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Abstract: We address the scattering of a quantum particle by a one-dimensional barrier potential over
a set of discrete positions. We formalize the problem as a continuous-time quantum walk on a lattice
with an impurity and use the quantum Fisher information as a means to quantify the maximal possible
accuracy in the estimation of the height of the barrier. We introduce suitable initial states of the walker
and derive the reflection and transmission probabilities of the scattered state. We show that while the
quantum Fisher information is affected by the width and central momentum of the initial wave packet,
this dependency is weaker for the quantum signal-to-noise ratio. We also show that a dichotomic position
measurement provides a nearly optimal detection scheme.

Keywords: quantum walks; scattering; quantum metrology; quantum Fisher information; optimal
measurement

1. Introduction

Since the Rutherford experiment [1], scattering has played a central role in the study of unknown
interactions in many fields of physics [2–4]. At its core, a scattering experiment may be viewed as a
parameter-estimation problem. Indeed, the scattering potential can be modeled with a set of unknown
parameters that characterize the evolution of the quantum particles that impinge on it. Estimating the value
of those parameters then involves measurements that are performed on the scattered state, followed by a
collection of outputs that are used to build estimators for the parameters. If we consider scattering as an
estimation problem, we can study the maximum amount of information that can be extracted from a single
measurement on the quantum system, and we can assess the performance of feasible detection schemes.
All these questions find answers in the theory of local quantum estimation, which has the aim of quantifying
the best precision of an estimation procedure [5]. Indeed, in the past few years, local quantum estimation
theory has been applied to a variety of problems, such as the estimation of the relevant parameters of
quantum structured baths [6–10], graph and lattice properties [11–13], and classical processes [14].

In this work, we analyze the one-dimensional scattering of a quantum particle from a potential
barrier with the aim of inferring its height. The particle moves on a set of discrete positions, and it is thus
described as a continuous-time quantum walk (CT QW) on the line with a central barrier. The barrier is
implemented by a detuning of the energy of the central site with respect to the other sites. As a matter of
fact, the analysis of the evolution of a quantum walk in the presence of a barrier is strongly connected with
the study of defects and impurities in implementations of QW [15–18]. A detuning in the on-site energy
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of a site can be interpreted as a defect that influences the dynamics and the scattering properties of the
walker. Understanding the role of imperfections is of fundamental importance for a realistic description
of the QWs. In fact, knowing how a protocol or an algorithm [19–23] is affected by impurities and noise
allows us to hinder or even neutralize detrimental effects.

Inspired by previous works on the discretization of continuous-systems [24,25], we first derive
scattered states on the infinite line of discrete positions. In order to consider physically relevant states
for the walker, we initialize the particle in a Gaussian wave packet with central initial momentum k0 and
standard deviation σ. We evaluate the transmission probability through the barrier and the maximum
extractable information as a function of these two free parameters. We show that the quantum Fisher
information (QFI) is strongly affected by the value of the initial central momentum of the walker, but only
slightly by the initial spread of the wave packet. The quantum signal-to-noise ratio has a maximum
corresponding to the optimal value of the barrier height that can be better estimated. Finally, we consider
a feasible measurement, i.e., a dichotomic position measurement, and we compare its Fisher information
(FI) with the QFI. We show that this measurement is nearly optimal, i.e., its FI is close to the QFI in almost
all the parameter space we consider.

The paper is organized as follows: In Section 2, we introduce the concept of CTQW with inhomogeneous
on-site energies, and in Section 3, we briefly review the main concepts of local quantum estimation
theory. In Section 4, we introduce the free-particle scattering states, and then, we use them to build the
physically relevant wave packets, whose transmission and reflection probabilities are derived. In Section 5,
we compute the QFI for initial Gaussian wave packets, and we compare its value with the FI of a dichotomic
position measurement. Finally, in Section 6, we draw our conclusions.

