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Abstract: In optical communications, four-dimensional (4D) modulation formats encode information
onto the quadrature components of two arbitrary orthogonal states of polarisation of the optical field.
Many analytical models available in the optical communication literature allow, within a first-order
perturbation framework, the computation of the average power of the nonlinear interference
(NLI) accumulated in coherent fibre-optic transmission systems. However, all such models only
operate under the assumption of transmitted polarisation-multiplexed two-dimensional (PM-2D)
modulation formats, which only represent a limited subset of the possible dual-polarisation 4D
(DP-4D) formats. Namely, only those where data transmitted on each polarisation channel are
mutually independent and identically distributed. This paper presents a step-by-step mathematical
derivation of the extension of existing NLI models to the class of arbitrary DP-4D modulation
formats. In particular, the methodology adopted follows the one of the popular enhanced Gaussian
noise model, albeit dropping most assumptions on the geometry and statistic of the transmitted
4D modulation format. The resulting expressions show that, whilst in the PM-2D case the NLI
power depends only on different statistical high-order moments of each polarisation component,
for a general DP-4D constellation, several other cross-polarisation correlations also need to be taken
into account.

Keywords: 4D modulation formats; optical communications; channel modelling

1. Introduction

With the resurgence of polarisation-diverse, optical coherent detection, transmission of
information over an optical fibre is typically performed exploiting four degrees of freedom of the
optical field: two quadrature components over two orthogonal states of polarisation. The standard
approach consists in encoding data independently over the two polarisation channels using the same
two-dimensional (2D) modulation format. The resulting four-dimensional (4D) constellation is often
referred to as a polarisation-multiplexed 2D (PM-2D) modulation format. The strong point of PM-2D
formats is their simplicity of generation and performance analysis: as the two polarisation channels
are independent and under the assumption of data-independent cross-polarisation interference in the
fibre channel, transmission performance can be evaluated using the 2D component format.

Despite the popularity of PM-2D formats, a substantial amount of research work in the literature
has been devoted to more general 4D formats, i.e., 4D constellations which are not necessarily generated
as Cartesian products of a component 2D constellation [1,2]. These formats have recently regained
attention due to their potential power efficiency, nonlinearity tolerance, and ultimately their still
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unexplored shaping gains. The reason for that relies on the fact that, by exploiting the full 4D space,
sensitivity and other relevant performance metrics such as mutual information or generalised mutual
information can be improved compared to traditional PM-2D formats [3-7].

Previous works on optimised 4D modulation formats have either operated under an additive
white Gaussian noise channel hypothesis [1-3] or exploited some heuristic approaches to derive
nonlinearly tolerant formats in the fibre-optic channel [5-7]. However, accurately predicting the
amount of nonlinear interference generated by transmission of a given constellation in an optical fibre
is key to optimising its shape in N dimensions.

Modelling of nonlinear interference (NLI) in optical fibre transmission is quite a mature field of
research where an impressive amount of progress was made in the first half of the 2010s, e.g., in [8-11].
In particular, [10,11] introduced for the first time the possibility of predicting the dependency of
nonlinear interference power as a function of the modulation format features, i.e., geometrical shape
and statistical properties. Among other assumptions, one underlying key point of all previous models
is the transmission of PM-2D modulation formats, where data on the two polarisation channels are
assumed to be independent and identically distributed. Under this constraint, one can predict the NLI
power using the statistical properties of the 2D component modulation format. It is clear, however,
that this approach ceases to be applicable to general DP-4D formats, where a single 2D component
format might not even exist.

In this work, we extend the existing analytical expressions for NLI power to account for DP-4D
constellations where the two 2D polarisation components are not identically distributed or when
there is statistical dependency between them. The undertaken approach is the same as in [9],
i.e,, a frequency-domain, first-order perturbation study. Unlike [9], no assumptions are made on either
the marginal or joint statistics of the two polarisation components of the transmitted 4D constellation
(besides being zero-mean). The final expressions reveal the impact of several different (nontrivial)
cross-polarisation statistics on the NLI power.

The formulas presented in this work enable an accurate computation of the NLI power for all
possible dual-polarisation formats in optical fibre transmission. As a result, a reliable optimisation of
both geometry and symbol probability of occurrence of such 4D formats is also enabled for the optical
fibre channel.

2. Organisation of the Manuscript and Notation

The manuscript is organised as follows: (i) in Section 3, the investigated system model is described
and the model assumptions are presented; (ii) Sections 4-8 are devoted to a step-by-step analytical
derivation of the model; and (iii) ultimately, the main model expression is presented in Section 8.
In particular: in Section 4, the regular perturbation (RP) solution to the frequency domain Manakov
equation is derived for a multi-span fibre system and its power spectral density (PSD) is evaluated
in the case of a transmitted periodic signal; in Section 5, the contributions of the different high-order
moments and cross-polarisation correlations of the transmitted 4D modulation format are highlighted;
finally, Section 8 derives, via Theorem 2, an expression for the PSD as the signal period is extended into
infinity. A flowchart of the main derivation steps performed in this work, with their corresponding
references in the manuscript, is shown in Figure 1.

Throughout this manuscript, we denote 2D (column) vectors with boldface letters (e.g., a),
whereas 2D column vector functions are indicated with boldface capital letters (e.g., E(f, z), E(t,z), etc.).
For indicating the optical field, the first variable of represents either the time or frequency variable whereas
the second one represents the fibre propagation section. An exception is made for the multi-span system
case, where second and third variables are assigned to the number of spans and span length, respectively.
This highlights the joint dependence of the output optical field on these two variables, as shown later in
the paper. F{-}, E{-}, and Re{-} indicate the Fourier transform, the statistical expectation, and the real
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part operators, respectively. The delta distribution is indicated by d(-), whereas J; denotes the Kronecker

delta defined as
A 1 fork =0,
O =
0 elsewhere.

Finally, Z, R, and C denote the integer, real, and complex fields, respectively, and j is the imaginary unit.

System and Sum of all W Compacting of
transmitted signal mod.-dependent freq.-dependent,
assumptions (Section 3) contributions (Section 7)J terms (Section 7)

Sum of
freq.-/mod.-
dependent
terms (40)

4D periodic
transmitted signal
expression (7)

Partition-based
4D correlation
contributions

(Tables 1, 2, and 3)

RP solution (Section 4)

PSD as sum
of freq.-domain
correlations (24)

Derivation of first-order
Transition to aperiodic
transmitted signals
(Section 8)

Time-domain
set partitioning
(Section 5.2)

Final model’s
expressions

(42), (43)

L) O

Derivation step  Step output

Sum of 4D
mod.-dependent
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Switching to
time domain
(Section 5.1)

Figure 1. Flowchart of the analytical derivation in this work.

3. Model Assumptions

3.1. System Model

The baseband equivalent model of the optical fibre system under investigation in this work
is shown in Figure 2. The fibre channel is a multi-span fibre system using Erbium-doped fibre
amplification (EDFA). In this manuscript, it is assumed that a single-channel signal is transmitted.
The transmitter is assumed to generate for each symbol period n the 4D symbol a, = [axn, ayu]’,
where ay ,, ay,, € C are complex symbols modulated on two arbitrary orthogonal polarisation states x
and y, respectively. The sequence of symbols a, for n € Z is assumed to be a cyclostationary process
of period W. The set of random variables (RVs) within each period of such process are also assumed to
be statistically independent. Linear modulation with a single, real pulse p(t) on x and y polarisation is
adopted. The pulse p(t) with spectrum P(f) is assumed to be strictly band-limited within the range of
frequencies [—R;/2, Rs/2]. As discussed in Section 3.3, the transmitted signal E(t, 0) is assumed to be
periodic with period T, such that

(W-1)/2
E(t,0) = 2 ayp(t—nTs), for 0<t<T, 1)
n=—(W-1)/2

Ts = 1/Rs = T /W represents the symbol period, and R; is the symbol rate. A schematic representation
of the transmitted signal is shown in Figure 3.
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Figure 2. System model under investigation in this work which consists of an optical fibre system
model and a nonlinear interference (NLI) variance estimation block: the two branches in the NLI
variance estimator block indicate alternative ways of estimating the NLI variance Xy .

The signal E(t,0) is transmitted over N; (homogeneous) fibre spans, each of length Ls and each
followed by an ideal lumped optical amplifier for which the gain exactly recovers from the span losses.
Since in this work we are only concerned about the prediction of NLI arising from the signal-signal
nonlinear interactions along the fibre propagation, the optical noise added by the amplifier plays no
role in the model and will be entirely neglected. The signal at the channel output E(t, N, L;) is ideally
compensated for accumulated chromatic dispersion in the link (see Section 4). In the frequency-domain
output of the chromatic dispersion compensation (CDC) block E(f, Ns, Ls) (Figure 2), we ideally isolate
the first-order RP term E;(f, Ns, Ls) (see Section 4) and we compute its PSD S(f, Ns, Ls). The vector of
the NLI powers Enpp 2 [(TI%LLX, O-I%TLI,y]T for both x and y polarisations is obtained by integrating over
the frequency interval [~R;/2, Rs/2] the NLI PSD weighted by the function |P(f)|?, where P*(f)
is the frequency response of a matched filter (MF) for the system under consideration. As shown in
Figure 2, this quantity is equivalent to the variance of the output of the MF followed by symbol-rate
sampling, which more naturally arises when assessing the transmission performance of systems
employing an MF at the receiver. The model in this manuscript provides an analytical relationship
between the statistical features of the transmitted symbols a,, and Zny .

3.2. DP-4D vs. PM-2D Formats

The model presented in this paper allows for prediction of the NLI for generic 4D real modulation
formats. A 4D format is defined as a set

A2 (0O =@, dTe? i=1,2,...,M} @)

where a, and ay are the symbols modulated on two orthogonal polarisation states x and y, respectively,
and M is the modulation cardinality. It can be seen that the elements in A are 2D vectors in C as
opposed to 4D. This is only due the to baseband-equivalent representation of signals used throughout
this paper, while it is common to refer to a modulation format dimensionality based on the real signal
dimensions, which justifies the 4D format label.

Two important particular cases of the formats in (2) are (i) the so-called polarisation-multiplexed
2D (PM-2D) modulation formats, which are characterised by A = X 2 X € C, where X represents
the 2D component constellation, and (ii) polarisation-hybrid 2D modulation formats characterized by
A=XxY,with&,Y € C, X # Y, where X’ and )Y are two distinct component 2D formats in x and
y polarisation, respectively. PM-2D formats are the most common ones in optical communications due
to their generation’s simplicity. Both PM-2D and polarisation-hybrid 2D formats are often analysed
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in terms of their 2D polarisation components. This is because .4 can be factorised in two component
formats which are independently encoded. Hence, if the generic transmitted constellation point is
regarded as a random variable, in a conventional PM-2D format, the two polarisation components are
statistically independent. In the remainder of this paper, no specific assumption on either the geometry
or the statistic of the transmitted 4D symbols will be made, except the zero-mean feature E{a!)} = 0.

W symbols, £(t + T,0) W symbols, E(t,0) W symbols, E(t — T,0)
T T T T T T I_ T t
_3r _wr, 0 T 2T ... W, ... T=WTy ... 3T ... [s]
T, = R% Period T = Alf A —0

T >0 W — o0

Figure 3. Schematic representation of the periodic signal assumption, where W symbols are transmitted
every T [s], each symbol with a duration of Ts [s]: the periodicity assumption will be lifted in Section 8
by letting Ay — 0.

3.3. Transmitted Signal Form

Let E(t,z) = Ex(t,z)ix + E(t,2)iy be the complex envelope of the optical field vector at time  and
fibre section z, and let iy, iy denote 2 orthonormal polarisations of the transversal plane of propagation.
Let also E(f,z) = Ex(f,z)ix + Ey(f, z)iy be the (vector) Fourier transform of E(t,z) defined as

E(f,2) = F{E(L2)} £ / T E(tz)e Py,

J —00

Because of the periodicity assumption made in (1) (see Figure 3), we can write E(t,0) as

k=—oc0

where C, = [Cyp, Cyrk]T, Cy/yx are the Fourier series coefficients of E(t,0) and A 5 = 1/T is the
frequency spacing of the spectral lines in E, /, (f, z). Hence, E(f,0) can be then written as

i CrO(f —kAy). (4)

k=—0o0

Since each component of E(t,0) is periodic with period T, we can write

o

Z (t—nT,0),

where, as per assumption in (1), we have

(W-1)/2 T
. R Z anp(t —nTs), for — % <t< 5
E(t,0) = S u=—(W-1)/2 ,
0, otherwise

and, W is assumed to be odd without loss of generality. Under the above assumptions, the Fourier
coefficients in (3), for k € Z, are given by

T
ey / ©E(t,0)e P gt (5a)
-2
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= As /i ) anp(t — nT)e 120 4y (5b)
ST n=—(W-1)/2
(W-1)/2 I ]
= A Y an/ L p(t— nTy)e 12*rt gy (5¢)
n=—(W-1)/2 T2
(W-1)/2 '
~Ar Y apP(kAg)e PR (5d)
=—(W-1)/2
(Wil)/z kn
=AfP(kAs) Y ape W (5€)
= (W-1)/2

- \/pr(kAf)uk, (56)

where P(f) £ F{p(t)} and

_jomkn
Vi = Ve vyil " = 4/D f 2 ne 12w, VkeZ, (6)

are the discrete Fourier transforms of the sequence a,, n = 0,1, ..., W — 1. Note that the approximation
in (5¢)—(5d) is justified only for large enough values of T as

T

lim [ p(t—nT)e P™*85tdt = F{p(t —nTy)}| fokay  for mkez,

T—o0. -7

and letting T — oo will be the approach taken at a later stage in this derivation.
Finally, combining (4) and (5f), we obtain

(W-1)/2
,/ Z kAf 1/k5f kAf) Z P(kAf)Vk 5(f_kAf)/ (7)
k——oo k=—(W-1)/2

where the approximate equality on the right-hand side of (7) stems from the fact that p(t) is assumed
to be strictly or quasi-strictly band-limited (see Section 3.1). Hence, P(kAy) is effectively equal to zero
fork=-W/2,-W/24+1,..., W/2.

4. PSD of the First-Order NLI for Periodic Transmitted Signals

To find an analytical expression for NLI power, first, a solution as explicit as possible to the
Manakov equation [12]

aE(t,z) _ - .B2 azﬁ(t,z) 8 . 9=
% - EE(IZ) ]?T+]§7\E(t,z)|b‘(t,z), (8)

must be found. Equation (8) describes the propagation of the optical field E(t,z) in a single strand
of fibre (e.g., a fibre span with no amplifier in the system in Figure 2). In this case, «, B2, and 7
representing the attenuation, group velocity dispersion, and nonlinearity coefficients, respectively,
can be assumed to be spatially constant. As it is well-known, general closed-form solutions are not
available for (8). Like most of the existing NLI power models in the literature, the model derived here
operates within a first-order perturbative framework. In particular, a frequency-domain first-order
regular perturbation (RP) approach in the -y coefficient is performed [13,14], i.e., the Fourier transform
of the solution in (8) is expressed as
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Z 7" An(f,2) = Ao(f,2) + 141 (f,2), ©)
where
E,(f,z) =Y"An(f,z) for n=0,1,...., (10)

represents the so-called nth order term of the expansion.

In the following theorem, we present the expressions for Ey(f,z), and E;(f,z), when a multiple
fibre span system like the one in Figure 2 is considered. These expressions are well-known in the
literature (see, e.g., [13]). Nevertheless, we present the proof in Appendix A for completeness.

