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Abstract: In XXZ chains with large enough interactions, spin transport can be significantly suppressed
when the bias of the dissipative driving becomes large enough. This phenomenon of negative differential
conductance is caused by the formation of two oppositely polarized ferromagnetic domains at the edges
of the chain. Here, we show that this many-body effect, combined with a non-uniform magnetic field,
can allow for a high degree of control of the spin current. In particular, by studying all of the possible
shapes of local magnetic fields potentials, we find that a configuration in which the magnetic field points up
for half of the chain and down for the other half, can result in giant spin-current rectification, for example,
up to 108 for a system with only 8 spins. Our results show clear indications that the rectification can
increase with the system size.

Keywords: quantum transport; spin current rectification; spin chains; strongly interacting systems out
of equilibrium

1. Introduction

Quantum spin systems exhibit rich transport properties. For instance, tuning the interactions in the
system, spin transport can change from ballistic to diffusive [1–4]. One effect that is particularly relevant
for our work is the emergence of negative differential conductance (NDC), which is the phenomenon,
whereby the spin current decreases as the bias that is imposed by the spin baths increases [5,6]. Such an
apparently counterintuitive phenomenon is due to the fact that the interplay between the dissipative
driving and the interactions in the system result in the formation of ferromagnetic domains at the edges of
the chain, which significantly suppress the spin current. The effect can be so strong that the spin chain
becomes an insulator.

Here, we study a boundary driven XXZ spin chain in the NDC regime in the presence of a non-uniform
external magnetic field. In order to obtain more generic conclusions, we consider the magnetic field that
locally can only take two possible values ±h. A detailed analysis of the effect of different shapes of the
magnetic field potential shows that two configurations, such that the magnetic field is in one direction
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in half of the chain and in the other direction for the other half, strongly enhance or even more strongly
suppress the ferromagnetic domains. This results, respectively, in the smallest or largest spin currents
between all of the possible shapes of the magnetic field potential. Because these two configurations are
mirror-symmetric, this implies that, if the field points for half the chain in one direction, and for the other
half in the opposite direction, then one can obtain a giant rectification effect, which, we show can be of the
order of 108 already for small spin chains. The currents and rectification also show a resonant behavior
that we correlate to the presence of avoided crossings in the energy spectrum of the bulk Hamiltonian.
An analysis of the delocalization of the eigenstates of the Hamiltonian indicates that this giant rectification
is also present in the thermodynamic limit.

This work adds to the recent results on rectification in spin chains without local magnetic fields [7,8],
with disorder [9] or with external fields [10–15]. Importantly, to the best of our knowledge, in no previous
work, strong rectification was connected to the possible emergence of NDC. The manuscript is organized,
as follows: in Section 2, we describe our model and, in Section 3, we discuss our results. Last, in Section 4,
we draw our conclusions.

2. Model

We consider an XXZ spin chain of length L with the following Hamiltonian

Ĥ =
L−1

∑
i=1

2J(σ̂+
i σ̂−i+1 + σ̂−i σ̂+

i+1) + Jzzσ̂z
i σ̂z

i+1 +
L

∑
i=1

hiσ̂
z
i , (1)

where σ̂±i are the raising and lowering operators acting on site i and σ̂z
i is a Pauli spin matrix. J and Jzz

denote the tunneling strength and magnitude of the nearest neighbor interaction, respectively. We use hi
for the local magnetic field. On each site, the local magnetic field hi can only take the two discrete values
±h. Therefore, there are 2L possible shapes of magnetic field potential.

The chain is coupled to two spin baths at the edges and we model the evolution via a
Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation [16,17] for the system density matrix
as [3,12,18–24]

∂ρ̂

∂t
= − i

h̄
[Ĥ, ρ̂] +

4

∑
j=1

Γ̂jρ̂ Γ̂†
j −

1
2

4

∑
j=1
{Γ̂†

j Γ̂j, ρ̂}, (2)

where the Γ̂j are the jump operators given by

Γ̂1 =
√

γµ1σ̂+
1 , Γ̂2 =

√
γ(1− µ1)σ̂

−
1 , (3)

Γ̂3 =
√

γµLσ̂+
L , Γ̂4 =

√
γ(1− µL)σ̂

−
L . (4)

Here, γ describes the system-reservoir coupling strength and µ1 (µL) is the left (right) dissipation bias.
We choose a symmetric driving at the boundaries, i.e., µ1,L = (1∓ µ)/2. Thus, µ ≡ µL − µ1 ∈ [−1, 1] is
the dissipative boundary driving bias, due to the reservoirs. In the limiting case with µ = 1, so that µ1 = 0
and µL = 1, the left reservoir tries to impose spin up to spin down conversions, while the right reservoir
would do the opposite, only converting spins down to spins up. For the rest of the paper, in the study of
our systems, we will be using µ = 1, which is the largest possible bias , and we will refer to this as the
strong driving regime.