2. Quantum Walks with Inhomogeneous On-Site Energies

A CTQW model describes the evolution of a quantum particle over a discrete set of positions,
continuously in time [26,27]. It evolves in an N-dimensional Hilbert space with orthonormal basis states
{|j〉}j∈Z, which represent the positions that can be occupied by the walker. The Hamiltonian of a CTQW
on the line with inhomogeneous on-site energies εj and uniform couplings J0 has the expression (h̄ = 1):

H = ∑
j

εj |j〉〈j| − J0 ∑
j

(
|j〉〈j + 1|+ |j + 1〉〈j|

)
. (1)

Without loss of generality, we fix J0 = 1, thus expressing time and εj in units of J0. If we set εj = 2 ∀j,
we recover the graph Laplacian L, i.e., H = −L. It is worth mentioning that for the one-dimensional lattice,
L represents the discretized version of Laplace operator∇2, and −L is kinetic energy operator of a particle
with mass m = 1

2 constrained to a discrete set of positions [28].
Given a set of on-site energies {εj}, it is possible to separate the Hamiltonian into a kinetic and a

potential operator, L and V respectively. The Hamiltonian can thus be written as H = −L + V with:

L = ∑
j

[
− 2 |j〉〈j|+ |j〉〈j + 1|+ |j + 1〉〈j|

]
and V = ∑

j
Vj |j〉〈j| = ∑

j
(εj − 2) |j〉〈j| (2)

highlighting the fact that for εj = 2 ∀j, the unperturbed Laplacian Hamiltonian is obtained. Due to the
tridiagonal form of the matrix H, the eigenvalue equation H|ψ(k)〉 = Ek|ψ(k)〉 can be recast in the form of a
three-term recurrence relation. By explicitly writing H in terms of the Laplacian and potential parts and
projecting into a basis state |j〉, we obtain 〈j| − L + V|ψ(k)〉 = Ek 〈j|ψ(k)〉 and the recurrence relation:

−ψ
(k)
j+1 + 2ψ

(k)
j − ψ

(k)
j−1 + Vjψ

(k)
j = Ekψ

(k)
j , (3)
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where |ψ(k)〉 = ∑j ψ
(k)
j |j〉. Equation (3) is easily identifiable with the discretization in the position basis of

the time-independent Schrödinger equation for a particle of mass m = 1
2 .

In analogy with the continuous case, we introduce the momentum states as the Fourier series of the
countable orthonormal set of position eigenstates. In particular, we define the momentum state |k〉 through
a discrete-time Fourier transform (DTFT):

|k〉 = 1√
2π

∑
j∈Z

eikj |j〉 , k ∈ (−π, π] (4)

|j〉 = 1√
2π

∫ π

−π
e−ikj |k〉dk , j ∈ Z. (5)

If no external potential is considered, i.e., Vj = 0 ∀j, the states {|k〉} are solutions to Equation (3) with

ψ
(k)
j = eikj and corresponding energies Ek = 2− 2 cos(k). The dispersion relation implies that the phase

velocity vp and the group velocity vg are:

vp =
Ek
k

=
2− 2 cos(k)

k
, vg =

∂Ek
∂k

= 2 sin(k). (6)

Thus, the momentum states (4) are the discretization of the plane waves with the dispersion relation typical
of the tight-binding models [29]. We identify these states as free particle states because, in analogy with
the continuous case, plane waves are the eigenstates of a purely kinetic Hamiltonian. This suggests that
the separation of the QW Hamiltonian into a kinetic term and a potential one is indeed meaningful. In the
following, we are going to introduce an obstacle, i.e., an external potential that causes an inhomogeneity
on the on-site energies.

