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Abstract: In many applications of interacting systems, we are only interested in the dynamic behavior
of a subset of all possible active species. For example, this is true in combustion models (many
transient chemical species are not of interest in a given reaction) and in epidemiological models
(only certain subpopulations are consequential). Thus, it is common to use greatly reduced or
partial models in which only the interactions among the species of interest are known. In this work,
we explore the use of an embedded, sparse, and data-driven discrepancy operator to augment
these partial interaction models. Preliminary results show that the model error caused by severe
reductions—e.g., elimination of hundreds of terms—can be captured with sparse operators, built with
only a small fraction of that number. The operator is embedded within the differential equations of
the model, which allows the action of the operator to be interpretable. Moreover, it is constrained by
available physical information and calibrated over many scenarios. These qualities of the discrepancy
model—interpretability, physical consistency, and robustness to different scenarios—are intended to
support reliable predictions under extrapolative conditions.

Keywords: model error; Lotka–Volterra equations; partial models; data-driven model correction;
Bayesian calibration and validation

1. Introduction

In the realm of computational modeling today, scientists, mathematicians, and engineers
investigate, design, optimize, and make predictions and decisions about an incredible multitude
of real-world systems. In general, a computational model implements a mathematical model; the
mathematical model represents the actual system in question using abstraction and simplification.
In this paper, we investigate what happens when common simplifications go too far—resulting in an
overly reduced or partial model—and how to account for the discrepancy between this model and the
true system of interest. At the same time, these partial models still contain significant deterministic
information, and they should not be thrown out entirely. Instead, we augment the partial models with
a data-driven correction: we use what we know, and learn the rest.

Partial models are especially common in the context of the generalized Lotka–Volterra (GLV)
equations. These equations describe the interactive behavior of any number S of different species.
The concentration of each species is represented by a variable xi, i = 1, . . . S; there is one differential
equation for each xi whose right-hand side (RHS) includes a linear growth rate term and nonlinear
interaction terms. This framework, also called the quasipolynomial form, is canonical in dynamical
systems [1] and is used to describe many types of physical systems, including reaction models for
chemical kinetics [2], ecological models [3], and epidemiological models [4]. In these applied fields,
modelers commonly build a partial model with only s < S species. For example, there are over
50 chemical species thought to be involved in methane combustion [5]; in practice, often merely five
to ten species are included [6]. Surprisingly, Kourdis and Belan found that the removal of 90%–99%
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of chemical species can still lead to reliable output [7,8]. SEIR-type epidemiology models include
subpopulations of Susceptible, Exposed, Infected, and Recovered (hence the name) humans and the
disease carriers (e.g., mosquitoes), while omitting many others such as asymptomatic or hospitalized
humans [9], or even cattle or nonhuman primates [10].

Validation is the process by which we check that the mathematical model faithfully represents the
system in question. While all models should undergo validation, this is especially important when we
know our models are incomplete. (Verification is the process by which we check that any computation
correctly solves the mathematical problems. For example, proper verification procedures include
code documentation, unit and regression testing, and solution comparisons against a posteriori error
estimates, to name a few. While critical to the success of computational modeling, verification is not
a concern of this paper; we assume all computational implementations are correctly documented,
implemented, and executed. For more information about verification, see, e.g., [11–13].) In its most
basic form, validation checks that the model output is consistent with all relevant observations.
Statistical techniques that do not require knowledge of the model include, for example, goodness
of fit (computing R2 values), analysis of residuals between model output and data, and k-fold
cross-validation [14]. However, a validation process may require a more nuanced procedure,
depending on what one plans to do with the model. In [15], Oliver et al. described a sophisticated
approach to model validation for predictions of unobservable quantities. Their framework relies on
knowledge of the model and system under study, and it takes the behavior of the model over different
scenarios into account. In [16], Bayarri et al. described a comprehensive framework for the validation of
computer experiments. Their framework includes detailed processes such as determining appropriate
domains of model inputs, guarding against overfitting, and accounting for bias in the simulation
output. In [17], Farrell-Maupin and Oden described an adaptive method for model calibration and
validation using increasingly complex models. In that method, additional richness is only introduced to
the model after the simpler version is shown to be invalid. Finally, Jiang et al. implemented a sequential
approach to model calibration, validation, and experimental design with the goal of reducing model
bias by misspecified and reduced models [18].

Note that all validation procedures rely on access to observations, which should (hopefully)
include a description of the associated measurement error. If there is some mismatch between
the model and the observations, the source of the discrepancy could either be the model or the
observations, or both. Reliable experimental practices and proper data reduction techniques ensure
that all observations are reported correctly with quantified measurement uncertainty. In this paper, we
assume that any discrepancy between the model and observations is not caused by faulty experimental
procedures or reporting. In this way, we may focus on what to do when the model itself causes
the discrepancy.