For µ 6= 0, the system relaxes to a current carrying non-equilibrium steady state (NESS) ρ̂ss at long
times. The spin current J can be obtained from the continuity equation for local magnetisation σ̂z

i ,
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dσ̂z
i

dt
= ĵi−1 − ĵi, (5)

resulting in J = Tr( ĵi ρ̂ss), where ĵi = 4iJ(σ̂−i σ̂+
i+1 − σ̂+

i σ̂−i+1)/h̄. In the steady state, the current is
independent of the chosen site i. For all systems considered in this study, the steady state density matrix
ρ̂ss is computed by setting the time derivative to zero in Equation (2) and using exact diagonalization
with a number conserving numerical approach described in [25], which allows for studying open spin
systems up to 14 spins. From the point of view of numerical computations, we stress that, to simulate with
exact diagonalization the density matrix for L spins, one would require storing a state with 22L elements,
which corresponds to simulating the unitary dynamics of a system with 2L spins. This poses a severe limit
to the system sizes that one can compute in reasonable time. In the following, we work in units, for which
J and h̄ are 1.

3. Results

Interactions in the XXZ chain can significantly alter the spin transport in a boundary driven chain.
For instance, in the absence of any field and for µ = 1, the spin current is ballistic for |Jzz/J| < 1
(weakly interacting), super diffusive for |Jzz/J| = 1, and insulating for |Jzz/J| > 1 (strongly interacting).
The insulating behavior at large bias results in the interesting phenomenon of negative differential
conductance in strongly interacting (|Jzz/J| > 1) XXZ chains [5,6]. The insulating behavior is attributed
to the formation of two oppositely polarized ferromagnetic domains in the chain, each half of the chain
acquiring the polarisation of the reservoir to which it is connected. The two domains inhibit the spin flips
that result in the reduction of current in the chain. The main focus of this paper is to explore the potential
advantages of these ferromagnetic domains in device applications. To this end, we apply a local magnetic
field in all of the possible shapes of magnetic field potential configurations, as presented in Equation (1) to
the XXZ chain and study the spin transport.

We start by considering, in Figure 1, the spin current J versus interaction Jzz for all of the 2L

configurations of the magnetic field. We highlight that the presence of fewer lines as compared to 2L in
these panels is due to the fact that some different configurations of magnetic fields result in the same
current. For instance, there are only 10 plots in Figure 1a, and this is due to the fact that there are six
pairs of magnetic field configurations that yield the same J versus Jzz profile within the pair. In the
following, we use the following notation in order to indicate the magnetic fields direction: we write a +

for a site with magnetic field +h and − for a site with field −h. For instance, (+,−,−,+) corresponds
to the magnetic field configuration (+h,−h,−h,+h). For the case in which the magnetic field is h in
the first half of the chain, and −h in the second half of the chain, we refer to it as (+, · · ·+,−, · · · −),
the magnetic field, which is −h in the first half of the chain and +h in the second half, we refer to it
as (−, · · · −,+, · · ·+). Note that the configuration (+, · · ·+,−, · · · −) is highlighted by the red dotted
line, while its reflection symmetric configuration (−, · · · −,+, · · ·+) is depicted by the blue dashed line
while all the other configurations by represented by grey lines. For Jzz large enough we observe that the
configurations corresponding to the blue and the red lines are either the ones with the largest or the lowest
currents. This is very clearly observed for system sizes L = 4 to 8.
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Figure 1. Spin current J as a function of the ratio of interaction and local field strength Jzz/h for system
sizes L = 4 (a), L = 6 (b) and L = 8 (c). Different lines corresponds to each of the 2L magnetic field
configurations. We highlight two magnetic field configurations: with the red dotted line, we show the
current for a field, which is h for the first half of the chain, and−h for the second half of the chain, which we
refer to as (+, . . . ,+,−, . . . ,−), and with the blue dashed line the realization in which the field is −h in
the first half of the chain and h in the second half (−, . . . ,−,+, . . . ,+). The common parameters are h = 4,
γ = 1 and µ = 1.