3. Tools of Local Quantum Estimation Theory

Before analyzing the QW scattering from a barrier, we review a few key concepts in the theory of local
quantum estimation. Consider a sample of M independent outcomes of a measurement {x1, x2, . . . , xM}
drawn from the probability distribution p(x|∆), where ∆ is an unknown parameter we wish to estimate.
The Cramèr–Rao (CR) inequality imposes a lower bound on the variance of any unbiased estimator
∆̂({x1, x2, . . . , xM}) for such a parameter:

Var(∆̂) ≥ 1
MF(∆)

(7)

where F(∆) is the Fisher information, defined as:

F(∆) =
∫ (

∂ ln p(x|∆)
∂∆

)2

p(x|∆)dx =
∫ (

∂p(x|∆)
∂∆

)2 1
p(x|∆) dx . (8)

The quantum version of the CR bound is derived by generalizing the concept of FI. This is done by
maximizing the FI over all possible measurements, and the obtained quantity is called quantum Fisher
information H(∆). A detailed derivation of the QFI can be found in [30]. The quantum CR bound takes
the following form:

Var(∆̂) ≥ 1
MH(∆)

. (9)

and follows from the inequality F(∆) ≤ H(∆), which provides the basis for the identification of the QFI
with the ultimate bound to precision of any unbiased estimator. The aim of local quantum estimation
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theory is to determine the maximum extractable information from a quantum probe, whose state depends
on the value of the parameter. If only pure states are considered as probes, i.e., a parameter-dependent
family of quantum states |ψ∆〉, the QFI can be explicitly written as [30]:

H(∆) = 4
[
〈∂∆ψ∆|∂∆ψ∆〉 − |〈ψ∆|∂∆ψ∆〉|2

]
, (10)

where |∂∆ψ∆〉 represents the derivative of the state with respect to the parameter ∆. A suitable figure of
merit that can be used in order to evaluate the estimability of a parameter is the quantum signal-to-noise
ratio (QSNR):

R(∆) = ∆2H(∆) , (11)

which provides an upper bound to the signal-to-noise ratio ∆̂2/ Var(∆̂) of any detection scheme.

4. Scattering in the Presence of an Obstacle

Let us now consider a situation where there is an obstacle placed in the middle of the chain.
The obstacle, or barrier, has the width of a single site, i.e., all sites have the same energy εj = 2, except for
the central one |0〉, which has a detuning ∆, such that ε0 = 2 + ∆. Thus, the Hamiltonian defined in
Equation (1) is modified by placing the obstacle at j = 0, and it becomes:

H = ∑
j∈Z

(
2 |j〉〈j| − |j + 1〉〈j| − |j〉〈j + 1|

)
+ ∆ |0〉〈0| . (12)

The site j = 0 has on-site energy ε0 = 2 + ∆ or, alternatively said, potential V0 = ∆. In order to study the
scattering properties of such model, we start by deriving the scattering states.

4.1. Scattering States

Scattering states for one-dimensional systems in the continuous-space case are known for a variety of
potentials [31]. We now want to derive such states for the discrete system under consideration. The generic
stationary scattering state |ψs〉 with fixed momentum k can be written as a linear combination of free
particle states, namely:

〈j|ψs〉 =
{

Aeikj + Be−ikj, j ≤ 0

Ceikj, j ≥ 0
, (13)

where the terms proportional to A, B, and C correspond to the incident, the reflected, and the transmitted
wave, respectively. The coefficients are calculated imposing that the two parts of the state (before and after
the obstacle) are properly connected at j = 0, i.e., by discretizing the continuity conditions, and using the
recurrence relations (3), i.e., 〈−1|ψs〉−∆〈0|ψs〉+ 〈1|ψs〉 = 2 cos(k)〈0|ψs〉, which represent the discontinuity

introduced by the obstacle. Therefore, the reflection R = |B|2
|A|2 and transmission T = |C|2

|A|2 coefficients can be
easily calculated through:

{
A + B = C

Ae−ik + Beik = C(2 cos(k) + ∆− eik)
−→

B = 1
2i sin k

∆ −1
A

C = 1
1− ∆

2i sin k
A

, (14)

and they have the expressions:

R(∆, k) =
1

1 +
4 sin2(k)

∆2

, T(∆, k) =
1

1 +
∆2

4 sin2(k)

. (15)
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These coefficients closely resemble those corresponding to a delta potential in a continuous system [31];
in particular, the coefficients only depend on ∆2, meaning that there is no difference between an attractive
or repulsive potential as concerns scattering. If ∆ is fixed, T is maximum for k = π