Once validation reveals a discrepancy that cannot be reasonably explained by measurement error,
we must improve the model. Consider that the discrepancy is revealed by comparing some set of
model output to the corresponding set of observations. If a bias is perceived between the two, a natural
first step would be to attach a discrepancy function or stochastic process to the model output, which
can then be calibrated to correct the model. In fact, this type of discrepancy model, which we call
a response discrepancy model, has been duly investigated, starting with the fundamental work of
Kennedy and O’Hagan in 2001 [19]. Since then, the response discrepancy model has been adapted into
fields as diverse as climate modeling [20], hydrology [21], and cardiology [22], among many others.
Lewis et al. developed an information-theoretic approach to calibrate a low-fidelity model, including
a response discrepancy function, from high-fidelity model outputs [23]. This approach is based on
Bayesian experimental design to both minimize uncertainty in the low-fidelity model parameters
and reduce the number of needed high-fidelity model runs. A response discrepancy model can be
useful and relatively quick to develop when one only needs to interpolate between data points.

Recall, however, our goals for computational modeling: to investigate, design, optimize, and make
predictions and decisions. To achieve these goals, we must be able to trust the model output beyond a
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specific calibration scenario; otherwise, we could just rely on observations without need for a model.
To this end, we aim to represent the model discrepancy with a discrepancy operator embedded
within the model itself, i.e., an embedded discrepancy operator. There are several advantages of an
embedded discrepancy operator. First, the operator can be constrained by physical information such as
conservation laws, symmetries, fractional concentrations, nonnegativity constraints, and so on. Second,
as a function of state variables or other existing model variables, the action of the discrepancy operator
is physically interpretable. Third, the operator can be calibrated over many different scenarios, such as
initial conditions, boundary conditions, or simulation geometries. Because of these qualities—physical
consistency, interpretability, and robustness in different scenarios—an embedded discrepancy model
could be valid for extrapolative predictions.

Embedded, or intrusive, approaches have been previously investigated. In [24], Sargsyan et al.
allowed for model error by endowing model parameters with random variable expansions. As an
approach to model discrepancy, this does not break physical constraints, and the random parameters
can be calibrated over many scenarios. However, not all model error can by captured in this way.
With complex computational models, missing physics or misspecified physics sometimes causes the
discrepancy. This is the situation considered in the current paper. Thus, the discrepancy model
becomes part of the model itself, yielding an augmented or enriched model, in which case the specific
form of the discrepancy model depends on the modeling context. In [25], the authors investigated
this type of inadequacy operator in the context of chemical kinetics for combustion. In this work, we
propose and analyze a class of embedded discrepancy operators in the context of the generalized
Lotka–Volterra equations, and we show that the error of highly reduced models can be captured
by sparse linear operators. For example, a detailed model with 20 species includes 420 parameters
where 400 correspond to nonlinear terms, a partial model of four species includes 20 of these, and our
discrepancy operator introduces only eight new linear terms.

Although the context is different, the work here is perhaps most similar in philosophy and
techniques to that which examines the closure problem of reduced-order fluid dynamics models
such as RANS (Reynolds-averaged Navier–Stokes) and LES (large-eddy simulation). For example,
Portone et al. developed an embedded operator in [26] for porous media flow models of contaminant
transport. Pan and Duraisamy constructed general data-driven closure models for both linear and
chaotic systems, including canonical ordinary differential equations (ODEs) and the one-dimensional
Burgers equation [27]. Other works describe data-driven closure models using proper orthogonal
decomposition [28], Mori–Zwanzig techniques [29], and linear approximations to closure models for
the Kuramoto–Sivashinsky equation [30]. In a sense, the current paper presents a type of data-driven
“closure model” for partial Lotka–Volterra equations.

The paper is organized as follows. A brief review of the generalized Lotka–Volterra (GLV)
equations along with a description of the detailed and partial models is given in Section 2. In
Section 3, a class of embedded discrepancy operators and a method for enforcing physics-based
constraints are proposed. The details of calibration and validation for the enriched models are given
in Section 4. Numerical results are listed in Section 5, and the paper concludes with a discussion
in Section 6. Existing techniques to manipulate ordinary differential equations that motivate the
proposed discrepancy operators are reviewed in Appendix A.

2. Generalized Lotka–Volterra Equations

The generalized Lotka–Volterra equations are coupled ordinary differential equations, used to
model the time dynamics of any number of interacting quantities. In particular, the Lotka–Volterra
framework allows for linear (growth rate) and quadratic (interaction) terms.

2.1. Detailed Models

The objects in the detailed models will be denoted with a ˆ symbol. Let the vector x̂ ∈ RS represent
species concentrations. Here, the units of a particular x̂i refer to the number of specimens per unit area,
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but specific units are omitted in this paper. The GLV equations of the detailed model D are written
succinctly as:

dx̂
dt

= D(x̂) = diag(x̂)(r̂ + Âx̂), (1)

where the vector r̂ ∈ RS represents the intrinsic growth rates, and the matrix Â ∈ RS×S collects the
interaction rates—that is, the ijth entry of Â, aij, indicates how species j affects the concentration of
species i. The equilibrium solution is x̂eq = −Â−1r̂.

Since this model is completely determined by the vector r̂ and the matrix Â (modulo initial
conditions), we also say that D = {Â, r̂}. The species included in the detailed model are called the
detailed set. The term intraspecific refers to interactive behavior within a particular species (the âii are
intraspecific terms), while the term interspecific refers to the behavior between two different species
(the aij, i 6= j, are interspecific terms).