Theorem 1 (First-order frequency-domain RP solution for a multi-span fibre system). Let E(f,z) be
the solution in the frequency domain of the Manakov equation for the system in Figure 2 with initial condition
at distance z = 0 given by the transmitted signal E(f,0). Then, the first-order RP solution after Ny spans
E(f,N;, L) is given by

E(f,Ns, Ls) =~ Eo(f, Ns, Ls) + E1(f, Ns, Ls),

where the zeroth-order term is given by
Eo(f, N, Ls) = Eo(f,0)el2™f 2Nk,
and the first-order term is

Ei(f, N, Ls) = —j8qel@fhaNsks [ 1% ET(f; 0)E*(f2,0)E(f — fi + f2,0)5(f1, fa, f, N, Ls)dfadfo,  (11)

with

1 — e~ Ls o4 Ba(f—f1) (f2—fi)Ls Ns
o —

jAmBa(f — ) (2 — f1) (=

1(f1, fa, f, Ns, Ls) 2 e*]‘47r2/52(1*1)(f*f1)(frfl)Ls, (12)

where Ns and L are the number of spans and the span length of each span, respectively.

Proof. See Appendix A. [

While Theorem 1 gives an approximation for the field at the output of the fibre, we are interested
in the field after ideal CDC (see Figure 2). Ideal CDC ideally removes the exponential ¢f2P27 f N Ls
from (11), leading to a first-order term in the RP solution for the system in Figure 2 given by

B1lf Nor L) = [Bun By = =i v/ | EAOE (ROE( ~ fi+ £2,0)
1(f1 f2, £+ Ns, Ls)d frdfa.

Substituting the spectrum of the transmitted periodic signal (7) in (13), we obtain, for instance,
for the x component in (13),

(13)

e}

Evx(f, N5, Ls) = =g 7A3/2 2 Z Y P(kAs)P*(mAs)P(nAy) (ux,kv;;,mvx,n+vy,ku;,mux,n)

k=—00 mM=—00 n=—00

S~ k83— mAS( — fi+ fo = nAP (i o N LS
(14)

Although the product of Dirac’s deltas in (14) is not well-defined in the standard distribution theory
framework, in this case, such product can be dealt with in the same way as products between
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distributions and smooth functions. This approach was formalised by Colombeau in his theory of
product between distributions [15]. Thus, integrating in f; and f,, we obtain

Erx(f, N, Ls) = —f 7A3/2 Z Z Z P(kAf)P* (mAg)P(nAy)
k=—0c0 M=—00 N=—00 (15)

(vxkvxmvxn +v kvymvxn) n(kAg,mAg, (k—m+n)Ag, Ns, Ls)o(f — (k—m+mn)As).
Setting i = k — m + n and defining

Nemn = n(kAg,mAg, (k—m+mn)Ag, Ns, Ls)
1 — e—Ls 674”2Aft,32(”*m)(m*k)Ls Ns

T Ay (n — m)(m — k)

AT (1) (nm) ()L (16)

(15) can be rewritten as
[ee]

Eix(f,Ns,Ls) = Y cid(f —idg), (17)
i=—o00
where
.8 " * *
62 —jgyAY? Y PAQP (mAp)P(nAG) (Vg + VgV ) Mo (18)
(k,mn)eS;
and
S; 2 {(kmn) e k—m+n=i}. (19)

The PSD of the received nonlinear interference (to the 1st-order) is defined as

(F, N L) = [¢(F, Noy L), Sy No LT 2 [B {1 BrF N L)} E { By (N L) P}

For periodic signals, which in the frequency domain can be expressed as in (17), the PSD can be
expressed as [16] (Section 4.1.2)

Se(f,NoLe) = Y E{|cP}o(f —idy). 20)

i=—o00

Substituting the expression (18) for ¢; in (20), we obtain

Sx(f,Ns,Ls):<9> Ly Z(s —iAy) { Y. P(kAp)P*(mAf)P(nAy) (VigVh uVan

i=—00 (k,mn)eS;
+V ,kv;/ml/x,n) 77k,m,n Z I-)*< (k/Af)p(mlAf)P* (n/Af) (V;’k/‘l/x,mll/;k’n/ + V;,k/l/y,mlvi,n/) ﬂ;’,m’,n’ }
(K m' n")eS;
(21a)

— (8 ZA 5(f —iAy) : ; *
~—\9 f Z —iAf)E Z Prmn et \ Vi Ve m VoV o Ve Vg ot

i=—00 (k;m,n)eS;

(K',m' ") eS;

* * * * % % * *
‘H/x,kvx mVx, ﬂvy Kk Vym'Vy g + Vy kVymVan Vo o Vam Vo Vyrkvy,mvx/”Uy,k’vy,mlvx,n’) MkmnMTit ! ! }’

(21b)
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where we have defined
Pkmnk’ m' ! = (kAf) (mAf>P(TlAf>P*(k/Af)P(TH/Afﬂ)*(n/Af). (22)

The following proposition can be used to make (21b) more compact, and in particular,
it will be used to group the two inner correlation terms in (21b) ( Vx,kV;,mVx,nV;,k/Vy,m’V;nl and

* * *
U%kvy/mvxr” Vx,k’ Va,m! 1/x,n’)'

Proposition 1. For Py i/ ' ' i (22), we have

* * * *
Z Pk,m,n,k’,m’,n’ Vx,kvx,mvx,nvy,k/ Vy,m’ Vx,n/ Mk,m,n Uk/,m/,n/
(kmn)eS;
(K'm' n")eS;

*
* * * *
= ( Z Pk,m,n,k’,m’,n’Vy,kvy,mvx,nvx,k/Vx,m’Vx,n’Uk,m,nﬂk/,m/,n/) . (23)
km,n)eS;
(lg’,;n’,?’)&%i

Proof. See Appendix B. O

Using (23) and (21b) can be written as

Sx(ers/Ls> = (9> 2Af 2 5 lAf { Z Pk,m,n,k’,m’,n’

i=—o00 (k,m,n)eS;
(K',m' n")eS;

* * * * * * *
: (Vx,ka,mVx,an/k’Vx,m’ Ve T Vy ,kVy,mVanVy ko Vy,m' Ve ) Ti,mnti ! !

+2 Re{Pk,m,n,k/,m/,n/Vx,kV; mVx, nVy j,m’V;,n’ Mk,n,m U;’,n’,m’ } } (24)

8\? > .
- (9) ’)/ZA?C Z 5(f_ ZAf) Z 7)k,m,n,k/,m’,n’ (E {Vx,kV;,mVX,nV;,k/Vx,m’V;,n’}

i=—oc0 (k,m,n)eS;
(K',m' n")eS;

+E { y kVy mVx, nVy k/l/y m! x 0 }) ﬂk’m,nﬂ;@,m/,n/

* *k
+2 Re{Pk mnk m!, n/]E {Vx kvx mVx, nVy k’Vy,m/Vx,n/} Min,mMi n! m! },

where the real part operator arises from the sum of the complex conjugate terms discussed in the
Proposition section (Section 1).

According to (24), calculation of the PSD of the NLI reduces to the computation of a
four-dimensional summation (per frequency component iAs) of three sixth-order correlations of
the sequence of random variables v,/ ,, n = 0,1,..., W — 1. The y-component S,(f, Ns, Ls) of the
PSD can be calculated once Sy(f, Ns, Ls) is obtained by simply swapping the polarisation labels x — y
and y — x. This is due to the invariance of the Manakov equation in (8) to such a transformation.

5. Classification of the Modulation-Dependent Contributions in the 6th-Order
Frequency-Domain Correlation

In this section, we will break down the frequency-domain sixth-order correlation terms in (24) to
highlight different contributions in terms of 4D modulation-dependent cross-polarisation correlations.
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5.1. Expansion in Terms of the Stochastic Moments of the Transmitted Modulation Format

To relate the PSD in (24) to the statistical properties of the transmitted modulation format,
we replace (6) into (24), obtaining

8 2 ) ) .
Sx(fr N, LS) - (9) ’)/ZA; ’ Z 5(f - lAf) Z [Pk,m,n,k’,m’,n’Wk,m,nﬂk/,m/,n/

i=—o00 (k,mn)eS;
(K',m' n")eS;
Si (k, m,n, k/, m', l’ll) =+ 2 Re{Pk,m,n,k’,m’,n’Uk,m,l’ln;(k/,m/,n/ (25)

ic{0,1,...W—1}6

Ti(k,m,nk',m',n")}],
ic{0,1,..,W—1}6

where i £ (i1, iy, ..., i),

X / I 1\ A A3 e e e e e e
Si (k’ m,n, K, m,n ) - Af {E {ax/llax,izaxﬂ3ax,i4ax/l5ax,i5} +E {a%lla%izax/l3ay,i4ayﬂsax,ie H

D, (26)
. efjw(kzlfmzfrngfk ig+m'is—n'ig)
7

and
2T (1 s T, Y I
Tl(k, m,n, k/, m/, n/) ey A'?;‘]E {ax,il a;k{ izax/isa; i4ay/i5a; 16} e W (kll mip+nizg—k'ig4+m'is—n 16)‘ (27)

The terms S;(k, m,n,k',m’,n") and T;(k, m,n, k', m’,n") give rise to several correlations among the
transmitted symbols a, ; and 4, ; at different time-slots i, j, each weighted by a complex exponential.
As discussed in Section 3, in this work, we operate under the assumption that the sequence of vector
RVsa;fori =0,1,..., W —1are independent, identically distributed (i.i.d.), and with E{a;} = E{a} =
0. As shown in the following example, this assumption allows us to discard the S;(k,m, n, k', m’, n")
and T;(k,m,n,k',m’,n") terms which are identically zero for some values of i. Moreover, as it will
be shown in Example 2 for all other values of i, S;(k,m, n, k', m’,n"), and T;(k, m,n, k',m’,n") can be
expressed as a product of high-order statistical moments of the RVs a, and a,, which enables a more
compact expression for (25).

Example 1. Under the i.i.d. assumption for the sequence of vector RVs a;, i = 0,1,..W — 1 made in this work,
in any of the cases where

I, 7 lxy = Iy = -+ = Ixg for xqy,K2,...,k6=1,2,...,6; K1 # Ky F# -+ # K, (28)

any of the sixth-order correlations in (26) and (27) degenerate into a product between a first-order moment
and a fifth-order correlation. Such a product is equal to zero under our assumption E{a,;} = E{a,} = 0.
For example, for iy # ip = i3 = - - - = ig, we have

B{ iy @ 1, B iy @ 1, O is Wi b = Bl iy YE{ |y [ *a} 1, } = B{ax }E{|ax[*a}} = 0.

From this follows that, for all elements in the set defined in (28), S;(k,m,n k' ,m',n") = 0 and
Ti(k,m,n,k',m',n'") = 0. This example highlights a zero-contribution region in the 6D space {0,1,... W — 1}°,
as illustrated in Figure 4.

The S;(k,m,n,k',m’,n") and T;(k, m,n, k', m’,n") contributions for the set in (28) are identically
zero regardless of the values taken by k, m, n, k', m’, and n’. However, as it will be shown in Section 6,
for a specific subset of values k, m,n, k', m’, and n’, such contributions cancel each other in the inner
sums in (25) due to the complex exponential weights.
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i€{0,1,.,W—1}°

Ly

9 5 o 4
\\ {(11)/(1'2/13, ’

{(i1,i2), ' fadsie)t 1

(i3,i5), 1 Example 1 1 { i, 12,13
iy § NoempeD (ias 5,15) }
1 1
(inia) ! Zero
(A’l/,lz)f ,/ contribution (i1, i2,14),
13,14), region \ cL
(s i)} o A

{(ir,13),

(i3, 15,4, 1) } (ia,is,i5,16) }

(Example 2)

Figure 4. Venn diagram of the partition on the 6D space i = (i1, ia, i3,14,i5,ig) € {0,1,..., W —1}°
discussed in Section 5.2

Example 2. Under the i.i.d. assumption for the sequence of vector RVs a;, i = 0,1,..W — 1 made in this work,
we have that, for all elements in the set {i € {0,1,...,W —1}%,i; = iy, i3 = iy = i5 = i, i1 # i3}

1)

S;(k,m,n, k' ,m',n') = A?[E{\ax,il 2YE{ |ay, i |*} + E{|ay,;,

eI ((k=m)ir+(n—K'+m' —n")i3)

Z}E{ |ax,i3 2 |ay,i3

= A3 [E{ |ax2YE{|ax|*} + E{|ay |2 E{ |ax|?]ay [2}]e 75 ((mivt (nksm' =),
Tl<k1 ml n/ kl/ m// n/): A'?f)']E{|aX,i1 Z}E{|ax,i3 zla]//ifi

_ A;E{ |ax\2}]E{ |ax|2|ay|2}efj2W”(ki17mi2+ni3fk’i4+m’i5fn’i6).

Z}Eszw"(kil7mi2+ni3fk’i4+m’i57n’i6)

It can be noted that (i) the sixth-order correlation degenerates into a product of marginal high-order moments of
ay and ay and into the cross-polarisation correlation E{|ax|?|ay|?} and (ii) all elements within the set in this
example contribute to the inner summation in (25) with the same set of moments, cross-polarisation correlations,
and products thereof (i.e., E{|ax|*}, E{|ax|*}, E{|ay|*}, andE{|ax|*|ay|?}). This example illustrates how to
break down each instance of the contributions S;(k,m,n, k', m’,n") and T;(k,m,n, k',m’,n"), which will be
then added up in Section 6.

In the remainder of this section, we first partition the six-dimensional space i € {0,1,..., W —1 }6
and list all sets corresponding to nonzero elements of S;(k,m,n, k',m’,n") and T;(k,m,n,k',m’,n’).
As shown in Example 2, this will help highlight the contribution of a specific set in terms of high-order
moments of the transmitted symbols a in (25). Then, we proceed to list all such contributions.

5.2. Set Partitioning

The six-dimensional space i € {0,1,..., W —1 }6 can be partitioned in different subsets, each one
uniquely defined by a partition on the set of indices (i1, i3, i3, is, i5, and ig). Each partition defines its
corresponding subsetin {0,1,..., W — 1}6 as follows: for each index partition, the indices belonging to
the same subset all take the same value, whilst the indices belonging to different subsets have distinct
values. This is schematically illustrated in Figure 4. For example, the subset of {0,1,..., W — 1}6
labelled by the index partition {(iy,i2), (i3,i4), (i5,i¢) } is defined as {i € {0,1,..., W — 1} : i} =
ip, i3 = ia,i5 = ig, i1 # i3 7 i5}. This subset is shown in Figure 4 as part of £;.
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In Figure 4, the families of subsets of {0,1,..., W — 1}6 labelled £;, i = 1,2,...,4, are also
highlighted. These families are characterised by subsets sharing the same cardinality of elements
associated to their corresponding index partition. For example, in £, all index partitions are
characterised by 3 subsets, each one containing 2 indices. As shown in Example 2, this way of
partitioning the set {0,1,..., W — 1} is useful as it separates out the different contributions of (25)
based on the high-order moments of a, as it is highlighted in region £3 of Figure 4.

Since we have 6 different indices, the number of subsets in a partition can vary from 1 to 6. Each of
these subsets can contain a number of elements also ranging from 1 to 6. However, the subsets of
{0,1,...,W — 1}°, where the corresponding index partition has one or more index subsets with only
one element, bring no contribution to (25) and thus can be discarded. This is illustrated in Example 1.
The above class of index partitions then forms a zero contribution region, as shown in Figure 4. Such a
region also includes all subsets where the corresponding index partitions contain 4 or more index
subsets, as at least one of these subsets will have to contain only one element.