2 , which corresponds to
the highest group velocity (but not to the highest energy). Consistently, at the same value of k, R has a
minimum. As the absolute value of ∆ is increased, the transmission coefficient drops to smaller values,
as reported in Figure 1. For every incident |k〉, we may thus define:

S |k〉 = B
A
|−k〉+ C

A
|k〉 (16)

where we introduced a scattering matrix S whose elements give information on the reflection and
transmission coefficients [31]. If we set A = |A| and we highlight the phases of the reflected and
transmitted waves, we obtain:

S |k〉 = |B||A| e
iφB |−k〉+ |C||A| e

iφC |k〉 = eiφB

(√
R(∆, k) |−k〉+

√
T(∆, k)ei(φC−φB) |k〉

)
. (17)

The relative phase ei(φC−φB) can be computed from the ratio C
B from Equation (14) and is equal to π/2.

It follows that:

S |k〉 = eiφB(∆,k)
(√

R(∆, k) |−k〉+ i
√

T(∆, k) |k〉
)

, (18)

with the phase φB(∆, k) = arctan
(

2 sin(k)
∆

)
.

Figure 1. Transmission and reflection coefficients T and R as a function of ∆ and k.

It is possible to define the reflection and transmission coefficients for more general states. Given an
initial localized wave packed |ψ0〉 placed on the left of the obstacle, its time-evolved state is:

|ψ(t)〉 = e−iHt |ψ0〉 . (19)

We define the time-dependent probabilities:

ρ(t) = ∑
j<0
|〈j|ψ(t)〉|2, τ(t) = ∑

j>0
|〈j|ψ(t)〉|2, δ(t) = |〈0|ψ(t)〉|2. (20)
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The quantities ρ(t) and τ(t) are indeed the probability of finding the walker before and after the obstacle,
respectively. The defect coefficient δ(t) is the remaining probability, namely the probability of finding the
particle on the obstacle site. In particular, when the scattering is over, the coefficient δ(t) is expected to
vanish, and consequently, ρ(t) + τ(t) = 1.

4.2. Gaussian Wave Packets

The vector described by Equation (18) is the mathematical building block from which we derive the
asymptotic values of the quantities of interest; however, it is not normalizable and does not represent
a physical state. For this reason, we now introduce more realistic states that are spatially localized.
In particular, we consider a discretized version of a Gaussian wave packet:

∣∣Gk0

〉
= N ∑

j∈Z
e−

(j−µ)2

2σ2 eik0 j |j〉 . (21)

The probability distribution of this state is a discretized Gaussian function with mean µ and variance σ2

2 .
N is a normalization constant, while the parameter k0 ∈ (−π, π] represents the mean of the probability
distribution in the momentum basis. The

∣∣Gk0

〉
state in the momentum basis is still Gaussian under proper

assumptions, and it has the expression:

∣∣Gk0

〉
=
∫ π

−π
gk0(k) |k〉 dk, (22)

with gk0(k) =
〈
k
∣∣Gk0

〉
≈
√

σ

π1/2 e−
(k−k0)

2 σ2

2 e−iµk. (23)

The detailed derivation of Expression (23) is shown in Appendix A. The crucial approximation made
to obtain this expression is to consider narrow wave packets in the reciprocal space (i.e., min(|k0 + π|,
|π − k0|)� 1/σ; see Appendix A). Therefore, the Fourier transform of the Gaussian wave packet is not
exactly a Gaussian in the momentum basis. Nevertheless, if the transformed state is sufficiently localized
in reciprocal space, Equation (23) is a reasonable approximation.