2.2. Partial Models

The partial model is comprised of all terms involving the s species of interest, i.e., by subsampling
the detailed one. For example, suppose S = 3 and s = 2. Then, the detailed model, written out, is

dx̂1

dt
= r1 x̂1 + (a11 x̂1 + a12 x̂2 + a13 x̂3)x̂1 (2a)

dx̂2

dt
= r2 x̂2 + (a21 x̂1 + a22 x̂2 + a23 x̂3)x̂2 (2b)

dx̂3

dt
= r3 x̂3 + (a31 x̂1 + a32 x̂2 + a33 x̂3)x̂3 (2c)

and the partial model is (now without the )̂

dx1

dt
= r1x1 + (a11x1 + a12x2)x1 (3a)

dx2

dt
= r2x2 + (a21x1 + a22x2)x2. (3b)

Likewise, the partial model is referred to as P , so

dx
dt

= P(x) = diag(x)(r + Ax), (4)

and P = {A, r}. Here, the equilibrium solution is xeq = −A−1r.
In this example, the growth rate vectors and interaction matrices are

Â =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , r̂ =

r1

r2

r3

 , A =

[
a11 a12

a21 a22

]
, r =

[
r1

r2

]
. (5)

The species included in the partial model are called the partial set and sometimes also the remaining
species—that is, remaining after a reduction process.

2.3. Defining the Scope

As the objective of this paper is to understand model discrepancy in the context of partial GLV
models, we must define the scope of this context. There are a few considerations to keep in mind. First,
note that, as explained above, the partial model considered here follows immediately from the detailed
model. Thus, when determining the scope of models under investigation, it suffices to determine the
detailed model(s). Then, given a detailed model, we investigate all possible partial models from s = 1
to s = S− 1.
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Second, the GLV equations encompass an infinite number of specific models, or model realizations,
as S can be any integer ≥ 2, and the entries of Â and r̂ can be, in theory, any real numbers. Moreover,
any two GLV models, determined by a specific Â and r̂, may behave differently from one another. At
the most specific extreme, all model parameters are fixed, yielding a single fixed pair of detailed and
partial models, and we could then investigate the model discrepancy therein. At the most general
extreme, many models are supplied via highly unconstrained realizations of the model parameters,
and we could hope to thus discover highly general results about the model discrepancy. In this paper,
by aiming somewhere in between these two extremes, we examine a moderately general random class
of LV models. This class is determined by specifying appropriate distributions for the entries of Â
and r̂.

Third, since this is an initial exploration into representing model discrepancy in the GLV context,
let us narrow the scope in order to examine well-behaved models, i.e., those with stable equilibria.
We focus on symmetric interaction matrices Â with negative entries. This constraint says that all
interactions between and within species are competitive, not cooperative. Then, the matrix Â can be
stabilized by making its diagonal entries larger in magnitude than the sum of off-diagonal entries in
the same row (or column), ensuring diagonal dominance and thus negative eigenvalues. Here, we
consider models whose interaction matrices are symmetric, diagonally dominant, and have negative
entries. These restrictions (or similar, e.g., that Â be negative definite) are common assumptions in
mathematical ecology studies; see, e.g., [3,31,32]. The distributional form characterizing entries of
Â and r̂ are given in the following subsection. Then, in Section 5, specific models are sampled and
analyzed through numerical examples.

2.4. Creating the GLV Detailed and Partial Models

In this subsection, the information above is summarized and refined algorithmically. Algorithm 1
generates a realization of a detailed model, and Algorithm 2 provides the corresponding partial model.
Recall that we use ˆ to differentiate between the two and denote a quantity of the detailed model.

Algorithm 1 Generating a realization of the detailed model.

1: Initialize S
2: Sample Bij ∼ logN (0, σ2

B), 1 ≤ i < j ≤ S
3: Set Bji = Bij

4: Sample Cii ∼ logN (0, σ2
C) + ∑k 6=i Bki, 1 ≤ i ≤ S

5: Set interaction matrix Â = −(B + C)
6: Set growth rate vector r̂ = max{C}1S

7: return D = {Â, r̂}

Algorithm 2 Subsampling the partial model.

1: Initialize s < S, D
2: Set A as submatrix: A = Â1:s,1:s

3: Set r as subvector: r = r̂1:s

4: return P = {A, r}

Without loss of generality, we simply choose the first s species in Algorithm 2, as the detailed set
follows no special or implicit ordering. Note that existence of a stable equilibrium of the partial model
follows directly from that of the detailed model.
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3. Enriched GLV Model

Previous work shows how a set of S coupled Lotka–Volterra equations can be converted to a set
of s equations, s < S, using algebraic substitutions and/or integration [33]. The resulting equations
will either need to depend on higher derivatives of the remaining species or on their complete time
history—that is, the exact dynamics from the detailed model may be written only in terms of the
partial set:

dx
dt

= F (x, ẋ, ẍ, . . . , K(x)), (6)

where ẋ is the first derivative of x, ẍ the second derivative, and so on, and K(x) represents some memory
kernel. Two such manipulations are reviewed in Appendix A. This motivates an approximation of F
with the available partial model P and a discrepancy model ∆ that is a function of either the derivatives
or memories of the remaining variables—that is, we seek a model for the partial set of variables as:

dx
dt
≈ P(x) + ∆(x, ẋ, ẍ, K(x)). (7)

The above may be reminiscent of Takens’s theorem [34], in which a dynamical system is reconstructed
from (delayed) observations of the system. However, the two approaches differ fundamentally:
here, the LHS derivatives are restricted to those of the partial set, i.e., a subset of the original variables,
but that is not true in a delay embedding.