In Figure 1, we consider a large local field h = 4. However, it is insightful to fix the interaction to
be large, e.g., Jzz = 4 and study the current as we vary h. This is depicted in Figure 2. The configuration
(−,−,+,+) corresponds (blue dashed line) to the lowest current, while the configuration (+,+,−,−)
corresponds, for smaller h, to the largest currents. It also presents some resonant-like structures, and its
current decreases for larger values of h. Given this seemingly antithetic effect of the (−,−,+,+) and
(+,+,−,−) configurations, which are reflection symmetric of each other, in the following we study the
effectiveness of all the different magnetic field configurations in order to result in a large spin current
rectification effect.
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Figure 2. Spin current J as a function of the ratio of local field strength and interaction h/Jzz for system
sizes L = 4 (a), L = 6 (b) and L = 8 (c). Different lines corresponds to each of the 2L configurations of local
fields. We highlight two magnetic field configurations: with the red dotted line we show the current for a
field, which is h for the first half of the chain, and −h for the second half of the chain, which we refer to
as (+, . . . ,+,−, . . . ,−), and with the blue dashed line the realization in which the field is −h in the first
half of the chain and h in the second half (−, . . . ,−,+, . . . ,+). Peaks of red dotted line in panel (a) are
signalled by black dashed lines that correspond to the black dashed lines in Figure 5. Common parameters
are Jzz = 4, γ = 1 and µ = 1.

Thus, we investigate the rectification in Figure 3. Here, the rectification is quantified using
R = J f /Jr [7,26–28], where J f and Jr are referred to as forward and reverse currents and are computed,
respectively, for a configuration of the magnetic field and its reflection symmetric one, e.g., (+,−,+,−)
and (−,+,−,+). We note that this is equivalent to fixing a configuration and switching the driving bias
(i.e., µ = 1, forward direction to µ = −1, reverse direction). WhenR = 1, there is no rectification as the
forward and reverse currents are equal, e.g., for symmetric magnetic fields configurations. Perfect diodes
are signalled byR = ∞ or 0 (the latter is obtained when the forward current tends to 0, but the reverse
current is finite). In Figure 3, there are less lines when compared to Figures 1 and 2, and this is due to
the fact that each line corresponds to a pair of magnetic field configurations: one is a configuration and
the other is the reflection symmetric one. Importantly, each pair is considered only once, e.g., we plot the
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rectification considering the (+,−,+,−) configuration to give the forward current J f and (−,+,−,+) to
give the reverse current Jr, and we do not plot the opposite combination, because it does not give extra
information, resulting in a 1/R rectification. This is particularly relevant, because, in Figure 3, we use
a log-lin plot, and the reverse combination of magnetic field configurations would simply result in a
curve symmetric aroundR = 1. The blue thick line presented in Figure 3 corresponds to the combination
(+, . . . ,+,−, . . . ,−), for J f , and (−, . . . ,−,+, . . . ,+), for Jr, and it gives clearly the strongest rectification.
We remind the reader that a small value ofR corresponds to a large rectification in the opposite direction,
yet clearly the blue thick line corresponds to the largest possible current rectifications. In Figure 3, we also
note that, for larger systems, one can obtain even larger rectifications, for example, showing a rectification
ofR ≈ 108 for the L = 8 chain. We will also return to this point in a later part of the paper.
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Figure 3. Rectification R is plotted as a function of the ratio of local field strength and interaction h/Jzz

for system sizes L = 4 (a), L = 6 (b) and L = 8 (c). The current J f with magnetic field configuration
as (+, . . . ,+,−, . . . ,−) and Jr for (−, . . . ,−,+, . . . ,+) are highlighted as thick blue lines. The other
configurations are in thin grey lines. Common parameters are Jzz = 4, γ = 1, µ = 1.

In Figure 4, rectification R is plotted as a function of interaction Jzz. Similar to Figure 3, each line
corresponds to a pair of magnetic field configurations, which are the reflection symmetric of each other.
Highlighted in blue thick line is the (+, · · ·+,−, · · · −), (−, . . . ,−,+, . . . ,+) configuration pair which
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yields the strongest rectification. Here, we highlight the role of interaction Jzz in causing large rectification.
In panel (a) of Figure 4, where h = 0.1, we observe the sharp transition to a steep increase in rectification
occuring near Jzz = 1, where the quantum phase transition occurs. This transition occurs at smaller values
of Jzz for increasing h, as we observe for h = 1 in panel (b) and h = 3 in panel (c). With increasing h,
the system behaviour deviates further from that of the XXZ spin chain system, and it is thus natural that
the values of Jzz, for which an enhancement of rectification occur, deviates further from Jzz = 1. Figure 4
thus highlights the importance of the interplay of kinetic, interactive, and dissipative terms in the master
Equation (2) of the set-up.
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10 -5
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Figure 4. Rectification R is plotted as a function of interaction Jzz for h = 0.1 (a), h = 1 (b) and h = 3
(c) for a system size of L = 8. The rectification as ratio of current J f with magnetic field configuration
as (+, . . . ,+,−, . . . ,−) and Jr for (−, . . . ,−,+, . . . ,+) are highlighted as thick blue lines. The other
configurations are in thin grey lines. The common parameters are γ = 1, µ = 1.