4.3. Scattering with Gaussian Wave Packets

Here, we want to analyze the asymptotic scattering properties of an incident Gaussian wave packet.
In order to do so, we exploit the results obtained for single momentum states |k〉. The Gaussian state in the
momentum basis has the expression (22) where the Gaussian weights are included in gk0(k).
We consider a wave packet incident on the obstacle from the left (j < 0). Using (18) and linearity,
the scattered Gaussian state can be written in the asymptotic limit as:

∣∣ψk0,∆
〉
= S

∣∣Gk0

〉
=
∫ π

−π
gk0(k)S |k〉 dk

=
∫ π

−π
gk0(k)e

iφB(∆,k)
(√

R(∆, k) |−k〉+ i
√

T(∆, k) |k〉
)

dk

=
∫ π

−π

(
e−iφB(∆,k)

√
R(∆, k)|g−k0(k)|e

iµk + eiφB(∆,k)i
√

T(∆, k)|gk0(k)|e
−iµk

)
|k〉 dk, (24)

where, in the last line, we used the equalities |gk0(−k)| = |g−k0(k)|, R(∆, k) = R(∆,−k), and φB(∆, k) =
−φB(∆,−k). By inspection of Equation (24), we learn that the original Gaussian wave packet is divided
into the superposition of two wave packets centered around opposite values of momentum k0 and −k0,
corresponding to the transmitted and reflected wave function, respectively. These two wave packets
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are not Gaussian anymore, since they are weighted with scattering coefficients that depend on k. It is
important to highlight that this description fails if the two wave packets overlap, which can happen if the
original state is spread in k-space or if its mean is k0 ≈ 0 (or any multiple of π). The assumption of a narrow
initial wave packet in k-space was already imposed in order to derive Equation (23), while asking for a
k0 6= 0 corresponds to considering a wave packet with the group velocity different from zero. With these
assumptions, the transmission and reflection coefficients can be calculated considering the probabilities of
the reflected and transmitted wave packets:

ρG(k0, ∆) =
∫ π

−π
R(∆, k)

∣∣gk0(k)
∣∣2 dk, τG(k0, ∆) =

∫ π

−π
T(∆, k)

∣∣gk0(k)
∣∣2 dk. (25)

This results are confirmed by numerical evaluation of the ρ(t) and τ(t) coefficients in Equation (20) and
shown in Figure 2. The dynamics of the walker is computed through Equation (19) for fixed values of
k0 and ∆. The figure shows that at long times, i.e., in the asymptotic limit, the transmission probability
achieves exactly τG(k0, ∆). A large transmission probability is associated with high values of k0 and small
values of ∆, while a small initial central momentum and a large barrier prevent good transmission.

50 100 150
t0.0

0.2

0.4

0.6

0.8
τ(t)

50 100 150
t0.0

0.2

0.4

0.6

0.8
τ(t)

Figure 2. Transmission probability τ(t). The left plot is for a fixed value of ∆ = 1 and for decreasing values
of k0 = k1, k2, k3, with k1 = π/2 (black), k2 = π/4 (red), k3 = π/7 (blue). In the right plot, k0 = π/2 is
kept fixed while varying the disorder ∆ = 1 (black), ∆ = 2 (red), ∆ = 3 (blue). The dashed lines correspond
to the value of the transmission coefficient τG (k0, ∆) in Equation (25). In both plots, we considered σ = 15.

5. Quantum Estimation of a Scattering Potential

After having derived the scattered expression of a Gaussian wave packet, we turn our attention to the
optimal estimation of the barrier height, i.e., of the parameter ∆. In order to do so, we prepare an initial
Gaussian wave packet with initial central momentum k0. In a scattering experiment, measurements can be
performed only on the scattered state, which has the expression of Equation (24), which we report here
for convenience: ∣∣ψk0,∆

〉
=
∫ π

−π
gk0(k)e

iφB(∆,k)
(√

R(∆, k) |−k〉+ i
√

T(∆, k) |k〉
)

dk.