As shown in Figure 4, by removing the zero contribution region from {0,1,...,W — 1}, only 4
different families of subsets are left:

i) L1 ={i€f{01,.... W=1}0 iy =iy, i, = ix,, ixg = ixg; K1,K2,---%6 = 1,2,...,6; K1 #
Ky # k3 # Ky 7 K5 7 Ke . This set contains all sets of elements where the indices iy, iy, . . ., ig,
can be grouped in 3 pairs. The indices take up the same value within each pair but different
values across different pairs. It can be found that this set can be partitioned in 15 different
subsets Cl(i),i =1,2,...,15, representing all possible distinct ways of pairing the 7; indices for
k =1,2,...6. These sets are listed in Table Al in Appendix C, where each column shows a
subgroup of indices taking the same value;

() Lo:{i€{0,1,....W—1}5, iy, =iy, = ixy, I, = ixs = ixg; Ki,K2,...,K6 = 1,2,...,6; k1 #
Ky # K3 # Ky # K5 # K¢} which can be broken down in 10 subsets Céi), i =1,2,...,10,
listed in Table A2 in Appendix C. Each index subgroup identifies a triplet of indices assuming
the same value;

(i) L3={i€{0,1,.... W—1}0 iy =iy, ix, = ix, = ixg = ixy; K1,K2,-..,K6 = 1,2,...,6,k1 #
Ky 7# K3 7# K4 # K5 # K¢} which can be partitioned in 15 subsets C?()i), i=1,2,...,15, listed in
Table A3 in Appendix C. Each of the two index subgroups identifies the pair and the quadruple
of indices assuming the same value;

(iv) L4:{ic{0,1,.... W—1}0 i =ip =iz =iy = i5 = ig}.

6. Evaluation of the £-Based Contributions

In this section, we provide three examples for the computation of the contributions of a generic
element in £4, £, and L3. The full list of contributions in these three sets and the ones in £4 are given
in Sections 6.1-6.4.

We label each contribution as M((gh) (k,m,n,k',m',n") and Nfgh) (k,m,n,k',m’,n"), where

'\/léh)(k/nfl/n/kllrnl/n/)é Z Si(k,m,n,k/,m/,n/),
ie(,’é,h>
Néh)(k,m,n,k’,m’,n’)é Y. Ti(k,m,n K, m',n'),

iecé,h>

(29)

and the subsets Céh) are taken from Tables A1-A3 in Appendix C.

Example 3 (Contributions in £1). Mgl), i.e., one of the 2 contributions for the set Cl(l) ={ie{0,1,..., W—
1}6 : i1 = iz, i3 = i4, i5 = i6,i1 7& i3, il ;é i5, i3 75 i5} is given by
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Mgl) = Z Si(k,m,n/k//m,/n/)

iec’f])
3 3 2 5 ) W-1 27 (1 . Py i
= 83 [B {02} +E {Jay P} [E {axay} 2] T e HEmin 3 RO g
i1=0 i3#i
LY i
is7i1,
is#i3
Since
W-1 _
Z oIk — W, for n=pW, pe Z, 1)
k=0 0, elsewhere

we can compute (30) using the following approach:

1. we add up the terms for all i1, i3, i5 values including all cases when iy, i3, and is are equal among each other.
Because of (31), these terms sum up to W3 only when k = m + pW, n = k' + pW, andm’ = n’ + pW,
p € Z; otherwise, they sum to 0;

2. we subtract the terms corresponding to the cases: iy = i3, iy # is, i1 = i5, i1 7 i3, and i3 = i5, i1 # i3.
As an example, the number of terms defined by i1 = i3, i1 # i5 is given by the difference between the
number of all pairs i1,is € {0,1,2,..., W — 1} and the number of terms for iy = is. According to (31),
the former terms sum to W2 only fork —m +n — k' = pW, m' —n' = pW, whereas the latter sum to W
only fork—m+n —k' +m' —n' = pW, with p € Z. In all other cases, they all bring zero contribution.
Similar results are obtained for iy = is, i1 # iz and i3 = is, i1 # i3;

3. we finally subtract the terms iy = i3 = i, which sum to W only fork —m +n — k' +m' —n’ = pW,
p € Z; otherwise, they sum to 0 (see (31)).

Hence, we obtain

MY = AYE{[ax |} + 2B2{|ax P HE{axay } 2 + E{ay | HE{axay } 2 WSk pwn—io—pw O —n—pw
— [W2 Bk msn—kr— p WO — pW + Skt~ — pWOn—k—p W + s n—k — pW Ok —pw)
= 3Wok ! —nt+n—k—pw] — WOk~ +n—k' —pw]
= [E%{|ax[?} + 2E2{|ax[}|E{axa; } 2 + E{|ay [} [E{axa} } 2RSS s pwln—to—pw st —pw
- RgAf(5k7m+nfk’pr‘5m’fn’pr + Ok—mtm! —n —pWOn—k—pw + 5m’7n’+nfk’pr5k7m7pW)
+ ZRSAJZI(Skferm’fn’Jrnfk’pr]'

where we have used Rg = WA £

The same approach can be followed to compute Ngl), which is, thus, given by

1
N & X Ttk m,n Kl ) = B2 {Jax P} B axay} PIRGk—puiB e v
ieC{l)
- RgAf (5k7m+n7k’fpwém/fn’fpw + 5k7m+m’fn’fpw§n7k’fpw + 5m’fn’+n7k’pr5k—m—pW)
+ ZRSA%5k7m+an’+n7k’pr] :

All other contributions in L1 can be computed using the approach used in this example.

Example 4 (Contributions in £5). Mgl), i.e., the contribution for the set Cél) ={ie{0,1,... W— 1}6 :
i =iy =13, iy = i5 = i, i1 # is} is given by
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Mgl) = Z S;(k,m,n,k,m',n)
(1)

ieC,
= A;[E{aml ax,l-l {ax,i4 i Z}E* a iy 2}]
. 32)
Z T (k—m+n)iy Z —j 3 (K +m' —n')iy (
e e
iy 70y
:A;[|E{ax\ax|2}|2—|—|E{ax\ay|2}| Z e~ W (k=m-+n)iy Z 67]— —k'+m'—n )i4‘
ig#0y

Following a similar approach as in Example 3, we compute (32) by

1. adding up the terms for all iy and iy values including all cases when iy and iy are equal to each other.
These terms sum up to W? only whenk —m+n = pW and —k' +m' —n’ = pW, with p € Z; otherwise,
they sum to 0;

2. subtracting the terms corresponding to the cases iy = iy. These terms sum to W only fork —m +n — k' +
m' —n' = pW, p € Z; otherwise, they sum to zero.

We, thus, obtain
1
Mé )= [|E{ax|ax|2}|2 + |E{ax|ay|2}|2] [RzAf‘skfmﬂipr‘sk’—m’+n’—pW - RSAJZC(Sk—m-&-n—k’-&-m’—n’—pW]r

Following the same approach for NS, we have

Ngl)é Z T;(k,m,n,K,m',n)
ieC](1>

= E{ax|ax‘2}}3{1136|ay|2}[RgAf5k—m+n5k’fm’+n’pr - RSAff&kfernfk’ﬂn’fn’pr]-

All other contributions in L, can be computed using the approach used in this example.

Example 5 (Contributions in L3). Mé3), i.e., the contribution for the values in the set C3(3) ={i €
{O,l,...,W—1}6 : il = i4, iz = i3 = i5 = i6, i1 ;é i4, iz 7& i3, i5 7& ié} isgiven by

M§3) = 2 Si(k,m,n, k', m',n')
iecés)

YE{lax, '} + E{lay P YE{|ay, [*lay,;,*}] Z L DIk

=By,
il 1 12 %11

=N E{|ax[*YE{ax[*} + E{|ay[*}E{ |ax|*|ay[*}] Z eI (KK Y o (b =iz (33)
=1 i #iy

As in the Ly case described in Example 4, in L3, each subset is characterized by 2 subgroups of indices. Hence,
the approach followed to compute (33) is identical to (32) and gives

3
M) = [E{Jax|* VE{|ax "} + E{ |ax2lay[2YE{ay P} [R2A 6k ko pw O s —pw

2
- RSAf5k7m+n7k’+m’fn’pr]'

Similarly,

3
Ng )= E{axa;}E{a;any|2}[RgAfékfk’7pW5m7n7m’+n’pr - RSA}5k7m+n7k’+m’fn’pr]‘
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All other contributions in L3 can be computed using the approach used in this example.

As shown in the above examples, each contribution M éh) and N éh) is nonzero only for a specific

set of (k,m,n, k', m’,n’") values which is spanned by p € Z. However, the terms (k,m,n,k',m’,n")
arising for all p # 0 bring a total contribution to (25) that can be considered negligible. This is due
to our assumption on P(f) being strictly band-limited (see Section 3.1) and to the magnitude of the
functions product ﬂkrm,nU;{k,, - (see definitions (16) and (22)). Thus, in the computations performed in
the following subsections, we will restrict ourselves to the case p = 0.

6.1. Contributions in L1
(

In this section, the contributions M(i), Nli) fori =1,2,...,15 are computed following Example 3.
These contributions are listed in Table 1.

Table 1. List of contributions Mgh) and Ngh) fori=1,2,...,15.

h Corr. Terms in M§h) Corr. Terms in Ngh) Delta Products

E3{|ac 2} R3Sk Ot Omr—n — REDf (S~ St msn—k
1 X E{|u |2}|]E{Ll Il*}‘z +4. _k/(Sk_ I /+(5k_ [ —k’)

+|E{a,a* 2Eaz X xty n m—+m'—n mYm’—n'+n

| { X y}‘ {| y‘ } +2R5A%§k—m+n—k’+m’—n’
R38O Oy — REAF (S 4y O .

E 2V {212 s Ok—mOn+m’' Ok’ +n s Bk +n m-+n+m

2 {|11x| }| {le}‘ E{|ax|2}|IE{axay}|2 +§n+m’5k7m7k’fn’+5k7m5n7k’+m’fn’)

2 2
+|E{axay }[“E{|ay|*} +2RSA%5k7m+n7k,+m/,n/

]E3{|a ‘2} Rg&kfmfsnfn"sk’fm’ - RgAf(‘sk’fm’(skfernfn’
3 +E{|; |2}E2{|a |2} Ez“”x‘z}E“aﬂz} Jr571—n"sk—m—kH-m’ + 5k—m‘5n—n’—k’+m’)
* Y Jr2RsA?"Sk—m+n—k’+m’—n’

2 2712 Rgék-‘rném-&-k"sm’fn’ - RgAf(ém’fn’ék-&-n—m—k’
B{|ax |} [E{az }| 21k x
4 -‘,—E{a;ﬂ }E{a*a }E*{az} ]E{llx}]E {ﬂxay}E{axay} +(sm+k’§k+n+m’fn’ + (sk+n5m+k’fm’+n’)
Y x*y Y +2R5Af5k7m+n7k’+m’—n’
E{|a:[2}[E{a2} R30cindm—m O+ = REAf G-t St
5 \E{; a }‘ZEEW |2} E{“%}E* {ﬁxﬂy}E{a;‘Zy} +5m—m’2‘5k+n7k’fn’ + 5k+n5m7m’+k’+n’)
X%y Yy +2R5Af‘skfm+n7k’+m’fn’
E{|a |2}|E{a2}\2 . ) R§5k+n5n1+n’5k’—m’ - RgAf(5k’—m’5k+n—m—n’
x
6 +|E{axay}|2ﬁ{|ay|2} |E{ax}| IE{|ay| } 0t Oktn—ki+m' + Okt Okl —m! ')

+2RSA}5k,m K

R36k—rOm—nbpr—w — RID £ (S — Sk —mipn

B { lax|?}
7 E{|a 2 E{ayal 2 40— (Sk,kr I ’+5k7k’5 —n—m' /)
HEmaPE(a ) FU I Ko
B3 {|ax ) R3Sk O n—y — REDf (8 Skt 4w
8 * E{|ax|*}|E{aya’}|? FOm—m Okt —n + Ok—kOrm—n—m 40 )
SE{JaYE ) B 5 AN
E{|a |2}|E{a2}\2 Rgfsk—k"sm+n"sn+m’ - RgAf(éner’ék—m—k’—n’
9 Ex 2]}%5 5 E* {g%}E{axay}]E{axa;} +(5m+n’5k+nfk’+m’ + 5k7k’5m7717m’+n’)
+| {ﬂxﬂyH {l‘l]/|} +2RSA}5k7m+n7k’+m’fn’
R385 Om—nOpr sy — RZD ¢ (S0 /
Efla.|2V|Efa21]|2 s Ck+m'Om—nCk'+n s 2 f\CK +n' Ck—m~+n+m
Xy Y Y +2R5Af5k—m+n—k’+m’—n’
R38Okt Ot — REDF (8t Okt
]E{|ax|2}|IE{a%}\2 ) ) s Ok+m' Om+k' On—n sBf\On—n m m
1 +E{|ux|2}|E{u§}|2 E{]ax| }|E{axﬂy}| FO 4k Oktntm' =+ Ok Om—ntk ')

+2Rs A’2f5k7m+n7k’+m’fn/
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Corr. Terms in

Mih) Corr. Terms in Nyl)

Delta Products

E{|ay[}E{a3 }|?

R3Sk O On—r — RED £ (8o Oy —w

12 E*{a3}E{axay}E{axa;} +0minOkin—tm + OkrmOm—nik+n')
_HE* ava YELa.a*\E a2 x Y Y n m m'Ym—n n
{ X ]/} { X y} { y} +2RSA%§k7m+n7k'+m’fn/
]E3{|a ‘2} Rg&k*ﬂ’ém*ﬂ(sk’fm’ - R?Af((sk’fm’(skfernfn/
13 * E?{|ax|>}E{|ay[*} +6m—nOk—k ! —nt + Ok Okl —mt )
+Eua*2Eu2 x Y +m'—n n'Ym—n+k'—m
| { X y}‘ {| y‘ } +2R5A%5k,m+n,k/+m/7n/
E{|ax|2}|IE{a2}\2 Rg‘skfn"sm+k’5n+m’ - RgAf(5n+m’5k7m7k’fn’
14 +E{aya }E{;a*a VE*{a2} E{|”JC|2}|E{”xﬂy}|2 +(sm+k’25k+n+m’—n’ + Ok Om— ek —m')
Y 4 Yy +2R5Af§k7m+n7k’+m’fn’
E3{|a ‘2} Rgfskfn"smfm’(snfk’ - RzAf((Snfk’(skferm’fn’
x 2 * 2 ! ! U U -/ !
15 +|E{uxa;}\2E{|uy\2} ]E{|ax| }|E{axﬂy}‘ +0m—m Okt n—k—n + Ok—n Om—ntk'—m )

+2Rs Ajzrfskfernfk’er’fn’

6.2. Contributions in L,

() )

Following Example 4, the contributions M;", N5, h = 1,2,...,10, are computed and listed in Table 2.