In Figures 1–4, we have observed resonances, which correspond to peaks of currents and the
largest rectifications. We now aim to gain an insight into this. The mechanism for the emergence
of such resonances, and of the strong rectifications, can be understood by studying the configuration
(+, · · ·+,−, · · · −), where the field is in the positive direction in first half of the chain and negative in the
other half of the chain (the configuration corresponding to the largest rectification). To give a clear idea of
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the mechanism, we focus on the case of L = 4. In Figure 5, we show the energy spectrum as a function of h
for Jzz = 4. For each magnitude h, the value of the energy is indicated by a point in the plot. Different
colors of each point corresponds to the values of the overlap of the corresponding eigenvector |ψs〉 with
the state | ↓↓↑↑〉, i.e., |〈ψs| ↓↓↑↑〉|2. The vertical dashed lines show the position of the peaks of current
for system size L = 4, as taken from Figure 2. It is clear from the figure that the avoided crossings in the
spectrum matches with the maxima of the current. At these points, given the proximity in energy between
different energy eigenstates, it is easier for the steady state to be in a mixture of different eigenstates,
thus resulting in the possibility of larger currents (note that each energy eigenstate carries 0 current).
The presence of avoided crossings for the peaks in Figures 1–3 has been checked for all system sizes and
parameters tested.

Figure 5. Eigenenergies Es in the zero magnetisation sector of a chain of length L = 4 with magnetic field
configuration (+,+,−,−) plotted as a function of the ratio of local field strength and interaction h/Jzz.
The vertical lines in each panel correspond to peaks in the current as from Figure 2a. The color that is used
for the eigenenergies corresponds to the overlap between the eigenvector and the state |↓↓↑↑〉. Parameters:
γ = 1, µ = 1, Jzz = 4.

Thus, we have shown that an XXZ chain with large enough interaction Jzz and a magnetic field in
the configuration (+, · · ·+,−, · · · −) results in a highly performing spin-current diode. It is however
important to investigate the performance at larger sizes of this diode. At this point we should stress that
computing the steady state in regimes of very low currents is extremely demanding, because the equations
are ill-conditioned. Thus, we resort to a different, yet very insightful approach. In order to understand
the robustness of the effect for larger system sizes, we study the inverse participation ratio (IPR) of the
Hamiltonian of the system with the local magnetic field configuration (+, . . . ,+,−, . . . ,−) in Figure 6.
The IPR for a given state |ψ〉 over the energy eigenstates |n〉 is given by IPR = ∑n |〈n|ψ〉|4. A value of
1− IPR ≈ 1 means that the state |ψ〉 is well distributed over all the eigenstates |n〉, while 1− IPR ≈ 0
means that |ψ〉 almost exactly corresponds to a single energy eigenstate. The study of this quantity can be
done simply by diagonalizing the Hamiltonian, which we do for system sizes up to L = 16.
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Figure 6. The inverse participation ratio 1− IPR as a function of the ratio of local field strength and
interaction h/Jzz for different system sizes L = 16 (dashed line), L = 10 (continuous line) and L = 6
(dot-dashed line). Here the magnetic field is in the configuration (+, . . . ,+,−, . . . ,−). Both state
configurations |DU〉 = | ↓ . . . ↓↑ . . . ↑〉 (red) and |UD〉 = | ↑ . . . ↑↓ . . . ↓〉 (blue) are shown. The inset shows
the rectification as a function of h/Jzz for different system sizes: blue continuous line for L = 4, red dashed
line for L = 6, and green dot-dashed line for L = 8. Other parameters are Jzz = 4, γ = 1, µ = 1.