In order to compute the QFI, Equation (10), we need the derivative:

∣∣∂∆ψk0,∆
〉
=
∫ π

−π
gk0(k)e

iφB(∆,k)×

×
[

i∂∆φB(∆, k)
(√

R(∆, k) |−k〉+ i
√

T(∆, k) |k〉
)
+

(
∂∆R(∆, k)
2
√

R(∆, k)
|−k〉+ i

∂∆T(∆, k)
2
√

T(∆, k)
|k〉
)]

dk,
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and the inner products:

〈
∂∆ψk0,∆

∣∣∂∆ψk0,∆
〉
=
∫ π

−π

∣∣gk0(k)
∣∣2 ([∂∆φB(∆, k)]2 +

[∂∆R(∆, k)]2

4 R(∆, k)
+

[∂∆T(∆, k)]2

4 T(∆, k)

)
dk (26)

〈
ψk0,∆

∣∣∂∆ψk0,∆
〉
= i

∫ π

−π

∣∣gk0(k)
∣∣2 ∂∆φB(∆, k) dk, (27)

with ∂∆R(∆, k) + ∂∆T(∆, k) = 0. We remind the reader that in this work, we always assume that the
reflected and transmitted wave packets of the post-scattering state do not overlap, neither in position nor
in momentum space. Notice that with this assumption, we also exclude slow states, i.e., those states with
k0 ≈ 0 or k0 ≈ π. The QFI for an initial Gaussian wave packet may be computed through Equation (10):

HG(k0, ∆) =
∫ π

−π

∣∣gk0(k)
∣∣2( [∂∆R(∆, k)]2

R(∆, k)
+

[∂∆T(∆, k)]2

T(∆, k)
+ 4[∂∆φB(∆, k)]2

)
dk

− 4
(∫ π

−π

∣∣gk0(k)
∣∣2∂∆φB(∆, k)dk

)2
(28)

=
16 sin2 k0

[2 + ∆2 − 2 cos(2k0)]2
+

gH(k0, ∆)
σ2 + O(1/σ3) , (29)

where the explicit expression of gH(k0, ∆) is reported in Appendix B.
The typical behavior of the QFI as a function of ∆ and the initial central momentum k0 is shown in

Figure 3. Since we want to avoid overlaps of the reflected and transmitted wave functions in momentum
space, we exclude values for k0 in the neighborhood of k0 = 0 and k0 = π. The QFI is symmetric under the
exchange of the sign of the barrier, i.e., ∆→ −∆, and it has a maximum centered in ∆ = 0. Small values of
the barrier height |∆| � 1 have a larger QFI with respect to higher barriers. The spread of the wave packet
σ affects the maximum precision only for |∆| � 1, as shown in the upper panel of Figure 4. From these
plots, we can also see that the initial central momentum has an important role: in fact, as k0 is increased
from small values to π

2 , the maximum of the QFI decreases.

0.5 1.0 1.5 2.0 2.5 3.0
k

2

4

6

8

10

|gk0 (k) 2

Figure 3. Left: QFI HG (k0, ∆) for an initial Gaussian wave packet with σ = 5. Right: QSNR RG (k0, ∆) for
the same initial Gaussian wave packet.
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Figure 4. Comparison between the QFI (upper panel) and the QSNR (lower panel) with a large and a
narrow initial wave packet in k-space, as a function of ∆ and for three different values of k0. The black solid
lines are for σ = 20, while the dashed red lines are for σ = 5. The considered values of initial momentum
are k0 = π

4 , π
3 , π

2 for the left, center, and right column, respectively.

In order to compare the error of an estimator with the true value of the parameter to be estimated,
we also address the QSNR, defined in Equation (11). Its behavior is shown in the right plot of Figure 3 and
in the lower panel of Figure 4, for three different values of the initial central momentum k0. The QSNR has
a maximum for ∆ 6= 0, which corresponds to the value of the barrier height that can be better estimated.
As the value of the initial central momentum is increased toward k0 = π

2 , the value of the optimal ∆ slightly
increases. The dependency on σ is negligible when considering the QSNR, as shown in the lower plots,
where the behaviors for σ = 5 and σ = 20 are compared. Quite remarkably, the maximum value of the
QSNR is very similar, RG ≈ 1 for the considered values of k0, thus making the initial central momentum a
tool to fine tune the optimal value of ∆, but not the corresponding precision.