We now propose a particular form of ∆.

3.1. Linear Embedded Discrepancy Operator

Recall that the detailed model is

dx̂
dt

= D(x̂) = diag(x̂)(r̂ + Âx̂). (8)

and the partial model is
dx
dt

= P(x) = diag(x)(r + Ax). (9)

We initially propose an enriched model E , linear in (x, ẋ), of the form

dx
dt

= E(x, ẋ) (10a)

= P(x) + diag(x)δ0 + diag(ẋ)δ1 (10b)

= P(x) + ∆(x, ẋ), (10c)

where δ0 = (δ10, δ20, . . . , δs0)
T and δ1 = (δ11, δ21, . . . , δs1)

T . The subscripts on each δij are chosen so
that i indicates that this coefficient appears in the RHS of the variable xi, and j indicates that this
coefficient is multiplying the jth derivative of xi.

A major advantage of an embedded operator, as opposed to a response discrepancy model, is that
the operator can be constrained by any available information about the physical system. In this simple
example, we do have some information about the system that implies constraints on the introduced
discrepancy parameters δ0, δ1. First, we make the modeling ansatz that these discrepancy parameters
should not depend explicitly on time. A result of this ansatz is then that the parameters be constrained
independently. We also (assume that we) know that all interspecific interactions are competitive.
In particular, note that aijxixj < 0 because aij < 0 and xi, xj ≥ 0. Thus, we enforce that ∆i(xi, ẋi) ≤ 0.
Thus, specific information about the high-fidelity physical system implies the following constraints:

• We know xi ≥ 0 which implies δi0 ≤ 0.
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• The constraint on δi1 is slightly less clear since the sign of ẋi could be positive or negative. Thus,
we could set δi1 = δ̃i1sgn(ẋi), where δ̃i1 ≤ 0. Equivalently, we can write the discrepancy as

∆i(xi, ẋi) = δi0xi + δi1 |ẋi| . (11)

Then, set δi1 ≤ 0 and the constraint is satisfied.

Because of this final constraint, the discrepancy operator is no longer linear in ẋ, but rather in |ẋ|.
We still refer to such a formulation as linear (precedence for this use of linear is found in [35]). Thus, we
amend the above enriched model in lines (10a)–(10c) as

dx
dt

= E(x, |ẋ|) (12a)

= P(x) + diag(x)δ0 + diag(|ẋ|)δ1 (12b)

= P(x) + ∆(x, |ẋ|). (12c)

Finally, the introduced discrepancy parameters δ0, δ1 are calibrated, using observations of species
concentrations generated by the detailed model. Indeed, the strength of the embedded operator
approach stems from two properties: (1) the ability to constrain the formulation by available physical
information, and (2) the ability to leverage information from the detailed system by calibrating the
model discrepancy parameters. Moreover, we calibrate over a range of initial conditions, denoted as
φi, i = 1, . . . , nφc . Note that we also validate over a range of nφv initial conditions φi, i = nφc + 1, . . . , nφ

so that nφc + nφv = nφ. Each φi specifies the species initial concentrations:

φi = (x1(0), x2(0), . . . , xs(0)), i = 1, . . . , nφ. (13)

By calibrating with observations from all nφc scenarios, the goal is to build a more robust discrepancy
model that is valid over several scenarios instead of only calibrated to a very specific dataset.
This property of the model discrepancy construction further allows for the possibility, at least, that such
an enriched model could be used in extrapolative conditions, such as a prediction in time, or in
scenarios given by different initial conditions.

Note that the actual observations used to calibrate the parameters are specified in Section 4,
along with the particulars of the calibration itself. We have tried to separate what is essential to the
formation of the discrepancy operator from the calibration details, which could reasonably change
based on the example at hand.

3.2. Equilibrium and Stability of the Enriched Models

The equilibrium solution of the enriched model is

xeq = −A−1(r + δ0). (14)

Thus, the parameters δ0, which act linearly on the state x, directly control the equilibrium solution.
The stability of the enriched model is less obvious because of the absolute values; here, we conjecture
that the models are indeed stable.

To see why, first consider an example enriched system of just one variable x:

ẋ = x− x2 − 1
2
|ẋ|. (15)
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Depending on the sign of ẋ, this becomes one of the following logistic equations

ẋ = 2x(1− x), ẋ < 0 (16a)

ẋ =
2
3

x(1− x), ẋ > 0. (16b)

The logistic equations admit solutions of the qualitative nature shown in Figure 1.

0 1 2 3 4 5

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0
x

Figure 1. Solutions to the logistic equation. The thick black line shows the x = 1 phase line.

Importantly, the sign of ẋ never changes over any solution curve. Given the initial condition,
we could in fact solve the same system without the absolute value by choosing either (16a) or (16b);
both reach stable equilibrium. Thus, the presence of the absolute value in this example does not affect
the stability of the system.