In Figure 6, we plot 1− IPR as a function of the ratio of local field strength and interaction h/Jzz

for the state |DU〉 = | ↓ . . . ↓↑ . . . ↑〉 (red plots) and for the state |UD〉 = | ↑ . . . ↑↓ . . . ↓〉 (blue plots).
For the state |UD〉, 1− IPR quickly becomes small and it continues to decrease as h increases. This means
that the state that is favored by the dissipator in reverse bias, |UD〉, is almost entirely an eigenstate of
the Hamiltonian. Hence, the steady state would be well approximated by this 0−current-carrying state.
We note that the blue solid, dashed, and dot-dashed curves relative to this state, each for a different system
size, are almost completely identical.

For the state |DU〉, the physics is very different. For h = 0 |DU〉 well approximates the highest
energetic state, together with |UD〉. However, while |UD〉 approximates better and better the highest
energetic state as h increases, for large enough magnetic field h, the state |DU〉 well approximates the
ground state. Hence, this state is bound to go through numerous avoided crossings, at the occurrence
of which transport is favored and rectification can be very large. In particular, we observe that, for the
state |DU〉, 1− IPR is close to 1 for h ≈ Jzz, and 1− IPR increases with the system sizes. This is because
of the presence of a energy band of state that are crossed for h ≈ Jzz. Beyond this energy band, there can
be other avoided crossings which can result in even larger rectification. For instance, in the inset of
Figure 6, we illustrate the rectification for different system sizes, showing a significant increase in the
rectification power as the system size increases, even up to R = 108 (L = 4 blue continuous line, L = 6
red dashed line, and L = 8 green dot-dashed line). The exact position of the last avoided crossings
depends on the parameters of the system. For large enough Jzz/J, they occur for h ≈ 2Jzz. This can be
computed analytically, in fact, setting J = 0 one realizes that the energy of state |DU〉 is, for large enough
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system sizes L, given by (L− 3)Jzz − Lh while the energy of the first excited state (at large enough h),
is (L− 11)Jzz − (L− 4)h. These two energies coincide for h = 2Jzz. For finite values of J and smaller ratios
Jzz/J, the last resonance is moved to larger values of h, as in the cases analyzed in this work.

In Figure 7, we plot the steady state Von Neumann entropy S = −Tr(ρ̂sslnρ̂ss). In the reverse bias
case (lines with ◦), the entropy decreases rapidly as h increases, because the steady state approaches
more closely a pure state. This mirrors the results presented in Figure 6, where |UD〉 in the reverse bias
is favoured by the dissipator and is almost entirely an eigenstate of the Hamiltonian. In the case with
magnetic field configuration (+, . . . ,+,−, . . . ,−) (lines without symbols), the steady state is mixed and
has much larger entropy, particularly at the avoided crossing where the current and the rectification are
largest. For even larger magnitude of the magnetic field h, the steady state also approximates a pure state
and the entropy decreases.

0 1 2 3 4 5

10 -2

10 0

Figure 7. The Von Neumann entropy S as a function of the ratio of local field strength and interaction
h/Jzz for system sizes L = 4 (blue solid line), L = 6 (red dashed line) and L = 8 (green dot-dashed
line). We show both the entropy of the steady state density matrix ρss for the magnetic field configuration
(+, . . . ,+,−, . . . ,−) (no symbols) and (−, . . . ,−,+, . . . ,+) (lines with ◦). The common parameters are
Jzz = 4, γ = 1 and µ = 1.

4. Conclusions

We have studied the effect of local magnetic fields on the spin transport of a strongly interacting XXZ
chain. We have shown that a configuration with the field pointing in one direction for half the chain and
in the opposite direction for the other half can result in giant rectification. This is due to the fact that,
in one direction, the magnetic field cooperates with interactions in producing two large ferromagnetic
domains, while, in the other direction, the magnetic field opposes such a formation and favors transport.
Rectification is particularly enhanced at the occurrence of avoided crossings in the energy spectra of the
XXZ chain with this configuration of magnetic field. As an example of giant rectification, for L = 8 we find
rectifications of the orders of 108. We also show that the rectification is not only robust upon increasing
the chain length, but strengthened. Moreover, the presence of resonant peaks of rectification can turn this
setup into a switch or sensor, being activated by small changes in the magnetic field.
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In future works, we could consider the stability of this effect against other forms of dissipation.
For instance, dephasing has been shown to suppress negative differential conductance [18],
or perturbations, such as long range interactions, have a detrimental effect on negative differential
conductance [29]. Another possible direction would be to consider the performance of this diode for heat
current rectification [26–28]. More studies could also be done in understanding the role of spatially varying
interactions [30].
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