Table 2. List of contributions Méh) and Néh) fori=1,2,...,10.

h Corr. Terms in Méh) Corr. Terms in Ngh) Delta Products

B S B AT
LT B T Vo i
5 [Blaslas) P+ [Efasday2) 2 E(e2a;) P ey
6 [B(+ [E{ax) E{ada, ) fﬁfé‘;}{"jﬁ"j”ﬁ o
7 [E{axax?}? + E{|ay2ay }E{a}|ay?}  E{ar|ar|2}E{a%|ay[?} f?f%—mjmi;m
5 Bl PP Bl P Bl) Bl PIE(eR) SRl
e I I v/t
10 [E{arlax?}? + [E{aza2}? IE{|ay[2a,} 12 REA Gt O

2
_RsAf‘Skan»nfk’er’fn’
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6.3. Contributions in L3
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ted in

Following Example 5, the contributions My”,Ny”,h = 1,2,...,15, are computed and lis
Table 3.
. o (h) n . .
Table 3. List of contributions My’ and N5 fori =1,2,...,15.
h Corr. Terms in Mgh) Corr. Terms in N§h) Delta Products
R2A (8410t — 1t
1 E{|ay|*YE{|ax|?} + E{|ay|?|ay |2 YE{|ay |2}  E{|ac|*YE{|ax|?|ay | s Ck—mOn—K'tm'—n
R e (e e L Y B/ P
R2A (8 nOomrkd— it ot?
2 2 2 2 2\ 42 2 s fCk+nOm-4k' —m'+n
2 B @ PR+ Blon E mala ) B@E @l S
RZA 81 1Byt
3 E 4E 2 E 2 ZE 2 E FVRS g% 2 sBfCk—k Om—n—m'+n
{lax*}E{|ax[*} + E{|ax|*|ay|*}E{|ay|*} ~ E{axaj}E{ajay|ax|"} N
4 E{a}|ay[PYE{a}} + E*{|a[2a2}E{a2} E{axa,}E*{axay|a;[?} REA Ottt
x|*x x x| %y Y Xty XEy =X 7R5A%5k—m+n—k’+m’—n’
RZA 81—kt —
4 2 * * 2 2 2 2 s B fCk—n'%m—n+k'—m
5 E{lax[*}E{|ax[*} + E{afay}E{axa;lay[*}  E{|ax|*YE{|ax|*|ay[*} _RSA%(Skiernik%an,
R2A (81— 1O —
4 2 * * 2 2 2 2 sBfOm—nCk—k'+m'—n
6  E{fax[*}E{|ax|*} + E{axay}E{azay|ay|*}  E{|ax|*}E{|ax|*|ay[*} *RsAjzr5k—m+n—k’+m’—n/
R2A 614 1 Okt -t
7 E{ﬂchWx ‘Z}E*{ﬂ%} + E{|ﬂx|2ﬂ§}E*{ﬂ§} E*{axay}E{ﬂxay|ﬂx|2} _sRszJz::lSkfernr:kthrm::nr
RZA (8,6 -
8 E g 2 E 2 2R 2 Efa* E * 2 sBfOm—m'Ck+n—k'—n
{lax*}E{|ax|*} + E{|ax|[ay|*}E{|ay|*}  E{aay }E{axay|ax|"} R8s
RZA 84 -
2 2 2 * 2 2 2 2 sBfOm+n'Ck+n—k'+m
9 B PIE )+ B o Elnala ) BB S
RZA (5, 16 -
10 E 4E 2 E KV S g 2 E KV g 2 sBfOn—k'Ck—m+m'—n
e Y B e O B P
R2A 64 Okt
e IR AU s G S A
R2A 46 1Ok
12 E{|ax[*}E{[ax|*} + E{|ax*}E{|ay[*} E{jax[*}E{]ax?lay [} % ’;2"5” e
$B fCk—m+n—k'+m'—n'
R2A (84—t Ok pm—nat
13 E{|a|*YE{|ax|?} + E{|ay|?|ay |2 E{|ay |2 E{|a,|*YE{|a, |2 s S f K —m! Ck—mAn—n
{Jax*YE arl2} + E{laxPlay PYE{|ay ) E{Jax*}E{Jay?} Cean
R2A¢6p 40 .
2 2V 42 * 2 * 2 s B fOk'+n' Ck—m~+n+m
14 E{aglax|*}E*{az} + E*{aray }E{ayay|ay|*} E*{aray}E{aray,|ax|"} *RsAjzr5k—m+n—k’+m’—n'
R2A (8, Ok mn—
15 Ef|ax|[*}E{|ax[?} + E{ajay }E{araj|ay?}  E{aja,}E{ara)|a,|? s oS Ck—mtn

2
—RoA2Sk k-4t -
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6.4. Contributions in L4

Since L4 comprises a single subset characterised by the single subgroup of all 6 indices
(see Section 5.2), only one pair of contributions Mg), Nil) exists, and it is given by
Mil) £ Y Si(k,m,n K, m',n)
iecf)
W-1

Y [E{|ax[®} + E{|ay[?|a,|[*}]e W k—m)i

11 O
[E{|ax|°} + E{|“JC|2|ay|4}]RsAjzf5k—m+n—k'+m’—n'/
1
NG 2 Y ik mm K ') = B ax|*ay 2} RaA28 s st

iecf)

lI>

7. Sum of All Contributions

In Section 5, we evaluated all contributions Mé(zh) and N éh) to the PSD in (25). In particular,
from (25)-(27), and (29), we have

8\ 2 s @ ' 4 H(Q) ) 4 H() )
Sx(f,Ns, L) = (9) v Aflz §(f —iny) o 2 PZMZlMg +2Re{PZ Y Ng } ,
1=—00 n)eS, 8= =
(K )€

(34)

where H(g) is the number of subsets in the partitions of Eg, g =1,2,3,4, described in Section 5.2
(H(g) =15,10,15,1 for g = 1,2,3,4, resp.) and

A *
P = P ! Mem,n it (35)

In this section, we evaluate Z . Zh g ) and Zg 1 ZH(g g ") as well as compact the resulting
expression as much as possible

Before we proceed with computing the abovementioned summation, we remove the Kronecker
deltas in Méh) and Néh) corresponding to contributions in the following subspaces: (i) k = m; (i) n = m;
iii) ¥ = m’; and iv) n’ = m’. These contributions correspond to so-called bias terms, i.e., they arise
from a component of the field E;(f,z) which is fully correlated with the transmitted field Ey(t,0).
This component, after CDC and MF, only results in a deterministic and static complex scaling of the
received constellation, which is typically compensated at the receiver even in the presence of other
noise sources in the system. Thus, it does not contribute to the power of the additive zero-mean
interference component that we observe at the output of the MF + sampling stage once the received
constellation is synchronised (in phase and amplitude) with the transmitted one. A more detailed
discussion on these bias terms can be found in [8] (Appendix A), [14] (Appendix C). Moreover,
the component 6,41,/ 4y IN Méh) and N éh) is also removed as it only gives nonzero contribution
to the PSD for frequency f = iA; = 0; hence, its effect on the total NLI variance vanishes as we let
Af — 0 (see Section 8). A total of 23 terms from the last columns of Tables 1-3 are thus removed.
The remaining contributions are given in Table A4 in Appendix D.

We now compact the contributions in Table A4 by grouping the Kronecker delta products based
on each correlation term they multiply. We use three pairs of curly brackets {-} to denote the terms
multiplying R3, R%, and R;. The list of all Kronecker delta products multiplying each correlation
term is shown in Table 4. The correlation terms are divided into intra-polarisation (expectations
containing only a,) and cross-polarisation terms (expectations containing both a, and a,). Moreover,
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the correlations are categorised based on the specific contribution (either M or N) in (34) to which
they belong.

As it can be observed in Table 4, each correlation term is associated with different delta functions.
To compact these terms, we exploit a property introduced in the following proposition.

Proposition 2. Let Dy (k,m,n, k', m’,n") and Dy(k,m,n,k',m’,n") be two Kronecker delta products of the
kind shown in Table 4. If
Dl (k/ m,n, k,/ mlr 7’1/) = DZ(”/ m, kr 7’1/, m,r k,)/ (36)

then

/ !/ !
Z 7)k/m,n,k/,m’,n’’7k,m,n’7I>ck’,m’,n/D 1(k,m,n, k', m’,n")
(k;mn)eS;
(K m' n")eS;

— Z Pk,m,n,k’,m’,n’ﬂk,m,nnl;k’,m’,n’D2 (k, m,n, k” m’/ n’) .
(k,mn)eS;
(K',m' n")eS;

(37)

This property also holds when applying the transformations k = n, n = k, k' = n’, and n' = k', individually.
Proof. See Appendix E. [J

The property in (37) allows us to group many of the Kronecker function products in Table 4 under
a single term. Namely, the Kronecker delta products in Table 4 can be grouped in subsets that are
closed to property (36), since they all result in the same value of summations in (37). In particular,
14 distinct subsets can be identified for the list of Kronecker delta products in Table 4. We label these
subsets, which are shown in Table 5,as D, for[ = 1,2,...,14.

Summing all the contributions in Table 4, using Proposition 2 for the elements in the subsets listed
in Table 4, and finally ordering by Kronecker delta product, we obtain from (34)

Su(f, Ny Ls) = (8) Par Y o —iny)

i=—o0
Y, [RAF[(a1P +2Re{aiP})6k k0 mOn—w + (32P + 2Re{a2P )k kSO

(kmn)eSi

(K'm' ') €S;

+ (a3P + 2Re{a3P} )0k nOp—mr O s | + REAF[(b1P + 2Re{biP}) 6k py—ioSppmr

+ (b2P +2Re{byP}) &kt + (D3P + 2Re{b5P}) 0k Oyt 1

+ (b4P+2Re{b4p})‘sk+n+m’5m+k’ n (C1P+2R9{C1P})‘Sk+n m+k' —m' +n’

+ (coP +2Re{chP}) k16 pm—n—misn + (3P + 2Re{c5P }) Skt Om—ntkrn’

+ (caP +2Re{ciP}) 6Oy n—t—w + (3P +2Re{C5P} )0y 10kt '

+ (ciP 4+ 2Re{ctP}) 0k Sk —mutnm | +R5Af(d1P+2Re{d Pk mn—krsm—n' ],

(38)

where the coefficients multiplying P are listed in Table A5 in Appendix F and where coset leaders in
Table 5 have been used.
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Table 4. List of Kronecker delta contributions ordered by the corresponding high-order moment or
correlation of the transmitted modulation format.

Correlation Terms

Kronecker Delta Products

Intra-Polarisation Terms

h
n m{"

E3{|”X|2}

{5k—k’5m7m"sn7n’r(sk—n’émfm"snfk’}r{_Z‘sn—k"skferm’—n’r —20n—w Ok—m—k+m's
=20k Om—n—m'n's _25m—m’§k+n7k’fn’/ _2‘5k7n"5m7n+k’7m’}r{125k7m+n7k’+m/fn’}

E{ |ax|*}E{a} }?

{5k+n5m—m’5k’+n’/§k7k’ 5m+n’§n+m’r 5k+m/ 5m+k’ 5n—n’15k+m’§m+n"5n7k’r
5k7n’5m+k’(5n+m’ }/{*5n7k’5k7m+m/fn’/ 73(5m+k’§k+n+m’fn’r 735k+n5m+k’7m’+n’
735k’+n'5k+n—m+m’r 75nz—m’5k+n—k’—n’/ 73‘5m+n’5k+n—k’+m’r 735n+m’5k—m—k’—n’/
*5k—k’5m—n—m’+ﬂ’f 735k+m’5m—n+k’+n’/ 75n—n"5k—m—k’+m'r 7‘Sk—n’5m—n+k'—m’/}
{18(5k—m+n—k’+m’—n’}

‘E{ax|ax‘2}|2 B Ak—m—kOnm' —n s Sk— st Sn—kr s Ok—mm— Ok -t » Ok ik Om—mt! 475
5k+n—n’5m+k’—m’r‘sk—k’+m’5m7n+n’r5k—k’—n’5mfn+m’/5k+m’—n’5m—n+k’}/
{_g‘sk—nwnfk%m’—n’}

UE{”?(} ‘2 {t {‘sk+n+m’5m+k’+n’ }, {_5k7m+n7k’+m’fn/}

E{ |ax|*}E{|ax|*}

{, {(sk—k’(sm—n—murn’r ‘Sk—n’(sm—n+k’—m’r 5m—m"5k+n—k’—n’r ‘Sn—k’ 5k—m+m’—n’r
‘Snfn"sk—m—k’ﬁ»m’ }r {_95k—m+n—k’+m’fn’}

E*{a} |ax|*}E{a3}

{1, {‘Sk+n5m+k’fm’+n’r <Sk+m’5mfn+k’+n’r 5n+m/ Ok—m—k—w }/
{_35k—m+n7k’+m’fn’}

E{az|ay[}E* {a3}

{1, {‘Sm+k’5k7n+m’fn’/ 5m+n’§k+n7k’+m’r ‘Sk’+n’5k7m+n+m’ }, {_35k7m+n7k’+m’fn’}

E{lax|°}

{}/ {}r {‘5k77n+n7k’+m’fn’}

Cross-polarisation terms

h
n m{"

Ef lax|*YE?{]ay|*}

{5k—k"sm7m’5n7n’ }/ {_Zénfn"sk—m—kurm’/ _5mfm"5k+n—k’—n’/ _(sk—k"smfnfmurn/ }/
{45k7m+n7k’+m’fn’}

E{ |ax|*}E{aj}?

{§k+m/5m+k’5n—n’ }r {7§n—n'5k7m7k’+m// 75m+k’5k+n+m’fn’/ 7§k+m’5m774+k’+n’}/
{2§k—ﬂz+n—k’+m’—n'}

E{|ax|*}E{|ay|*}

{1, {5n7n’5k7m7k’+m’ }/ {_‘skfmwtnfk’wtm’fn’ }

E{|ax|?a;}E{ay|ay|*}
E{|ax|?|ay[*}E{|ay|*}
E{uxay}IE*{axay|ax\2}

{t {5k7m+m’5117k’711’/ 5k7k’+m’§m—n+n'}/ {725k7m+117k’+m’7n’}

{4 {(sk—k"sm—n—murn’/ 5m—m’5k+n—k’—n' }r {745k—m+n—k’+m’—n'}

{, {fsk+m’5m—n+k’+n’: ‘5m+k’(5k—n+m’—n’r 5;1+m’5k—m—k’—n’r ‘5k’+n"sk—m+n+m’ }r
{_4‘5k7m+n7k’+m’fn’}

E*{MX ‘Zaﬁ}E{ai} {}r {‘5k+m’5mfn+k’+n’ }/ {_5k—m+n—k’+m’—n’}
E{|ax[?a}}E* {a5}
E{jax[*|ay[*}

|E{axay}PE{|ay[*}

{4 {5m+k"5k7n+m’fn’ }r {7‘5k7m+n7k’+m’fn’}

{14 {‘sk—m+n7k’+m’f11’}

{5;{,”/5,71_"1/5”,}(/ }r {725n7k’5k7m+m’711’/ 725k7n’5mfn+k’fm’r —Ok—kOm—n—m'+n's
*‘5m7m"sk+n—k’—n'}/ {8‘5k—m+n—k’+m’—n’}

2
E{uxay}E{a;uy}E* {ay} {(5k—n’5m+k’5n+m’ }r {_25m+k’5k+n+m’—n’r _5k+n5m+k’—m’+n’r _5n+m’5k—m—k’—n’r

_5k—n’5mfn+k’—m’ }' {45k—m+nfk’+m’fn’}

2
E*{axuy}E{axa; }E{“y} {5k+m/‘5m+n’5n7k’ }, {_2‘5k+m’5m7n+k’+n’/ _‘5k’+n’5k7m+n+m’/ _énfk’ékfﬂwm’fn’/
*(5m+n’5k+n—k’+m' }/ {4‘5k—m+n—k’+m’—n’}

2 2 Y
‘E{axay}‘ ]E{ ‘ay| } {‘5k+n(smfm"5k’+n’/ Jk—k’5m+n’5n+m’}/ {72‘5k’+n’5k—m+n+m’r 720k+n5m—m/+k/+n’r
=20y 1 Ok——k' —n» _25m+n"5k+n—k’+m’r _‘smfm’5k+n—k’—n’r —Ok—k Om—n—m'+n' }r

{85k—m+n—k’+m’—n’ }

‘E{”ﬂ”y‘z}‘z
[E{axaj}|?
[E{azaj}|?

