 0

The minimum of the left hand side is −
(2AB−4D)2

−4B2(A2
−4C)

4B2 from the quadratic formula.

Thus −
(2AB−4D)2

−4B2(A2
−4C)

4B2 > 0, we simplify to get ABD− B2C−D2 > 0.
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Secondly, we show that

A + Bx−
√
(A + Bx)2

− 4(C + Dx) > A−
√

A2
− 4C

⇔ Bx +
√

A2
− 4C >

√
(A + Bx)2

− 4(C + Dx)

Square both sides:

⇔ (Bx)2 + (A2
− 4C) + 2Bx

√
A2
− 4C > (A + Bx)2

− 4(C + Dx)

⇔ (Bx)2 + (A2
− 4C) + 2Bx

√
A2
− 4C > (A + Bx)2

− 4(C + Dx)

⇔ Bx
√

A2
− 4C > ABx− 2Dx

Square both sides:

⇔ Bx2
(
A2
− 4C

)
> (ABx)2 + 4(Dx)2

− 4ABDx2

⇔ −4CBx2 > 4D2x2
− 4ABDx2

⇔ −CB > D2
−ABD
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