In general, the signs of the derivatives may change. However, we conjecture that the derivatives
of all species do not change sign after a given point in time, say t∗ (as seen in the numerical examples
in Section 5). In this case, the enriched differential equation for xi(t), t > t∗ is

ẋi = λi

(
(ri + δi0)xi +

s

∑
j=1

aijxixj

)
(17)

where

λi =

{
1

1+δi1
, ẋi(t) < 0 ∀t > t∗

1
1−δi1

, ẋi(t) > 0 ∀t > t∗.
(18)

The above does reach a stable equilibrium, as λi simply scales the overall dynamics and the interaction
matrix A (still) determines the stability of the system.

A more rigorous analysis of stability for these systems will be addressed in future work. For now,
we note that differential equations with absolute value terms have been treated in the literature. In
particular, Khan and Barton showed that, for ODEs whose RHS are a composition of analytic and
absolute value functions of the state variables, the arguments of the absolute values change sign finitely
many times in any finite duration [36], while Barton et al. provided a theoretical and computational
framework for evaluating nonsmooth derivatives called lexicographic directional derivatives [37].
Finally, Oakley demonstrated that certain second-order differential equations with absolute values
admit solutions of sets of related linear differential equations [35].
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3.3. Proof of Concept: Linear Embedded Discrepancy Operator, S = 2, s = 1

As an initial proof of concept, consider the S = 2, s = 1 case. The detailed model is

D = (Â, r̂) =

([
−3 −1
−1 −2

]
,

[
5
3

])
(19)

and the partial model is simply P = (A, r) = (a11, r1) = (−3, 5). In this case, the exact discrepancy is
−x2x1, and we aim to approximate the effect of this term with

∆1(x1, ẋ1) = δ10x1 + δ11|ẋ1|. (20)

Calibration yields posterior mean values of δ̄10 ≈ −0.837 and δ̄11 ≈ −0.0224; further calibration details
are deferred to the next section. The three models—detailed, partial, and enriched—are shown in
Figure 2a; excellent agreement between the detailed and enriched models is achieved.

0.0 0.2 0.4 0.6 0.8
Time

0.5

1.0

1.5

x
1

Detailed

Partial

Enriched

(a)

0.25 0.50 0.75 1.00 1.25 1.50
x1

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
x

2

Detailed

Detailed, projected

Partial

Enriched

(b)
Figure 2. (a) Trajectories of x1 from detailed, partial, and enriched models for a simple example with
S = 2, s = 1. (b) Phase diagrams from the same three models. The 1D derivatives from the enriched
model approximately match the projection from the 2D detailed case onto the x1-axis. Note that the
1D enriched and partial derivatives are plotted below the projected detailed case for visualization
purposes (along lines x2 = −0.1,−0.2).

We also show the phase diagram of the three models in Figure 2b including the 2D phase diagram
from the detailed model projected onto the x1-axis. The recovered derivatives of the enriched model
approximately match this projection quite well. Analogous plots are difficult to visualize in higher
dimensions, but in this low-dimensional case, this projection may provide some intuition about why
the enriched model behaves like the detailed model.

3.4. Other Possible Formulations

There are a number of related possible formulations of the model discrepancy. Some options are
the following:

1. An affine expression up to the Nth derivative:

∆i = µi +
N

∑
j=0

δij
dj

dtj (xi). (21)

2. A quadratic expression up to the Nth derivative. Let

q =

{
d0

dt0 (x1), . . . ,
dN

dt
(x1), . . . ,

d0

dt0 (xs), . . . ,
dN

dtN (xs)

}
.
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Then

∆i = µi +
s(N+1)

∑
i,j

δij(qiqj). (22)

3. A memory expression, such as:

∆i(t) = µi + βi

∫ t

s=0
xi(s)ds (23)

for some βi ∈ R.

Each of the above formulations includes an affine term µi. Whether or not such a constant term would
be advantageous when all the missing dynamics terms are state-dependent is not immediately clear.

Of course, one could also propose some combination of the above formulations as an embedded
discrepancy operator. Investigating the numerical advantages and limitations of many such
discrepancy operators is beyond the scope of the current paper. For now, numerical results are
presented in Section 5 about the proposed linear embedded discrepancy operator, as described in
Section 3.1.

4. Calibration and Validation

This section contains all relevant details about the calibration and validation processes. First,
for both of these, it is necessary to know what observations are available.

4.1. The Observations

The datasets used to calibrate and validate the discrepancy model include observations from the
detailed model trajectories of the s species included in the partial model. From each trajectory,
T observations are taken, and there is a new trajectory for each initial condition φ, so that the
observations can be summarized as

O = {yijk}, i = 1, . . . , s; j = 1, . . . , T; k = 1, . . . , nφ (24)

where yijk is the observation of xi(tj) given the initial condition φk. This observed value y∗ is given by
the true value yt with additive measurement error ε:

y∗ = yt + ε, (25)

where the distribution of measurement error is normal: pε = N (0, σ2
ε ).

Finally, this set of observations is partitioned into two sets, one for calibration and the other for
validation. Let us partition as follows:

Calibration data: Oc = {yijk}, i = 1, . . . , s; j = 1, . . . , T; k = 1, . . . , nφc (26)

Validation data: Ov = {yijk}, i = 1, . . . , s; j = 1, . . . , T; k = nφc + 1, . . . , nφ. (27)

That is, nφc initial conditions are used for calibration, and the remaining nφv are designated for
validation, where nφc + nφv = nφ.