{1, {‘Sk—m—;z"sn—k’Jrnz’r <SkJrn—k"S'm7m’+n’/ 5k—k’—n’5m7n+m’ }/ {_4‘5k—m+n—k’+m’—n’}

{t {‘Sk+n+m"sm+k’+n’ }, {_‘skfnwnfk’#rm’fn/ }

{t {5k+m’—n/5m—n+k’ }r {7‘5k—m+n—k’+m’—n’}
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Table 4. Cont.

Correlation Terms Kronecker Delta Products

()
In Ng
2 2
E{|llx| }|E{axa;}‘ {5k—k’5m7m’(5n7n’r ‘sk—n"smfm"sn—k’}r {_Zén—k"sk—m+m’—n’r _2‘5k—k"sm7n7m’+n’r
_2‘5n17r71’5k+nfk’7n’r _5n771’5k—m—k’+m’/ _‘Skfn"smfwrk’fm’}/ {S‘Skfernkarm’fn’}

2 2 N
IE{|"19f| HE{”Xay}' {5k+m/5m+k’5n—n’/§k7n’5m+k’5n+m'}/ {_25k’+n’5k7m+n+m’/ _20n+m/5~k7m7k’7n’/
725k+m’5mfn+k’+n’r 725m+k’5k+n+m’fn’/ 75n—n’§k7mfk’+m’r 7‘5k7n">m7n+k’fm’ }r
{85k7m+nfk’+m’fn’}~

E2{|ﬂx|2}E{‘“y|2} A =0n—nOk—m—to s —Ok—Om—nskt—m ¥+ {40k —mtn—k ! —n }
E{|ﬂx|z}E{|ax|2\‘1y|2} {, {‘sk—n"smfn+k’—m’r‘5n7n’(5k—m7k’+m’}r {_45k7m+n—k’+m’fn’}
E{|ax[*}E{|a,|*} 0 A= k—mtn—krrm—w }

E{axlax*}EB{axlay*} {1, 0 {—Okmminkrtm—mw }

E{aj|ay[YE{|axay} 1}, {Ok—m—kOnrm s OkcnnOmki—m b { =26k —min—kr-tmi—m' }

]E{ll; ‘ux |2}E{ux|ay ‘2} {}/ {‘Skfm—n"snfkurm’r <SkJrnfn"Serk’fm’}r {_25k7m+n7k’+m’fn’}

HE{ ‘ax |2”y} ‘2 f{}r {‘Sk—m—k’(snﬂn’fn’/fkfnwm"sn—k’—n’/ ‘Sk—k’—n"smfner’/ 5k+m’—n"5m7n+k’ }/
_4‘5k7m+117k’+m’7n’

E{al‘a;}E{a;a}/‘aﬁf‘z} {1, {5k7k’5m—n—m’+n’/ Jm—m'§k+n7k’fn’/ 5n7k’§k7m+m’771’ }r {74§k7m+n7k’+m’771’}

E{|“X|4‘”y|2} {}/ {}/ {(5k7;n+n7k’+m’fn’}

E{uazc}E*{uxay}E{”;ay} {5k+n§m—m/5k/+n’ }, {_2‘5k+n§m+k’fm’+n’/ _5m+k’§k+n+m’fn’/ _‘Sk’+n’5k+n7m+m’/
*Jm—m'§k+n7k’fn’ }/ {45k7m+117k/+m’7n’

E*{QE}E{”xay}E{“xa;} {5k—k'5m+n"5n+m’/ 5k+m"5m+n’5n7k’}/ {725m+n"5k+n7k’+m'f —Sntm Ok—m—k'—n'
_b‘k—k"smfnfm%n’r _5n—k’5k—m+m’—n’r _5k+m"5m—n+k’+n’}r {45k—m+n—k’+m’—n’}

UE{”%} ‘2E{ |u]/|2} {}/ {_(sm+n’5k+n7k’+m’r _5k+n‘5m+k’fm’+n’}r {25k7m+n7k’+m’fn’}
‘E{a%a;ﬂz {}r {‘Sk+n—k"smfm’+n’}/ {_‘sk—ern—kUrm’—n/}
‘]E{aazcay} ‘2 { {5k+n+m’5m+k’+n’ }r {7‘5k7m+n7k’+m’fn’}

E{“E}E*{ﬂﬂ”ﬂz} 4 Okt nOmet ket —m s Ot Okpn—k 4 0 4 =20k~ k' pmt —mr
E{axay,}E*{axay|ay|*} |
E*{axay}]E{axay|ay\2} {
E{a;”y}E{”xﬂ;\aﬂz} U {0k Om—ntir—mr }o A = Ok—mn—krm—n }

E{al‘a;}E{a;a}/‘aﬂz} {}r {5n—k’§k7m+m’fn’ }r {7‘5k7m+n7k’+m’fn’}

{‘sm+n/5k+n—k’+m’l 5k’+n"5k—m+n+m’ }r {_25k—m+n—k’+m’—n’}

1
1
Y A0k nOmakr—mr s O Ok~ 1 { =20kt~ }
b
|

Table 5. Subsets of Kronecker delta products which are closed to property (36). The terms in boldface
are the ones used to group all other elements within each set.

Set Name Set Elements

Dy Ok—k' Om—m On—n', Ok — /O —m On—k/

D Oke— i Ot S s Skt Otk Oni— ' O Ot Ok Okt Oy o Oy
Ds Sttn Ot Ok 4

Dy Ok—m—k Ontm’ —n' s Ok—m—n'Oni—k'+-m» Ok’ — 1 O — k' Ok—k' 1 Om—n+0
Ds Ok—m+m On—k' —u’» Ok—k' — 'O —n—nm'

Ds 5k+n7k’ 5m—m’+n’r‘sk+n—n"5m+k’—m’

Dy Oktn-tm' Om-+k/+u’

Ds 5k+n5m+k’— m’ +n'

Dy Ok—k' Om—n—m'+n' Ok—' Om—n-+k' —m'» Onn—k' Ok—m-+am' — ' Ort—1 Ok —m— k' -0/
D]O 5k+m’5m7n+k'+n’/ ‘5;1+m’5k—m—k’—n’

Dn Sin—m Okn—k—n’

D12 ‘sm+k' 5k+n+m’—n’r ‘5111+n/5k+n—k’+m’

DlS 5k’+n’ 5k—m+n+m’

Dy Ok—mtn—k'+m —n'
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Equation (38) can be further manipulated using the following proposition.

Proposition 3. Let Dy (k,m,n, k', m’,n") and Dy(k,m,n,k',m’,n") be two Kronecker delta products of the
kind shown in the second column of Table 4. If Dy (k,m, n, k', m’,n") = Dy (k',m’,n’, k, m,n), then

I
Y Py, gt M n i gt D1 (1, Kl ')
(k,m,n)eS;
(K'm' n")eS;

A
= Z Pk,m,n,k’,m’,n’nk,m,n Wlt’,m’,n’DZ (k, m,n, k', m,n ) . (39)
(k,m,n)eS;
(K m' n')eS;

Proof. See Appendix G. O

Corollary 1. Let D(k,m,n, k', m’,n") be a Kronecker delta product for which the following property holds
D(k,m,n,k',m',n')y = D(K',m',n',k,m,n),

Il ol
then '}, (k,m,n)€S; Pk,m,n,k’,m’,n’Uk,m,n’?]t/,m/,n/D(k/ m,n,k',m',n") € R.
(K'm' n")eS;

Proof. This corollary directly follows from Proposition 3 when D1 = D = D. O

Based on Corollary 1, we obtain from (38)

Sx(f, Ns,Ls) = (8) VAf 2 8(f —iAy)

i=—oco
Y. [RA}[(a1 +2Re{a1})Po iy 0w + (a2 +2Re{ay})Pox_pr6pn i Opsm
(k,mn)eS;
(K',m' n")eS;
+ (a3 + 2Re{a3} )Py GOt ] + REAT[ (b1 + 2Re{b] })PEk 16—
- (baP + 2Re{5 P}y G ot + (B3P + 2Re{BAP NGk 010t
+ (bg + 2Re{by })PStt O + (1P +2Re{ P }) Skt sk 4
+ (c2 +2Re{cy} )PS0 nmr iy + (3P +2Re{c5P ) Sk 1
+ (ca +2Re{cy } )PSOk yn——w + (5P +2Re{csP )6 ik kpnrm
+ (c6P +2Re{csP}) ok 4w Sk ym] + RSAf(dl +2Re{d1 })PSt s inkrtm ]

where we have used the fact that the sets D; fori = 1,2,3,4,7,9,11, 14, are closed to the transformation
in Proposition 3. Furthermore, we notice that the set pairs (Ds, Dg ), (Dg, D13), and (D1, D12 ) represent
pairs of complementary sets under the transformation in Corollary 1; hence, their elements can be
grouped. Consequently,

Sx(f,Ns, Ls) = <9> VAs 2 5(f —ily)

i=—o00

: {REAJZ: [(P1Q1 + D2Q2 + P3Q3] + REAJ‘O} [¥1Q4 + 2Re{¥2Q5 + ¥3Q5 } + ¥4Qe (40)

+2Re{A1Q7 + A2Q7} + A3Qs +2Re{AsQ9 + A5Q5 } + AsQuo] + RsAij:ElQll} ,
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where
Q2 PDO=YP 1=12..,11, (41)
(k,m,n)eS; Tri
(K m' n')eS;
the coefficients ®;,i =1,2,3,¥;,i =1,...,4, A;,i =1, ...,6, and Z4 in (40) are given in Table 6; the sets
S; are defined in (19); and DU is the coset leaders highlighted in boldface in Table 5 and listed in
Table 7 with their corresponding set D. Finally, the sets 7; ; are defined as

T & {(k,mn kK, m' n')€{0,1,.... W—1}°: (k,m,n) € S;, (K,m',n') € S, p® = 1}.

Note how, in the second equality of (41), we have accounted for the multiplication by D) by restricting
the summation set to 7 ;.

Table 6. Correlation coefficients in (40): the values of aj, a}, by, b}, ... d] are given in Table A5.

Name Value Name Value
(o} a; +2Re{a)} Aq a1+
o ay +2Re{a)} Ay <
D5 a3 +2Re{a}} A ¢ +2Re{ch}
Y, bq +2Re{b£} Ay c3 +Cé
Y, by + b/2 As Cé
T3 b/3 A6 cq + 2 Re{cﬁl}
Yy by +2Re{b) } o di +2Re{d]}

Table 7. Delta products DU in the Q; terms, [ = 1,2,...,11, in (41) with their corresponding D set in

Table 5.
! p® Set D
1 Sk pOm—mOn—w D,
2 ki Omrn Ontm D,
3 OktnOm-mOtw D3
4 Ok mwOutm—w Dy
5 Ok—m-+m' On—k'—n’ Ds
6 Oftntm Omk+n Dy
7 OktnOmik—m+n  Ds
8 Ok kOm—n—m Dy
9 OktmOm—nik+w  Dio
10 dm—mOkin—r—n  DPn
11 Sk—min—t+m—n  Dia

8. Final Result

Equation (40) expresses the NLI PSD for a periodic signal of period T = 1/Ay as a function
of the statistical moments and cross-polarisation correlations of a generic 4D modulation format.
To generalise this result to aperiodic signals, we take the same approach in [8,17], i.e., we let the period
T go to infinity or, equivalently, Ar — 0 (see Figure 3).

The limit of (40) for Ay — 01is a limit of a distribution (a Dirac’s delta comb) which is parametric
in Ay. To rigorously evaluate such a limit, we use Lemma 1 and Theorem 2 presented in the following.
In particular, Theorem 2 presents the key result of this work.
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Lemma 1 (Dimensionality of the sets 7; ;). The sets T;;, for | =1,2,3, for | = 4,...,10, and for | = 11 have
dimensionalities 2—4, respectively, Vi € 7.

Proof. See Appendix H. [

Theorem 2 (Limit of the distribution Sy (f, Ns, Ls)). For a generic aperiodic transmitted signal and a fibre
transmission system like the one in Figure 2 and under the following assumptions:

o  iid. sequence of zero-mean input DP-4D symbols a, for n € Z (see Section 3.1)
e rectangular (or quasi-rectangular) spectrum of the transmitted pulse p(t) (see Section 3.1)
o first-order RP framework for the solution of the Manakov equation in (8)

the NLI PSD Sy (f, Ns, Ls) = limAfHO Sx(f, Ns, Ls), where Sy (f, Ns, Ls) is given in (40), is

2
S(f, N L) = (5 ) 7[R (@00 () + @aaf) + @) + R (H104()

+2Re{¥2oXs5(f) + ¥aX5(f)} + ¥aXe(f) + 2Re{A1X7(f) + A2X7(f)} + AsXs(f)
+2Re{AyXo(f) + AsXg(f)} + AeX10(f)) + RsE1X11(f)],

(42)

where the coefficients ®;, 1 = 1,2,3, ¥;, i =1,2,...,4, A;, i = 1,2,...,6, and Eq as well as the integrals
Xi(f),i=1,2,...,11, are given in Table 8. As discussed at the end of Section 4, S, (f) can be obtained applying
the transformation x — y, y — x to (42).

The NLI power vector i can be obtained from the PSDs in x and y as

) o0 T
Ener = [0 Ryl = [/OO Sx(f, Ns/Ls)‘P(f)|2dfr[m Sy(f,Ns, Ls)|P(F)Idf| ,  (43)

where P(f) is the transmitted pulse spectrum.

Proof. See Appendix . [

The results in (42) and (43) generalise the formulas presented in [9] for PM-2D modulation formats.
In particular, assuming that

ay and ay, are statistically independent, which leads to, e.g., E{axa,} = E{ay}E{a,} =0,
2. ayand ay are identically distributed, which, for example, leads to E{|a|?} £ E{|a.|?} = E{|a,|?},
3. [E{a?} = E{a}} = E{aﬁ} = E{ai} = 0, which applies, for instance, to distributions with a
certain degree of symmetry,

it can be seen that (42) reduces to

2
S(f, N L) = (5 ) PRI (1) + RA(S) + Actiof) + ReErKn (1),

with
@) = 3E*{[al*},
Az = SE{|a[*}E{|a|*} — 10E°{|a]*},
Ag = E{|a[*}E{|a*} - 2E°{|a*},
E1 = E{|a|°} — 9E{|a[*}E{|a*} + 12E°{|a|},

which matches the formulation given in [9] (Equation (41)).
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Table 8. Table of high-order moments, correlation coefficients, and integrals appearing in (42).
The function #(f1, f2, f) is defined in (12).