The behavior of the QSNR has an intuitive and straightforward physical interpretation. If the height
of the barrier is negligible (∆� 1), then the walker is mostly transmitted anyway, and it is very difficult
to detect small variations of ∆ itself. Similarly, if ∆� 1, the walker is mostly reflected independently of
the exact value of ∆. On the other hand, for intermediate values of ∆, the wavefunction of the walker
is very sensitive to its value, and measuring the walker indeed provides information. This picture is
confirmed if one looks at the zeroth order expression of the QFI in Equation (29), which says that the
maxima of the QSNR are located at ∆2 = 2[1− cos(2k0)]. Notice that the values of (∆, k0) satisfying this
relations are those making the reflection and transmission equal to each other R(

√
2[1− cos(2k0)], k0) =

T(
√

2[1− cos(2k0)], k0) =
1
2 .

Dichotomic Position Measurement

We now address the question of whether a realistic position measurement is optimal, i.e., its FI equals
the QFI defined in Equation (28). In particular, we consider a dichotomic measurement that just tells us if
the particle is located on the left or on the right side of the barrier. Since we know from the Equation (25)
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that the quantities ρG(k0, ∆) and τG(k0, ∆) correspond to the probabilities of finding the particle before or
after the obstacle, the FI takes the expression:

FG(k0, ∆) =
[∂∆ρG(k0, ∆)]2

ρG(k0, ∆)
+

[∂∆τG(k0, ∆)]2

τG(k0, ∆)
=

[∂∆τG(k0, ∆)]2

τG(k0, ∆)[1− τG(k0, ∆)]
(30)

=
16 sin2 k0

[2 + ∆2 − 2 cos(2k0)]2
+

gF(k0, ∆)
σ2 + O(1/σ3) , (31)

where the explicit expression of gF(k0, ∆) is reported in Appendix B. As the value of σ is increased, i.e., the
wave packet is more localized in k-space, the FI of the dichotomic measurement approaches the QFI.
The second order coefficients gs(k0, ∆), s = H, F are different for the QFI and the FI (see Appendix B),
but in the range of parameters we explore (σ > 5, 0 < ∆ ≤ 4, 0 < k0 < π), the ratio γ(k0, ∆) =

FG(k0, ∆)/HG(k0, ∆) is always larger than γ(k0, ∆) > 0.95. We conclude that a dichotomic position
measurement is nearly optimal to estimate the height of the potential barrier ∆.

6. Conclusions

In this work, we introduce and discuss a general probing scheme for scattering problems based on
continuous-time quantum walks. In particular, we consider a one-dimensional lattice, with an impurity
at its center, i.e., a potential barrier of height ∆, and discuss in details how to quantify the maximum
extractable information about the parameter ∆.

Using the continuous-space case as a guide for attacking the problem, we first introduce the
single-momentum scattered states S |k〉 and use them to compute the reflection and transmission
coefficients of the considered potential. From the scattered states, we build up the asymptotic Gaussian
states, i.e., physical states, that depend, in addition to ∆, on the initial central momentum k0 and the spread
of the wave packet in position space σ. We then derive the reflection and transmission probability of such
wave packets. Finally, we compute the QFI for the parameter ∆. We show that the QFI has a maximum for
∆ = 0, and it is strongly affected by the value of k0. In particular, values of k0 near π

2 lead to a smaller QFI.
Moreover, for |∆| � 1, a small σ can increase the precision of the estimation. However, inspection of the
QSNR did not show a noticeable difference in its behavior depending on the value of σ or k0. The QSNR
has a maximum for ∆ 6= 0, indicating that given the value of the central momentum k0, there exists a value
for ∆ that can be better estimated, leading to the unit QSNR independently of σ and k0.

Finally, we investigate the performances of a dichotomic position measurement, which is a binary
measurement that is just able to distinguish if a particle is located on the left (reflected) or on the right
(transmitted) of the potential barrier. We show that this measurement is optimal, i.e., its FI is equal to
the QFI, for large initial wave packets (in position space), while it is nearly optimal for narrow initial
wave packets.