4.2. Calibration Details

The calibration is done using a Bayesian approach, and the details of the calibration problem are
as follows.
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• Prior: We set uniform prior distributions on the discrepancy parameters θ:

p(θ) = ∏
i=1,...s
j=0,1

p(δij), (28)

where

p(δij) = U (−100, 0) i = 1, . . . , s; j = 0, 1. (29)

(One might expect a negative lognormal distribution for these priors, and this was in fact the first
choice. However, the uniform priors performed much better during the sampling process, and all
of the parameter chains in Markov Chain Monte Carlo simulations were well-contained by the
uniform bounds. Why the lognormal priors led to poor mixing will be investigated further in
future work.)

• Likelihood: The likelihood is determined by the measurement error:

p(Oc|θ) = ∏
l=1,...,|Oc |

pε(yl − yl,E ) (30)

where the observations have been re-indexed from 1 to |Oc| (to avoid triple subscripts here) and
yl,E is the corresponding model output from the enriched model E .

• Posterior: Given the prior and likelihood distributions above, the posterior distribution follows as:

p(θ|Oc) ∝ p(Oc|θ)p(θ). (31)

Specifically, the calibration is performed according to the Delayed Rejection Adaptive Metropolis
(DRAM) method, introduced in [38] and implemented in the statistical library QUESO [39].

4.3. Validation Metric

Next, we must define an appropriate quantitative validation metric. First, we quantify the
consistency between the enriched model output and the corresponding observation. We compute how
probable the observation is as a realization of the model output. The probability of observing some y∗,
given the data Oc, is

p(y∗|Oc) =
∫

yt
pε(yt − y∗)

(∫
θ

p(yt|θ)p(θ|Oc)dθ

)
dyt. (32)

We can compare this probability to the rest of possible model outputs. In particular, we are
interested in how much of the distribution corresponds to model outputs less likely than the one above
in (32). This amount is exactly given by the γ−value, as defined in [15]:

γy∗ =
∫

y∈S
p(y|Oc)dy (33)

where S = {y : p(y|Oc) ≤ p(y∗|Oc)}. Note that a low γ-value implies that the observation is less
probably an outcome of this model than most possible outcomes. In contrast, values that are not low
demonstrate consistency between the model and observation. In this work, we compute the fraction of
γ-values below a given threshold τ. For a more thorough introduction to γ-values and discussion of
their use in model validation, see [15], and for another example of this used in practice as a validation
metric, see [25].

An example of the area corresponding to this integral is given in Figure 3. In this work,
we compute the integrals with a Monte Carlo approach [40].
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Figure 3. The γ-value corresponds to the shaded area. The dashed horizontal line simply shows the
y-axis value where the observation crosses the model output density, so that we integrate over the set
for which the density is lower than this value.

5. Numerical Results

We now present the numerical performance of the proposed linear embedded discrepancy
operator described in Section 3.1. All code—to run forward and inverse problems, generate data,
and postprocess—is available here: github.com/rebeccaem/enriched-glv [41].

5.1. Results for One Realization of the Detailed Model

First, let us examine results for a single detailed and partial model. The detailed model is
generated according to Algorithm 1, with the following values:

S = 10, σ2
B = 1, σ2

C = 1. (34)

Then, the partial model is generated according to Algorithm 2 with s = 4. In this example,
the observations from the detailed model are taken so that nφc = 3, nφv = 3, T = 10, and σ2

ε = 0.001.
The entries of each initial condition vector φi are generated randomly from a lognormal distribution,
logN (0, 1). Note that 90 parameters are omitted during reduction, while only eight are introduced
during enrichment.

Figure 4 shows trajectories for calibration scenarios from the three models: detailed, partial,
and enriched. The 50% and 95% quantiles are plotted for the enriched model output. There is an
obvious discrepancy between the output from the detailed and partial models, and the enriched model
is able to capture the bulk of this discrepancy. Nearly all of the observations from the detailed model
are contained within the model output bounds from the enriched model.

Figure 5 shows the same results, but for validation scenarios. Recall that these observations have
not been used to calibrate the discrepancy operator. The output of the enriched model, at least to the
eye, appears decent. The enriched model is greatly improved in comparison to the partial model alone
and, similarly to the calibration scenarios, captures the bulk behavior of the detailed model in the
validation scenarios.

github.com/rebeccaem/enriched-glv
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Figure 4. Partial and enriched models, compared to observations, over three calibration scenarios,
S = 10, s = 4. Note that 90 parameters are omitted during reduction, while only eight are introduced
during enrichment.
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Figure 5. Partial and enriched models, compared to observations, over three validation scenarios.
S = 10, s = 4.

Figures 6 and 7 show analogous plots for S = 20, s = 4. In this case, 400 parameters are omitted
during reduction, while only eight are introduced during enrichment.
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Figure 6. Partial and enriched models, compared to observations, over three calibration scenarios.
S = 20, s = 4. Note that 400 parameters are omitted during reduction, while only eight are introduced
during enrichment.
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Figure 7. Partial and enriched models, compared to observations, over three validation scenarios.
S = 20, s = 4.