Name

Value

Correlation coefficients

D 2E3{|ax*} +4E{|ax|*}E{axay}* + E{|ax P} E*{|ay |*} + [E{axa; }PE{|ay|*}

® 4E{|ax[*}HE{a3}* + E{|ax[*}[E{a7}|* + 4E{|ax|*}|E{azay } |* + [E{axa, } |?E{|ay[*}
2 +2Re{E{ayay}E{a} uy}E*{uy} +2E*{HZ}E{axay}IE{uxay}}

3 E{|ay}E{aZ} > + [E{aray} PE{|a, [} +2Re{E{a}}E* {axa,}E{a}ay,}}

¥ 4[E{ax|ax|*}* + 4|E{|ax[*ay}|* + E{|ax[*ay }E{aj|ay [} + E{|ax[*a; YE{ay|ay|*} + [E{ax|ay|*}[?
U +[E{azal} 2 + 2Re{E{a}|ax[*}E{ax|ay[*}}

Y2 2|E{ax|ax*}* + 2|E{|ax|?ay } |? +E{|‘1X|2‘1;}E{‘1y‘“ﬂ2} + [Ef{ax|ay|?}?

Y3 E{ajlax[*}E{ax|ay[*} + [E{aZa}}|?

Yy [E{a}} ] +2E{aday}* + [E{avaj}|?

A —3E{|ax "} [E{a}} | + E*{az|ax[*YE{a}} — [E{a}} E{|ay|*} — 2[E{axa,} PE{|ay|*}

1 +E{a§}]E*{u§\ay\2} - ZE{aE}E*{axay}]E{u;ay} + E{axuy}E*{axay\ay\z} — ]E{axay}IE{a;ay}E*{aﬁ}

Ay —2B{|ax |} E{aray} > + E{axa, }E* {axay|ax|?} — E{a2}E*{axa,}E{aja,}

AE{|ax[*}E{|ax|*} — 4E{|ax|*}[E{a3}|* — 8E®{|ax|*} + 4E{|ax|*}E{ |ax[*|ay|*}
—12E{|ax[*}[E{ara; }|* — 4E{|ax|*}[E{axay }|* — 4E*{|ax[*}E{|ay|*} — 3E{|ax|*}E*{|a,[*}

Az —E{laxPHE{ag}* + E{|ax*|ay[*YE{|ay|*} + E{|ax[*YE{|ay[*} — 5|E{axa}} PE{|ay|*}
—\E{axuy}FE{\uy\z} + 2Re{2E{uxa;}E{u§ay|ux|2} — E{uxuy}E{a;ay}E*{af}
+E{ajay}E{aya;|ay[*} — 2E* {a3}E{ayay }E{ara;}}

—6E{|ax|*}[E{a3}[? + 2E* {a}|ax|*}E{aF} + 4E{|ax[? }\E{ﬂxﬂy}\z E{|ax|*}[E{aj} 2

Ay +E*{|ay|?a }E{ay}+2]E{axuy}E*{aY|aA|2ay} 2|E{aray}PE{|ay >} — 2E*{a2}IE{axay}E{uxay}
+E{axuy}E {axay|ay|?} — E* {uxay}]E{aYaj}]E{az} 2Re{E*{uYay}E{uruy}E{aj}}

As *ZE““X‘Z}“E{”xﬂyHZ + E{”xay}]E*{“xay‘aX‘z} - ‘E{”.%}PE{‘“}/‘Z} - ]E*{“)zr}E{”xay}E{“W;}
—2Re{E{a2}E*{aya,}E{ata,}}

—2E3{|ax|*} + E{|ax|*}E{|ax|*} — E{|ax|*}[E{a}|* — 4E{|ax[*}|E{axa}}|* — E{|ax|*}E*{|ay|*}

N +E{|“.’C‘2|’1y|2}E{‘“y‘2} - |]E{“xa;}|2E{‘“y‘2} - |]E{‘1xuy}‘2E{|“y|2}
+2 Re{E{axa;}E{uiaﬂax\z} — E{a2}E*{ara, }E{a}a,}}

E{|ax|°} — 9E{\ﬂr\ }]E{\ﬂ |2}+121E3{\ﬂ ) - -’-E{lﬂx\ JE{|ay*} + E{]ax |2|avl4}
—8E{|ax|*}E{|ax[* Iﬂy\ } — 4B{|ax|?|ay 2} E{|ay[* }+21E{|ﬂx|4|ﬂy| }—E{|ax [ YE{|ay[*}

+AE{ |ax[2YE2{|ay|*} + 8E*{|ax|* }E{|ay|*} + 18E{|ax|*}[E{a3}|* — |E{a3}|* — 9[E{ax|ax| }\2
+2E{|ax |2 }IlE{HZ}I2 4\E{ﬂx|ﬂy|2}\2 BIE{\ﬂvl2ﬂy}\2+8\E{ﬂxﬂy}\2E{|ﬂy| }+8\E{ﬂxﬂy}| E{|ay|*}

B —[E{aa} - IE{ﬂ ay}[? + 16E{|ax|*}[E{axay} [ — 2(E{a%a;}[* + 16E{|ax|*} [E{axa, } |2
+4\E{a2}|2]E{\a |2} — Z\E{a ay}|2+2Re{4]E{aYuy}E{u ay}E*{az} 3R{a2|ay|>}E*{a2}
—2E{|ay|? ay}]E{a |ay| } —B{|ax|?a Z}E*{uz} ZE{axuy}E {uYay|ay| - E{axay}E{a uy|ay|2}
—ZE{”;‘“J(‘Z}E{‘Zﬂ“yF} - 2E{“%}E*{‘1§|“y|2} - E{”X‘“X‘Z}E{uﬂ“ﬂz} —4E{“1‘1;}E{“;‘1y‘“k‘2}
—4B{axay YE* {ayay|a;|?*} + 8E{a}E*{aya, }E{a}a,}}

Integrals

() SR IR PR)RIPR)PIP = fu+ £2)Ply(fu fo. f)1Pdf1 df2
() 50 IS0 IPRIPIPEPIPG = fi+ R)Pr(fu fo O (R fi = fa = £ A1 dfs
%) PP 5, S5 PG PIP(R) P (Fu — £, O (Fa — £ D1 s
%) ’3532 R I PP (R)P(f — fi + PP (fi — f)PURP™(f — fi+ fa+ ) (fu. fo. )

1" (fi = fa fa fldfrdfadfs
x5(f) ’3552 R I PP (R)P(f — fi + PP (F3)P(fa — FOP*(f — fi + fa— ) (fu. fa. )

(s fa— fu, fldfrdfadfs
Xe(f) f’iﬁz K2 S5 2 PUOP (RIPUF = fi + )P (F)P*(f + f)P(fa + fo)n(fu, o )

(f3 —f—ffldfrdfrdfs
%) PO IS 500 S5 IPGO PP ()P ()P (F = f + fo)nfr = ) (fau f3, dfr o dfs
Xs(f) R,{iz SO IS0 IPROPP ()P = fu+ L)PUIP(f = fu+ S)n(fu fo )" (fu o, F)ifr dfadfs
Xo(f) S SR IR PGP (R)P(f — fr + )P (S)P(f — fr — fa)(fu, o )0 (Fa, = fr, dfr dfadfy
%o0lf) S50 150, IS PUDIPURI PP = i+ P (5)P*(F + f2 = fadn(fu fo )" (Fs fo. fafr o dfs
Xty LIS 5 150 PUOP IR — o+ P PGP — fy+ fao o)

1" (f3, fa, f)dfrdfadfsdfs
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9. Discussion and Conclusions

In this paper, we have derived a comprehensive analytical expression for NLI power when a
general DP-4D modulation format is transmitted. The transmitted format is only assumed to be
zero-mean. The reported result extends the model in [9] by accounting for any constellation geometry
and statistic in four dimensions. This extension is performed by lifting two underlying assumptions
in [9] (and other existing models): (i) the transmitted formats are PM versions of a 2D format and (ii)
some high-order moments of the 2D components of the transmitted modulation format, such as E{a?}
and E{a3}, are implicitly assumed to be equal to zero.

The presented results are derived in a single-channel transmission scenario. However, as it can
be inferred from previous works, extending the expressions to the wavelength-division multiplexing
(WDM) case does not lead to a different set of modulation-related statistical quantities in the NLI
power expression. An extension of this work to the WDM transmission scenario will be addressed in a
future publication.

Future work will also focus on comparing the presented model with possible heuristic extensions
of existing PM-2D models to the general DP-4D case, for instance by using the 4D constellation
standardised fourth-order moment (or so-called kurtosis). For such a study, a numerical validation
of the model via the split-step Fourier method will certainly play a key role. Lastly, 4D constellation
shaping in the optical fibre channel arguably represents the most attractive application and future
research direction for the model derived in this manuscript.
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Appendix A. Proof of Theorem 1

The Manakov Equation (8) can be written in the frequency domain as

EUE) _ _Sp(f,2) + a2 E2E(f 2) 4 o S F UG 2)PE( 2))
= (=5 + R ) B2 + g FUEG R < L 2), (A1)

where * denotes a modified convolution operator between a scalar function and a vector function
(For a scalar function « and a vector function B = [By, By]T, the operator a * B is defined here as

axB 2 [a % By, o0 % By] T). Expanding the nonlinear term in (A1), we have

FAE 2P} #E(f,2) = (FIE(L2)Ei(b2)} + FLE (L 2)Ey(1,2)}) * [Ex(f,2), By (£, 2)],
which, for instance, for the x component, becomes

Ex(f,2) * Ex(=f,2) % Ex(f,2) + Ey(f, 2) x Ey (= f,2) * Ex(f, 2). (A2)

Expanding the first term in (A2), we obtain

Ef2) B2« Ef2) = [ [ B(ADE(A - 2Bl - fo2)dfidfs (MY
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which by substitution f; — fo = f, becomes (for notation’s simplicity, the integration variable f; is
relabelled as f,)

Ef2) B2+ a2 = = [ [ BlADER 2B — it o2)dfidfe (AD

Similar to the steps in (A3) and (A4), the second term in (A2) can be found as

BB (£ Bl £ == [ [ BB (a2 )Ealf — i+ for2)dfudfo

The x component in (A1) can be then rewritten as

M ( +]2712f2,52> Ex(f,z) —j2 ’Y/ / (Ex(f1,2)Ex(f2, 2)Ex(f — f1 + f2,2)

0z (A5)
+Ey(f1,2)Ey (f 2)Ex(f — fi + fz,z>) dfidfs.

Following the first-order RP approach to finding the solution to the Manakov equation [13],
we replace the x component of the first-order expansion in (9) into (A5) and equate terms with the
same power of . After some algebra and after substituting the A, terms with the corresponding E,
using (10), we find the following set of differential equations

aEO,x(f,Z) _ x iy 22
S0 LE) (224 s ol 2), (o)
JF .z 8 IeS) [eS)
9E1x(fi2) _ _H/ / (Eo(f1,2)Ef (2, 2)Eone(f — fi + fo,2)
0z 9 —o0 J—00 (A7)
+Eo (f1,2)ES 4 (f2,2) Eox(f — fi +fz,2)) dfidfs.
The zeroth-order term for a single fibre span of length z is given by
Eox(f,z) = E(f,0)e(~%/2+27F2f)z, (A8)

On the other hand, the first-order term (for the x component) E; . (f, z), with initial conditions given
by the transmitted signal E(f,0), can be found solving the following differential equation

P2 (8 prpaf) Enatf2) —jor [ [ (Boalfo ) Eialfo ) Ealf — i+ fo2)

0z
+Eoy(f1,2)Eg, (f2,2)Eoy(f — f1 +f212)) dfidf.
(A9)

The solution to (A9) with initial condition Eq (f,0) = 0 is given by

8 —az+j 2) [F (% E2 *
El,x(fzz) _ —]§’Y€( +j2By 7% f? )/0 6(2 ]2.327r2f2) [m Lm (EO,x(flrZ/)Eo,x(f2/zl>E0,x(f_fl —i—fz,Z/)

+Eoy(f1,2))Eg, (f2, 2 ) Eox(f — fu +f2/2')) dfidfrdz'
(A10a)

o(4-12P2m?f2)7 / ” / " (E(f, 0)E:(f2, O Ee(f — fi + £2,0)

B
+Ey(f1,0)Ey (f2,0)Ex(f — f1 + f2,0 )) a2 AT 2 (fR = f+(F—fitf2)))2! dfydfodz,

_ § (*0{2+j2ﬁ2ﬂ2f22) /Z

(A10b)
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where (A8) was used in the step from (A10a) to (A10b).

The power profile assumed in Section 3.1 for the multi-span optical link exponentially decays
with a lumped amplification at the end of each span, which brings the power back to the transmitted
level. This behavior leads to a discontinuity in the function «(z) across the interface where an amplifier
is located. For such a power profile, we can solve the differential Equations (A6) and (A7) by exploiting
the continuity of their coefficients within each span and by imposing the initial conditions at the
input of each new fibre span Egy(f,IL{) = e*s/2Eq ,(f,IL;) and Eq . (f,IL}) = e*Ls/2Ey ((f,IL7),
for] =1,2,..,N;. Here, z = IL; and z = IL] indicate the sections at the input and at the output of the
Ith amplifier, respectively. Thus, we obtain that the zeroth and first-order term after N; fibre spans are
given by

Eox(f,Ns, Ls) = E(f,0)e/20P2f*NeLs, (A11)

8 202 N lLs
El,x(f/ NS/ LS) = _]§,Ye]2ﬁ2n f NsLs Z/(
1=1

o8 2P f2)2
1-1)Ls

/_0:0 /_0; (Eo’x(fl’Z,)ES,X(fZIZ/)EO,x(f _fl +f2,2/) (A12)

+Eoy(f1,2")Edy(f2, 2 )Eox(f — fu +f2/Z’)) dfidfodz’.

Using (A11) in (A12) and swapping the integral in z’ with the double integral in d fid f,, we obtain

E1alf Ney L) = —jg 1@t [ [ (B (1, 0)EL (2 0)F(f = fi + 2,0)

+Ey(f1,0)E; (f2,0Ex(f — fi + £2,0))

N L ‘ ,
2/(1 0 elmatib2(f=fi) (2= i)z dz'dfidf
1=17(=1DLs

= —jgrePB N [ (e (£, 0 B OE(f — fi + £2,0)

+Ey(f1, 0; (2, 0)Ex(f — fi + £2,0))
1 — e~ %2eiB2(f—f1)(f2—f1)z Ns
a—jp(f- )R- f) 5

e*]'47T2/52(1*1)(f*fl)(frfﬂLsdfldfz.

The y-component of the zeroth-order term Eq,(f,z) and first-order term Eq ,(f,z) can be found
using the transformation x — y, ¥ — x in (A11) and (A12), respectively. Finally, bringing together the
x and y components, we have

Eo(f, N, Ls) =Eo(f,0)e/27/*FaNsls

E1(f, N L) = g2 Nt [ [™ BT(£, 0)E (£, OB (f = fi + fo On(fo fo £ 2)fudf,

where 77(f, f1, f2,z) is defined in (12), which proves the theorem.