Our work paves the way toward the characterization of more involved forms of potentials using a
single-particle continuous-time quantum walk as a probe. Extensions of this work may also include more
complex structures, such as multi-dimensional graphs, where imperfections created during the fabrication
process need to be estimated in order to better control the quantum dynamics over such networks.
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Abbreviations

The following abbreviations are used in this manuscript:

CTQW Continuous-time quantum walk
CR Cramér–Rao
FI Fisher information
QFI Quantum Fisher information
QSNR Quantum signal-to-noise ratio

Appendix A. Gaussian Wave Packet in K-Space

Consider the Gaussian wave packet in position space defined by Equation (21). Here, we show that its
expression in k-space, within certain approximations, is given by Expression (23). We start by considering
the the projection of Equation (21) into a state |k〉:

〈
k
∣∣Gk0

〉
=
N√
2π

∑
j∈Z

e−
(j−µ)2

2σ2 ei(k0−k)j. (A1)

The infinite sum can be calculated using the Poisson summation formula, which states that, for suitable
functions f : ∑j∈Z f (j) = ∑n∈Z f̂ (n) = ∑n∈Z

∫ +∞
−∞ f (x)e−i2πnx dx. In our particular case:

〈
k
∣∣Gk0

〉
=
N√
2π

∑
j∈Z

e−
(j−µ)2

2σ2 ei(k0−k)j =
N√
2π

∑
n∈Z

∫ +∞

−∞
e−

(x−µ)2

2σ2 ei(k0−k)xe−i2πnx dx . (A2)

The last integral is a continuous Fourier transform of a Gaussian function; therefore:

∫ +∞

−∞
e−

(x−µ)2

2σ2 ei(k0−k)xe−i2πnx dx =
√

2πσ2e
− (2πn+k−k0)

2

2 1
σ2 e−iµ(2πn+k−k0). (A3)

Inserting Equation (A3) into (A2) (discarding the constant global phase eiµk0 ), we obtain:

〈
k
∣∣Gk0

〉
= N σ ∑

n∈Z
e
− (2πn+k−k0)

2

2 1
σ2 e−iµ(2πn+k). (A4)

The transformed state is not a Gaussian state, but it is an infinite sum of Gaussian states periodically
displaced. However, if the wave packet is localized enough in reciprocal space, it is possible to approximate
the last infinite summation by keeping only the central term n = 0 (it is always possible to shift the
definition of k and k0 in the interval [−π, π) because they are defined modulo 2π). The localization
assumption is needed in order to consider only one term, otherwise the tails of adjacent Gaussian functions
could overlap. In other words, k0 should be far away from the boundaries of the interval [−π, π),
i.e., |k0 − π| and |k0 + π| should be much larger than the standard deviation in the reciprocal space.
Overall, the conditions read as min(|k0 − π|, |k0 + π|)� 1/σ. With this assumption:

Gk0(k) =
〈
k
∣∣Gk0

〉
≈ N σe

− (k−k0)
2

2 1
σ2 e−iµk. (A5)
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Thus, a discrete Gaussian state in the position basis remains a Gaussian state in reciprocal space within the
considered approximation. The calculation of the normalization constant N reduces to the calculation of a
Gaussian integral:

1 =
∫ π

−π

∣∣Gk0(k)
∣∣2 dk ≈

∫ ∞

−∞

∣∣Gk0(k)
∣∣2 dk = |N |2σ

√
π, (A6)

with:

|N |2 ≈ 1√
πσ2

. (A7)

Appendix B. The Explicit Expression of the Functions gH(∆, k0) and gF(∆, k0)

We have:

gH(k0, ∆) =
4
[
3 cos 6k0 + 2(5∆2 − 1) cos 4k0 + 3(3∆4 − 19) cos 2k0 + ∆4 − 10∆2 + 18

][
∆2 + 2(1− cos 2k0)

]4 , (A8)

gF(k0, ∆) =
8
[

cos 6k0 + 6∆2 cos 4k0 + (∆4 − 9) cos 2k0 − 6∆2 + 8
][

∆2 + 2(1− cos 2k0)
]4 . (A9)
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