In the above cases, there are a few observations which lie outside the predicted bounds of the
enriched model. This problem must be addressed more carefully with a quantitative validation process
as described in Section 4. Additionally, these results only show the performance of the discrepancy
operator for a particular S and s and a single realization of (D, P). The agreement between trajectories
from detailed and partial models for different choices of (D, P) are qualitatively similar, but some
interesting differences appear by varying s with respect to S. In the next subsections, these statements
are made more precise.
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5.2. Results for Many Realizations of the Detailed Model

We examine the performance of the proposed discrepancy model in the context of random forward
models. To this end, three relevant concepts are detailed below.

1. We quantify the average performance of the discrepancy models. In this sense, we compute these
γ-values for trajectories from nM realizations of detailed models, where nM � 1.

2. Note γ-values are computed with two types of data: calibration and validation data. To refer to
these two types of data, we will use the variable p = {c, v}, so that p = c denotes calibration
data and p = v denotes validation data. We must check how well the enriched model performs
both in terms of the data that has been used to calibrate it, and also in terms of data that has not.
Both types are shown in Figures 8 and 9.

3. Finally, let us examine how well the discrepancy operators perform for different pairs (S, s).
We fix S, s, p, nM and then compute γ−values for all type p observations over nM models, for a
particular pair (S, s). Call this set of γ-values Γ(S, s, p, nM). Now let Q(S, s, p, nM, τ) = {γi : γi <

τ, γi ∈ Γ(S, s, p, nM)}. Then, the fraction of γ-values below the threshold τ is:

fγ(S, s, p, nM, τ) =
|Q|
|Γ| . (35)

For example, if we want to compute fγ for all calibration data over nM model realizations,
the denominator above is |Γ| = sTnφc nM. The value fγ is plotted in Figures 8 and 9, and S is
fixed at 10 and 20, respectively. Along the x-axis, s ranges from 1 to S− 1. The results for two
values of τ—0.05 (shown in Figures 8a and 9a) and 0.01 (shown in Figures 8b and 9b)—are also
shown.
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Let α = s/S. In the case that the model truly does represent the data-generating process and in
the limit of infinite observations, then this fraction of γ-values below the threshold is equal to the
threshold itself—that is,

lim
nM→∞

fγ(S, s, p, nM, τ) = τ, (36)

when the model is a true match to the data-generating process. Indeed, fγ(10, s, c, 100, τ) approaches
τ as α approaches 1 (Figure 8). This suggests that the enriched model is better able to capture the
behavior of the detailed one as more species are included in the partial model, as one might expect.

Interestingly, in the S = 20 case, fτ peaks somewhere in the middle of the plot, when α ≈ 0.5
(Figure 9). In other words, the enriched model is poorest for moderate α, and performs best as α

approaches 1. Consider that when α is low, only a few species are included in the partial model
relative to the detailed one, but also consider that the discrepancy model has only those few species to
modify. When α is close to one, the partial model already includes much of the detailed model, and the
discrepancy model must only fill a small gap between the two. For moderate α, however, there are
neither of these advantages—the discrepancy model must account for the behavior of a large enough
number of species, but the partial model is still significantly lacking compared to the detailed model.

At the same time, the S = 10 plots do not exhibit the above behavior. Note that the S = 20
cases appear to reach equilibrium more quickly that those with S = 10; the time to equilibrium may
influence the shape of curves in Figures 8 and 9. Future work will include extensive numerical testing
to better understand these results.

5.3. Relative Model Complexity

A good discrepancy model should not overfit the data, and the best discrepancy model would
be rich enough to capture the relevant behavior of the detailed model without adding unnecessary
complexity. Although there are different ways one might measure complexity, here, we measure the
number of terms introduced in the enriched model (2s) compared to those omitted from the detailed
model. These omitted terms include the S2− s2 interspecific and intraspecific interaction terms, as well
as the (S− s) growth rate terms. (Note that the number of terms introduced is equal to the number of
enriched model parameters.) For the cases S = 10, 20, the absolute values are shown in Figure 10.
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(a) S = 10

2 7 12 17
s

0

100

200

300

400 Enriched terms added

Detailed terms ommitted

(b) S = 20
Figure 10. Comparison of number of terms added by the enriched model and terms omitted from the
detailed model.

In Figure 11, this information is presented as a ratio of terms added relative to terms omitted for
various values of S. We call this ratio the relative model complexity.
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Figure 11. Enriched model complexity, measured as the ratio of enriched model terms added to detailed
model terms omitted.

The relative model complexity is plotted as s/S varies from 1/S to (S− 1)/S for a few different
values of S. These include the two cases presented here (S = 10, 20). We also show the relative model
complexity for two higher values of S, namely S = 50 and S = 100. One might be interested in how
this type of model complexity would scale for much larger systems. Moreover, if one knew a priori
the true value of S for some system, one could balance the effectiveness of the enriched model (as
measured by fτ) against its relative model complexity.

Strikingly, the enriched models introduce many fewer terms than what the partial models omit.
For example, in the two specific forward models shown in Figures 4–7, the relative model complexity
is less than 0.1, yet the enriched model and observations do show surprisingly high consistency.

6. Conclusions

This study is an initial step toward representing model discrepancy in nonlinear dynamical
systems of interacting species. The proposed discrepancy model here is a linear operator embedded
within the differential equations. The particular form is motivated by circumstances in which a set
of differential equations can be converted to a set of fewer equations; in this decoupling process,
more information must be introduced about the remaining set, such as memory or higher derivatives.
In this work, the discrepancy model is similarly constructed by introducing more information about
the partial set, namely as a linear operator which acts on the remaining variables and (the absolute
values of) their first derivatives.