Appendix B. Proof of Proposition 1

Applying the variable transformation k = k', = m',#i = n/,k' = ki’ = m,andii’ = n to the

left-hand side of (23), we obtain

* * * *
Z Pk,m,n,k’,m’,n’vx,kvx,mVX,nVy,k’Vy,m’Vx,n’ﬂk,n,m ﬂk’,n’,m’ (A13a)
(kmn)eS;
(K'm' ") eS;
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I
7]
R
5
=

(K m' i')eS;
(k,i1,71) €S;
_ *
= X Plasiw,
(k,~,771 651'
(K i) eS;

,P,"(/ P2 - ,P'ik

* * * *
Ko, iV o Vi Ve it Vo iy m Vo il i it T i

* * * * *
i,k ! (Vy,EVyf'ﬁVX,ﬁVx,fc’Vx,nﬁ’Vx,fl’Wk,m,ﬁﬂf(/,m/,ﬁ/)
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(A13b)

(A13c)

(A13d)

(A14)

which can be easily verified based on definition (22). Using the relabelling k—km—mi—nk —

K,m — m', i’ — n' for (A13d), the proposition is proven.

Appendix C. Partition Tables for Sets £1, £, and L3

Table A1. List of all subsets in £y: for each subset, the index subgroups identify the corresponding

pairs of indices assuming the same value.

Index

Subset Subgroup 1 2 3

Label
Cl(l) i1, ip i3, ig is, 16
61(2) i1,in i3, i5 ig, 16
01(3) i1, iz i3, Z'6 i4/ i5
C1(4) il/ i3 i2; Z'4 iS/ i6
Cl(s) il/ i3 iz, iS i4/ i6
Cl<6) i1,i3 ip, ig ig,1s5
61(7) il, i4 iz, Z‘3 i5/ Z‘6
Cl(s) i], i4 iz, iS i3/ Z‘6
C](Q) i] , i4 i2, Z'6 i3/ i5
C](l()) il/ i5 i2; i3 i4/ i6
Cl(n) il/ i5 ip, i4 i3/ i6
C{lz) i1, 15 ip, 1g i3, 14
Cl(m i1, 16 ip, i3 ig, 15
e inie iy i35
C{ls) ilr i5 i2/ iS i3/ i4
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Table A2. List of all subsets in £;: for each subset, the index subgroups identify the corresponding

triplets of indices assuming the same value.

Index
Subgroup 1 2
Subset
Label
Cz(1> i1,ip,i3 g, 15,1¢
c? i1 ia,is 3,051
) i1,ia, 05 3,14,
¥ iy ie 13,145
) i, i3,1s  ip, 15,1
02(6> i1,i3,i5  ip, 14,16
C2(7) i1,i3,i6  ip, 04,15
c§8> i1,ia,15  Ip, 13,16
C2(9> iy,i4,16  Ip,13,15
Cz<10) i1,i5,16  Ip,13,04

Table A3. List of all subsets in £3: for each subset, the index subgroups identify the corresponding

(1)

pair and quadruple of indices assuming the same value. The set C;’ corresponds to the case discussed

in Example 2.

Index
Subgroup 1 2
Subset
Label
C?S]) i1, ip i3, 14,15, 16
c§2) i, i3 il 05,06
C§3) i,iy  dp, 03,15,
C§4) i1,is  ip,i3,0,16
C;S) i1,i6 i, 13,14, 15
C:gﬁ) i, i3 i1,14,15,16
C§7) in iy 1,103,056
Cés) i, 15 i1,13,14,16
Cég) ip, 16 i1, 13,14, 15
C§10) is,iy  iy,0o, 15,16
Céll) i3, is i1,i2,14, 16
C;lz) i3, 1¢ i1,1p,14,15
C§13) ia, i i1, 12,13, 16
c§“) i ie  i1,02,03,05
C§15) is,ig  i1,00,13,1is
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Appendix D. Méh) and Néh) Contributions

Table A4. List of M(h) and N(

)
8 8

contributions computed in Section 5 without bias terms.

31 of 38

8

h

Corr. Terms in Mfgh)

Corr. Terms in N(E,h)

Delta Products

1

B {lax} + [E{aya; } PE{|ay *}

Ef|ax|*}E{axay }|?

_RgAf‘sn—k’ [
+2RSA;5k—m+n—k’+m’—n’

E{lax*}E{a3}* + [E{acay } PE{|ay|*}

E“”x‘z}m{”xﬂsz

_Rg Af (5k’+n"5k—m+n+m’
+5n+m’25k7m7k’—n’ )
+2Rs Aftsk—ernkarm’—n’

E*{lax*} +E{|ax*}E*{|ay *}

E2{|ax[*}E{|ay |*}

_RgAffﬂ*n/ék*WI*k,‘FTn/
+2Rs Afék—ern—kUrm’—n’

E{Ja:2}[E{a2} 2 + E{axa, }E{ala, }E* {42}

E{az}E*{axa,}E{azay}

7R:52Af(§m+k’5k+n+m’—n’
+‘5k+n‘sm+k’—m’+n’
+2RSA}5k_m+n_k,+m/_,,/

Eflax|*}HE{aZ}? + |E{ara, }PE{|ay|*}

E{QE}E* {”xay}E{”;”y}

R§5k+n5m—m’5k’+n’
7R§Af (5k’+n’5k—m+n+m’
+‘5m7m’5k+n7k’—n’
+§k+n§m—m’+k’+n’ )
+2Rs A}Jk—ern—kUrm’—n’

Eflax|*}HE{aZ}? + |E{ara, }PE{|ay|*}

[E{aZ}PE{|ay|*}

7R§Af (5m+n’ ‘5k+n7k’+m’
+5k+n‘sm+k’ —m'+n’
+2RSA%§k—m+n—k’+m’—n’

E*{lax|} + [E{aya; }PE{|ay *}

Ef|ax|*}E{axay }|?

o CTAY T S
+2RSA%§k,m+nfk/+m’fn/

B {lax|*} + E{|ax[*}E?{|ay[*}

Ef|ax|*}E{axay }|?

R38Ot Op—at
7R§Af(5n—n’5k—m—k’+m’
+(Smf‘m’(SkJrrlfk’—n’
+5k—k"§m—n—m’+n’)
+2R5Af5k—m+n—k’+m’—n’

]E{‘”X|2}|E{“.%}|2 + |E{”xﬂy}‘2E{|”y|2}

E* {a%}E{axay}E{axa;}

Rsék—k’5m+n’§n+m’
7R§Af ((5n+m’ Okt~
+0mn Otn—k 4!
0k kO ! )
+2R; A‘Zfék—ernkarm’—n’

10

E{|ay[}E{aZ}|* + E*{ara, }E{aray } E{a}}

E{|ax|*}|E{ayay }?

—RgAf(5k/+n/5k—m+n+m’
+5k+m’§m—n+k’+n/)
+2R5Af5k—m+n—k’+m’fn’

11

E{lax*}E{a3}? + Ef|ax|*}E{ay}[?

E{|ax|*}|E{axay }?

Rg 5k+m’ 5m+k’ 5n7n’
7R§Af (5n—n’§k—m—k’+m’
+5m+k’ 5k+n+m’—n’
+5k+m’§m—n+k’+n’ )
+2Rs A}‘Sk—ernkarm’—n’

12

E{lax|*}E{a}? + E* {axay }E{axay }E{a} }

E* {ai}E{axay}E{axa;}

R§§k+m’5m+n’§n—k’
_RgAf(‘sn—k’ ‘5k7m+m’—n’
+5m+n’‘Sk-%—m—k’+m’
+‘5k+m’5m—n+k/+n’)
+2RSA§'5k—m+n—k’+m’—n’

13

E¥{lax} + [E{aya; }PE{|ay |*}

B2 {|ax*}E{|ay |}

_RgAfék—n"sm—nH(’—m’
+2RSA§’5k—m+n—k’+m’—n’

14

E{lax*}E{aZ}* + E{axa, }E{a}a, }E* {a}}

Ef |ax*}E{ayay}?

Rg‘sk—n’ 5m+k’ 5n+m’
_RgAf(5ﬂ+WI/ Ok—m—t—n’
+5m+k’ §k+n+m’—n’
+(sk—n’5m—n+k/—m’)
+2RSA%5k—m+n—k’+m’—n’

15

B {lax} + [E{aya; }PE{|ay |*}

B |ax|*}E{axay}|?

Rg‘sk—n’ ‘Sm—m’én—k’
7R52‘Af (5n—k’ 5k—m+m’—n’
+‘smfm’5k+n7k’—n’
+5k7n’ 5m—n+k’7m’ )
+2Rs A‘%&k—ernkarm’—n’
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§O fCk—m+n—k'+m'—n'
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[E{aslar[2}[2 + [E{axay 2} B {Jax ay )| SR
R2A ¢yt — 6, /
10 E 2112 Efa*a2)|2 E 2 2 s B fCk+m' —n' Om—n+k
B {aclac 2} 2 + [B{a33)] B {JaxPay}| e
1 E{laxYE{|ax?} + E{lax*lay PYE{lay |} E{lax}E{laxPlay[?} RO pin trm—w
R2A (84 nOomkl —tt 4!
2 2 2 2 2 2 2 5B FOk+nOm4k —m! +
2 E*{ay|ax] }E{”x}+E{”xﬂy}E*{axﬂy|”y‘ } E{”x}E*{”xMy' } _}{sAf‘sk—nr;;n—k’erm:l—n’
R2A¢64_yr6 ot
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I R o ey Y X B
R2A 81yt Ot !
¢+ EEn B E (nPRIE) e B el DAl
R2A (60 -
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5 E(laE(I0f) + Blain BlasajleP)  E(laPEaPl) Sl
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14 E{az|ac|*}E {a3} + E*{ara, }E{aray|ay|*} E*{aya,}E{aray|ac|*} _RSA‘Zfék—nH»n—k’er’—n’
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Appendix E. Proof of Proposition 2

Applying the variable transformation k = n, 1t = m,

right-hand side of (37), we have

:k/

k

/

=n',m =m',and i’ = k' to the

VA A
Z Pk,m,n,k’,m’,n’Uk,m,n’?]t/,m/,n/D2(k1 m,n, k ,m,n )

(kmn)eS;
(K m' n')eS;

- Do (1, 1, k, 7, i k).

From definitions (16) and (22), it can be easily verified that P, .,k w v = Prmnim n and
Numk = Nkmn- Moreover, based on the definition of the set S; in (19), it can be observed that the
condition (k,m,n) € S; is equivalent to (1, m, k) € S;, i.e., generates the same set of triplets (k, m, n).

We can thus write (A15) as

! / !
Z Pk,m,n,k’,m’,n’Wk,m,nﬂlj’,m’,n’ Dy (k,m,n,k',m’,n’)

(k,mn)eS;
(K'm' n")eS;

which proves the proposition.

Appendix F. Coefficients in (38)

Table A5. Expressions for the coefficients in (38).

Name | Value Name | Value
a1 | 2B {[axP} + E{[ax"YE {la, [} + [E{aya; }["E{[ay[*} aj 2E{|ax|*}[E{axa; }|*
2 4E{[a;[PHE{a3}[* + E{Ja;[*}E{a}}[* o | ZE{laP}E{ara,}
+|E{axay}|*E{|ay [} + 2Re{E{a.a,}E{aja, }E* {a7}} 2 +2E*{a3 }E{axa, }E{a,a;}
a3 | E{[a,P}E{ai} [ + [E{asa,} PE{]a, [} ay | E{a}E*{a.a,}E{aza,}
by AE{ar[ax[*}* + E{lax[ay }E{aya, [} b E{ag|ax*}E{ax|ay [}
+E{|ax[*a; }E{ay|ay[*} + [E{ar|ay[*}|* + [E{ajaj}|? ! F2[E{|ax[*ay}|?
by | 2[E{ax[ax*}* + Efax[ay YE{aylay "} + [E{ax[a, "} by | 2[E{|ax[ay}*
by [ E{at[axPYE{ax[a, "} +[E{aia;} [
by [E{a3}[* + [E{axay}[* by [E{a%a,}[*
X 1 o o T N 2B E im0, E{ain,)
€1 *E{”xay}E{a;“}/}E*{“y} — 2[E{axay }?E{|ay|*} = _|E{Z§}‘2E{2‘ﬂy‘zz}
+E{aya, }E* {azay|a,[*} +E{ax}E2*{ax|ay‘ } ,
—6E E *
B {[ax[?) 45 {jax*) [E{a2)? + 45 (][} E{axf?) S
~3E{jas PYEA{|a, [} — E{Jaxf?) E{a3 } 2 lel R iee)]
" i/ Y ) —2B{|ax |*}E{|ay |*}
X
& | +E{arPYE{Jayl*) + E{lax Play B ay ) g | 2p el ARtla] )
_5|E * ZIE 2y E ZE 2 + {‘ﬂx| } {‘ax‘ ‘”y| }

‘ {ax(ly}| {|ﬂy‘} ‘z{axlly}‘ {‘ﬂy|} 5 +2E{am§}[€{a§ay|ax|2}
+2RG{E{ﬂxﬂy}E{ﬂxﬂy‘ﬂy| }7E{ﬂxﬂy}E{a;{”y}E {ﬂy}} 72E*{a§}E{axay}IE{uxu;}
—6E{[a, [P E{aZ}|? + 2E* {aZ]a. [P} E{aZ
_E {‘ X2| }ﬂ[: {zx}z‘ i { ’é‘ZX'E} 2{ x} 4E{|ax\2}\IE{uxay}\2

{lax|*}E{ay }* + E* {|ax|*ay }E{ay } , . 2

C3 * * 2 12 2 c +2E{axay }E* {ax|ax|*ay}
-E {ﬂxﬂy}E{axﬂy}E{ay} *zlE{”xﬂy}‘ E‘H”y‘ } 3 —ZE*{aZ}E{axu }E{ll«(ﬂ*}
JrE{ﬂxﬂy}E*{“x”y‘“yF} 7ZRe{E*{ﬂxay}E{”xﬂ;}E{”ﬁ}} i Y oY
*2E3{|a2x\2}2* 1E{\axlzz}l]E{a?c}\2 - JEZ{\ax\Z}ZEZ{\ayIZ} —2B{[ax*}[E{a.a; }

cy +E{|ax|?|ay|* YE{|ay|*} — \E{axa;H E{|a, |} A +E{uxu;}IE{uj;uy|ax\2}
—|E{aray}[PE{|ay *} + E{|ax|*}E{|a:[*} —E{a}}E*{a,a,}E{aza,}
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Table A5. Cont.

Name | Value Name | Value

_ZE{‘”X|2}|E{”x”y}|2
+E{axa, }E* {aya,|a;|?}

c§ —]E*{a%}IE{axay}IE{axa;}
—[E{a3}[*E{|ay*}
—2Re{E{a2}E*{ara,}E{a}a,}}
*ZE{WHZHE{%%}F

ct +E{aca, }E* {axay|ax|*}
*E{ﬂi}E*{”xay}E{”;“y}

12B%{|ax|*} + 18E{|a; [} |E{ai}[* — [E{a3}[? 8E{ |ax |2} [E{axap}|? — |E{a2a}}|2
—9|E{ax ax[*}|* — 9E{|ax[*}E{ |ax|*} +8E{|ax [2}|E{axay }|? + 4E2{|a | }E{|a, [}
+E{|ax|°} + 4B{|ax[*YE*{|ay|*} + 2E{ |ax|*} [E{ag} | —4B{|a [2YE|ax|?|ay[?} — E{|ar|*}E{|a, 2}
~E{|ay[PYE{|ay|*} — 4E{|ax[*|a,[*}E{|ay|*} —2E{a}|ay[2YE{ay|ay 2}
g —4|E{ay|ay|*}|* + 8|E{ara; } PE{|ay [} g | “ZE(YE {a2]a, 2} — B{ar|a:PYE{ar]a, [*}
V| A8IE{axay} PE{|ay [} — [E{axay}]* — [E{ajaj}|? U | —4|E{|ayPay }? + E{|ax||ay [}
+E{|ax[*|ay[*} + 2Re{4E{ara, }E{aja, }E* {a}} —4E{a,a;}E{a}ay|a|*}
~E{axa} }E{a}ay|a,[2} — 3E{a[a[2}E" {a2} —4E{aya, JE* {avayla )
—2E{axa, }E* {axay|ay|*} — ZE{‘”x‘Z“y}E{”ﬂ”y‘z} +2|E{a;} PE{|ay|*} — [E{aZay}|?
—E{|a:2ay}E*{a7}} +8Re{E{a3 }E* {axa,}E{a}ay}}

Appendix G. Proof of Proposition 3

Since Dy (k,m,n,k',m’,n") = Dy(K',m’,n’, k,m, n), the left-hand side of (39) can be written as
Z Pk,m,n,k’,m’,n’Uk,m,n’?Z’,m’,n’ D, (k, m,n, k/, m// 1’1,)

(Al6)
= Y PowmkwalTomn ot g D2 (K’ 1’ e m, ).

Using the change of variables k = k/, /it = m/, 7t = n’, k' = k, 11’ = m, and i’ = n, the right-hand
side of (A16) can be equivalently expressed as

Z 73k,m,n,k’,m’,n’77k,m,n Wlt’,m’,n’ D, (k,/ m// 1’1/, k,m, n) (Al7a)
(kmn)eS;
(K';m' ") eS;

= Y Puaaimalima o m D2k i, ik i, i) (A17b)

= 2 %,m,ﬁ,k’,m’,ﬁ’”g,m,ﬁ Mo it jw D2 (K, 171, 7, K, il (Al7¢)
*
= ( Y. Praai i iimalli g D20k, K i, ﬁ’)) , (A17d)

where in the step from (A17b) to (A17c), we have used (A14). Equation (A17d) is identical to the
right-hand side of (39) up to the variable relabelling k — k, i — m, i — n,k' — k', i’ — m', i’ — n’,
which proves the proposition.

Appendix H. Proof of Lemma 1

To prove the statement about dimensionality of the sets 7; ;, we take as an example the cases for
I = 1,2,3. In these instances, the sets 7;; Vi € Z are identified by 5 linear constraints on the set of
variables (k,m,n,k',m’,n") € {0,1,...,W — 1}° given by (i) the 2 linearly independent constraints,
(k,m,n) € S;and (K',m’,n’") € S; and (ii) the 3 linearly independent constraints induced by the
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condition D) = 1 for [ = 1,2,3 (see Table 7). Then, let A 2 [“1/ a2T, . ..;a5T} be a 5 x 6 matrix in
which the rows a;, k = 1,2,...,5, describe each of these 5 linear combinations, x = [k, m,n, k', m’,n'],
and y; = [1,1,0,0,0]. Thus, the set 7} ; can be equivalently defined as

Ti={x€{01,.... W-1}°: Ax=y,}. (A18)

From (A18), it can be seen that 7;; is a vector space for which the number of dimensions is
given by
dim{7;;} = 6 — rank(A;). (A19)

Due to the construction of the delta products DU ), I € {1,2,3}, it can be shown that the rows of
A are linearly dependent under the relationship a; — a; = a3 + a4 + as. Hence, VI € {1,2,3} and
i € Z, we have rank(A;) = 4. As a result, from (A19), dim{7;,} =2, VI € {1,2,3},and i € Z.

Forl € {4,5,...,10}, we have that 7;; is identified by 4 linear constraints, 2 of them related to the
S; set and 2 related to the condition DU = 1. Furthermore, it can be seen that ay —ay = fasz+ ay,
hence leading to rank (A;) = 3, VI € {4,5,...,10} and dim{7;;} = 3. Finally, based on similar
arguments, one can show that rank(A;) = 2 for I = 11 and dim{7;,;} = 4, which proves the lemma.

Appendix I. Proof of Theorem 2

The limit of a sequence of distributions f(Af) is defined as the distribution f such
that [18] (Section 2.2)

(fg) = lim (F(As) ), YV, (A20)
f—>
where o
w9) 2 [ HAp(df (a21)

denotes the functional corresponding to the distribution f applied to a generic test function ¢ [18]
(Section 1.1). In particular, the delta distribution centered in fj is defined as

Gpo) 2 [ 80 = fop(PAf = $(fo). (a22)
Based on (A21), we have for the distribution Sy (f, N;, Ls) in (40),
<sx(f,Ns,Ls),lp>:(§> 2Af[R3Af<<I>1/ Z Y PO(f —inp)y(f)df + ... (A23a)
177007—11
+<1>3/ Y YPS(f — inf)p f)df>+R2Af(‘F1/ Y YPS(f — inp)p(f)df + .
® =00 Ty, ® =00 Ty
+A6/ Z Y PS(f —iAf)y (f)df)%—RsAful/ Z Y Po(f—iAp)y (f)df]
® j=—00 Tqg; ®i=—o00Tyy,;
2 0
= (S) 72[R§’A?f’<d>1‘z Y Py(irf) + ... + @3 Z ZPI/J(iAf))
. e = Ta (A23b)
+R2A;¥(‘Y1 Yo Y Pyirf)+ ..+ N ), ZPlp(iAf)>+RsAfu1 Yo ) Py( zAf]
i=—00Ty; i=—00 Ty i=—00 Ty,

where we have used (A22) in the step between (A23a) and (A23b).

Now, we want to show that all the terms in (A23b) are multidimensional Riemann sums, which then
will converge to multidimensional integrals in the limit for Ay — 0. From (16), (22), and (35), it can be seen
that the terms Py (iAs) are samples on a multidimensional grid of step A of the multivariate function
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B(f1, fa f5, flo for £3) 2 P(F)P*(£2) P(£3) P*(F)P(F)P*(£5)1(f1, for f3.Ns, L) ™ (f1, £, for Ne, Ls),
fufofs fi fa f € R
(A24)

)

Moreover, A}(l , which represents the power of A multiplying the /th element in (A23b), where

3 forl1=1,23;
t() 24 for 1 =4,..,10; (A25)
5 for [ =11,

is a measure of the #(I)th dimensional hypercube in R!!) for which the side measures A . Hence,
to prove that each term in (A23b) converges to a sum of multiple integrals of the multivariate functions
P1y(f), we simply need to show that the dimensionality of the summation sets, i.e., Z x 7} ;, is equal
to t(I), i.e., dim{7;;} = t(I) =1, forl = 1,..,11, and Vi € Z. This can be easily verified comparing
Lemma 1 to (A25). Defining the subspaces of R®

AN 2{(fu o flfa B ER NG fi— o+ fs=f fi—fo+fi=f} (A26)

where G; is the set defined by the condition D)’ = 1, and by replacing the variables
(k,m,n, k', m',n") — (1, f2, f3, f1, f3, f3), we have

lim (Sx(f, Nes L) ) = (2)272 [R3<<Dl /_0;/“'/|5(f1,~--,fé)l/1(f)df1...dfgdf+... (A27a)
21(f)
RE /j;/'"/P(f1,~--,fé)¢(f)df1 ---dfs’,df> +R? (\Pl /j:o /~-~/|5(f1,...,f3’)¢(f)df1 LAfdf + ..
A(f) u(f)

+A6/_0:o/.../|3(f1,...,f3’)1/;(f)df1 ...dfédf)JrRsal /_O;/'"/p(flf--vfs’)llﬂ(f)dh dfldf
Quo0(f) on(f)

_ (ﬁ)zfﬂ (o [7 [T [ et vaf dfadf (A27D)
s [ [T Pt o DA AFdr )+ R (1 [ o [ PalFir o NP dfsdf
+A6/"'/R4 P1o(f1, 0 f3, f)P(F)dfu ...dfgdf)JrRsEl/---/RB Pr(fu . fa )Y (f)dfr .. dfadf|.

In the steps from (A27a) to (A27b), we have replaced in each integral the function P with its constrained
instance over Q;(f)
Pr = P(fu fo, f3, U o B9 o oL B € Q1 )
and explicitly expressed the dimensionality of the integrals based on the dimension of their
corresponding integration domains Q;(f). By construction (see (A26)), dim{Q;(f)} = t(I) — 1,
fori =1,..,11.
Finally, using (A20) and comparing definition (A21) with (A27b), we obtain

S0, 1) = Jim s, 1) = (3) 2[R o [ [ Pt i
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+Ps /—O:o /_o:o Pa(fr fo faf: de) +RS (Tl /_0:0 /_o:o /_0; Pu(fi, fo, f3, fldfrdfodfs +
+A6/jo /j; /j:o Pio(f1 fa, f3, f)dfi dfzdf3>+Rsal/.../R4 Pra(fs oo far fdfrodfsl,

which, defining

Ji, Pl fo flAfrdfy = [ « WA Pilh S D)1 s 1=1,23;

xi(f) = Ja, Bilf1 fo fo, f)dfrdfadfs = fTs f ", RZRS Bi(f1, fo f5, f)dfrdfadfs, 1=4,...,10;

fR4 Pi1(fi, e fo f)dfrdfs = [ - fR4 P11 fl,...,f4,f)df1...df4, =11,

(A28)
with Ry £ [~Rs/2, Rs/2]*, proves the theorem. The second equalities in (A28) are justified by the
form of the functions P; (see Table 8) which, due to the assumption of strictly bandlimited pulses,
have limited support within the hybercube [—Rs/2, Rs/2]/!)~1. To derive the explicit expressions for
X;(f) in Table 8, we used (A28) and the property P(—f) = P*(f), which stems from the fact that p(t)
is assumed to be a real-valued function (see Section 3.1).

References

1. Agrell, E.; Karlsson, M. Power-efficient modulation formats in coherent transmission systems.
J. Lightwave Technol. 2009, 27, 5115-5126. [CrossRef]

2. Karlsson, M.; Agrell, E. Which is the most power-efficient modulation format in optical links? Opt. Express
2009, 17, 10814-10819. [CrossRef] [PubMed]

3. Alvarado, A.; Agrell, E. Four-dimensional coded modulation with bit-wise decoders for future optical
communications. J. Lightwave Technol. 2015, 33, 1993-2003. [CrossRef]

4.  Eriksson, T.A.; Fehenberger, T.; Andrekson, P.A.; Karlsson, M.; Hanik, N.; Agrell, E. Impact of 4D channel
distribution on the achievable rates in coherent optical communication experiments. J. Lightwave Technol.
2016, 34, 2256-2266.

5. Kojima, K; Yoshida, T.; Koike-Akino, T.; Millar, D.S.; Parsons, K.; Pajovic, M.; Arlunno, V. Nonlinearity-tolerant
four-dimensional 2A8PSK family for 5-7 bits/symbol spectral efficiency. J. Lightwave Technol. 2017, 35, 1383-1391.
[CrossRef]

6.  Chen, B.; Chigo, O.; Hafermann, H.; Alvarado, A. Polarization-ring-switching for nonlinearity-tolerant
geometrically-shaped four-dimensional formats maximizing generalized mutual information.
J. Lightwave Technol. 2019, 37, 3579-3591. [CrossRef]

7. Chen, B.; Alvarado, A.; van der Heide, S.; van den Hout, M.; Hafermann, H.; Okonkwo, C. Analysis and
experimental demonstration of orthant-symmetric four-dimensional 7 bit/4D-sym modulation for optical
fiber communication. arXiv 2020, arXiv:2003.12712v2.

8. Poggiolini, P.; Bosco, G.; Carena, A.; Curri, V.; Jiang, Y.; Forghieri, F. A detailed analytical derivation of the GN
model of non-linear interference in coherent optical transmission systems. arXiv 2012, arXiv:1209.0394v13.

9. Carena, A.; Bosco, G.; Curri, V,; Jiang, Y.; Poggiolini, P.; Forghieri, F. On the accuracy of the GN-model and
on analytical correction terms to improve it. arXiv 2014, arXiv:1401.6946v7.

10. Mecozzi, A.; Essiambre, R. Nonlinear Shannon limit in pseudolinear coherent systems. J. Lightwave Technol.
2012, 30, 2011-2024. [CrossRef]

11. Dar, R.; Feder, M.; Mecozzi, A.; Shtaif, M. Properties of nonlinear noise in long, dispersion-uncompensated
fiber links. Opt. Express 2013, 21, 25685-25699. [CrossRef] [PubMed]

12.  Marcuse, D.; Menyuk, C.R.; Wai, PK.A. Application of the Manakov-PMD equation to studies of signal
propagation in optical fibers with randomly varying birefringence. J. Lightwave Technol. 1997, 15, 1735-1745.
[CrossRef]

13. Vannucci, A.; Serena, P.; Member, S.; Bononi, A. The RP method: A new tool for the iterative solution of the
nonlinear Schrédinger equation. J. Lightwave Technol. 2002, 20, 1102-1112. [CrossRef]

14. Johannisson, P; Karlsson, M. Perturbation analysis of nonlinear propagation in a strongly dispersive optical
communication system. J. Lightwave Technol. 2013, 31, 1273-1282. [CrossRef]


http://dx.doi.org/10.1109/JLT.2009.2029064
http://dx.doi.org/10.1364/OE.17.010814
http://www.ncbi.nlm.nih.gov/pubmed/19550481
http://dx.doi.org/10.1109/JLT.2015.2396118
http://dx.doi.org/10.1109/JLT.2017.2662942
http://dx.doi.org/10.1109/JLT.2019.2918072
http://dx.doi.org/10.1109/JLT.2012.2190582
http://dx.doi.org/10.1364/OE.21.025685
http://www.ncbi.nlm.nih.gov/pubmed/24216794
http://dx.doi.org/10.1109/50.622902
http://dx.doi.org/10.1109/JLT.2002.800376
http://dx.doi.org/10.1109/JLT.2013.2246543

Entropy 2020, 22, 1324 38 of 38

15.  Colombeau, J.F. New Generalized Functions and Multiplication of Distributions; North-Holland, Elsevier Science
Publishers B.V.: Amsterdam, The Netherlands, 1984.

16. Proakis, ].G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications, 4th ed.;
Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2006.

17. Carena, A.; Curri, V.,; Bosco, G.; Poggiolini, P.; Forghieri, F. Modeling of the impact of nonlinear propagation
effects in uncompensated optical coherent transmission links. J. Lightwave Technol. 2012, 30, 1524-1539.
[CrossRef]

18. Strichartz, R. A Guide to Distribution Theory and Fourier Transforms; CRC-Press: Boca Raton, FL, USA, 1994.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1109/JLT.2012.2189198
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Organisation of the Manuscript and Notation
	Model Assumptions
	System Model
	DP-4D vs. PM-2D Formats
	Transmitted Signal Form

	PSD of the First-Order NLI for Periodic Transmitted Signals
	Classification of the Modulation-Dependent Contributions in the 6th-Order Frequency-Domain Correlation
	Expansion in Terms of the Stochastic Moments of the Transmitted Modulation Format
	Set Partitioning

	Evaluation of the L-Based Contributions
	Contributions in L1
	Contributions in L2
	Contributions in L3
	Contributions in L4

	Sum of All Contributions
	Final Result
	Discussion and Conclusions
	Proof of Theorem 1
	Proof of Proposition 1
	Partition Tables for Sets L1, L2, and L3
	Mg(h) and Ng(h) Contributions
	Proof of Proposition 2
	Coefficients in (38)
	Proof of Proposition 3
	Proof of Lemma 1
	Proof of Theorem 2
	References