We can examine the performance of the enriched models over two regimes: equilibrium and
transient dynamics. The introduced parameters δ0 act on the state variables, directly affect the
equilibrium solution, and seem to be sufficient, as the enriched models typically recover equilibria of
the detailed models. On the other hand, the parameters δ1 act on the derivatives of the state, provide
a type of overall scaling of the dynamics, and give an improvement but not a total correction; the
enriched models recover much of the transient dynamics, but certainly not all of the discrepancy
for every combination of (S, s). While the performance in the transient regime could be improved,
the linear embedded discrepancy operators show promise as discrepancy models, even in scenarios
that extrapolate over initial conditions. The results also bring up many new questions.

For example, what is the effective dimension of the missing dynamics of the partial model?
In other words, how many (and which) new random variables need to be introduced to effectively
(i.e., within some tolerance) capture the error of the partial model? The initial results here suggest that
the discrepancy between the partial and detailed models can, under some conditions, be adequately
described with a relatively small number of discrepancy variables and parameters. An outstanding
question is whether or not some estimate of this effective discrepancy dimension can be found a priori.
Certainly, such an estimate would heavily rely on given knowledge of the detailed and partial models.
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Another avenue to explore is the design and analysis of more elaborate discrepancy
representations in the generalized Lotka–Volterra setting, including those with second (or higher)
derivatives, memory, nonlinear terms, or some combination of these. Of course, a trade-off exists
between the richness of the discrepancy representation and the computational expense of both the
forward and inverse problems.

Finally, the detailed models (and thus also partial models) investigated here are quite simple; the
interaction matrices are negative definite, diagonally dominant, and symmetric, with off-diagonal
entries sampled from identical distributions. An immediate next step in this research is to examine the
performance of linear embedded discrepancy operators after relaxing these restrictions on the random
interaction matrices.
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Appendix A. Model Conversion

A system of S coupled ordinary differential equations can sometimes be converted (decoupled) to
a system of s differential equations, where s < S, without loss of information. Possible structures of the
resultant set, comprising s equations, motivates the functional form of the proposed model discrepancy
here. This appendix briefly reviews two methods of model conversion, and what the application of
each method yields in the GLV context. For more information about these types of model conversion,
or exact model reduction, see [33,42].

Appendix A.1. Algebraic Method

In [43], Harrington and van Gorder present a method to algebraically convert systems of coupled
differential equations from one form to another. As an example from that paper, consider the Lorenz
system of three ODEs:

ẋ = a(y− x) (A1a)

ẏ = x(b− z)− y (A1b)

ż = xy− cz. (A1c)

Through algebraic substitutions, this can be converted to a single third-order nonlinear differential
equation in only the variable x and its derivatives. After substituting expressions for z and y in terms
of x and its derivatives, we have:(

d
dt

+ c
)(

b− 1
ax

(ẍ + (1 + a)ẋ + ax)
)
− x

(
ẋ
a
+ x
)
= 0. (A2)

In this example, variables y and z have been exchanged for derivatives of x.
In the GLV setting, we can perform a similar exchange. For example, consider the following

system for x and y:

ẋ = r1x + (a11x + a12y)x (A3a)

ẏ = r2y + (a21x + a22y)y. (A3b)
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This is in fact equivalent to the following single differential equation for x:(
d
dt

)(
1

a12

(
1
x
(ẋ− r1x)− a11x

))
= (A4)

r2

a12

(
1
x
(ẋ− r1x)− a11x

)
+

(
a21x +

a22

a12

(
1
x
(ẋ− r1x)− a11x

))
.

Equation (A4) can also be written more compactly as

ż = r2z + (a21x + a22z)z, (A5)

where

z =
1

a12

(
1
x
(ẋ− r1x)− a11x

)
. (A6)

While this single differential equation is quite messy, it is now written entirely in terms of x and its
derivatives.

Appendix A.2. Memory Method

Similarly, the Mori–Zwanzig approach to model reduction makes an exchange, but here, variables
may be exchanged for time history, or memory, of the remaining variables. Again, a simple example
starts with a two-variable system:

dx
dt

= f (x, y) + α(x, y)
dU
dt

(A7)

dy
dt

= g(x, y) + β(x, y)
dV
dt

, (A8)

where U, V are noise processes. This system of two equations can be converted to one by introducing
the memory kernel K:

dx(t)
dt

= f̄ (x(t)) +
∫ t

0
K (x(t− s), s) ds + n (x(0), y(0), t) (A9)

where f̄ (x(t)) represents a Markovian term that depends only on the current state of x, the integral∫ t
0 K (x(t− s), s) ds depends on the entire history of x between 0 and t, and the final term n (x(0), y(0), t)

satisfies an auxiliary equation. Further details about this process are provided in [44].
The analogue of a Mori–Zwanzig type process in the GLV setting (S = 2, s = 1) yields:

ẋ = r1x + (a11x + a12χ)x (A10)

where

χ =
∫ t

0
r2z + (a21x + a22z)z (A11)

and z is defined as in the previous subsection. Note that, like the algebraic reduction, we now have a
single differential equation in terms of x. In this case, the variable y is exchanged for the memory of x.
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