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Abstract: Although many chaotic systems with time delays have been studied in recent years, most
studies have only focused on the theoretical level, without special applications. Therefore, we present a
basic introduction of a time delay complex Chen chaotic system, including the influence of parameter
changes and time delay factors on the time delay system. On the basis of complex modified projection
synchronization (CMPS), we detail the design of a new controller and communication scheme and
apply this communication scheme to a wireless body area network (WBAN), in order to encrypt and
decrypt body data collected by sensors. Finally, we perform a numerical simulation, demonstrating the
effectiveness of the proposed communication scheme.
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1. Introduction

In 1977, Mackey and Glass [1], while studying first-order non-linear delay differential equations
to describe physical control systems, first discovered that chaos exists in delay systems. Following this,
researchers began to pay close attention to time delay chaotic systems, finding that those with a time
delay can better describe real physical processes than systems without a time delay. On the basis of
the stability of a class of linear-system theory, the synchronization of Chen systems with time-varying
delay has been discussed. Research on time delay chaotic systems with real variables, as well as on
time delay chaotic systems with complex variables, has made great progress. Since Fowler et al. [2]
introduced the complex Lorenz system, research on the characteristics of complex chaotic systems and
their synchronization has attracted much attention [3–8]. However, time delay is an inevitable factor
in actual complex chaotic systems. Therefore, many scholars have studied complex chaotic systems
with time delay [9–11].

Since Leon O. Chua realized chaotic synchronization by circuits [12], the application of chaotic
systems in secure communication has become a hot issue in the field of information security. Similarly to
random signals, chaotic signals have very complex trajectories, are difficult to predict, and have inherent
concealment, which make them suitable as carriers for secure communication [13–17]. Generally speaking,
the information is encrypted as streams with chaotic characteristics at the sending end. At the receiving
end, the correct information is decrypted from the received signal. Chaotic secure communication
requires the synchronization of chaotic systems at the sending and receiving ends. A chaotic system
is completely determined by a non-linear system of equations, including its parameters and initial
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conditions. The most interesting fact is that a determinate system can produce a large number of
complex, uncorrelated, and quasi-random chaotic sequences. Time delay is inevitable in nature, where
time delay systems have more complicated dynamic characteristics than ordinary chaotic systems.
Therefore, time delay complex chaotic systems have become a prominent topic in current chaotic secure
communication research.

Countless scholars have conducted research on secure communication, in order to achieve high security
levels. In order to achieve fast communication, Chee and Xu used the proportional characteristics of
projection synchronization (PS) and extended binary to M-ary (M > 2) systems. Mahmoud G.M. [18,19]
studied the projection synchronization of complex hyperchaotic systems and proposed corresponding
communication schemes. As the rapid communication of projection synchronization and the unpredictability
of the scale factor can increase communication security, PS has been widely used. On the basis of
the definition of real scale-factor projection synchronization and modified projection synchronization
(MPS) [20,21], the definition of modified projection synchronization with a complex scale factor—
in fact, complex modified projection synchronization (CMPS)—has been proposed by Zhang et al. [22]
and Mahmoud [23], almost at the same time. If the real part of a complex scale factor is 1 and its
imaginary part is 0, it is complete synchronization (CS); if the real part of the complex scale factor
is −1 and the imaginary part is 0, it is the anti synchronization (AS); if the real part of the complex
scale factor is a real number and the imaginary part is 0, it is the projection synchronization (PS) of the
real scale factor; if only the imaginary part is 0, it is the modified projection synchronization (MPS)
of the real scale factor; if the complex scale factor is j, it is complex complete synchronization (CCS).
Therefore, CS, AS, PS, MPS, and CCS are all special cases of CMPS. As complex numbers have real
and imaginary parts, a complex scale factor can be more arbitrary and unpredictable than a real scale
factor, such that the calculation of complex numbers is more complicated than that of real numbers
and, so, it is more difficult to obtain signal information from transmitted information. Moreover, CMPS
establishes a connection between real and complex chaos, thus increasing the selection range of the
chaos generator at the sending and receiving ends. Studying CMPS can increase the complexity of
synchronization and, consequently, the diversity and security of communications.

Recently, great improvements in integrated chips and wireless communications have promoted the
development of wireless body area networks (WBANs). The security of data transmission in WBANs is
more important and essential. Due to the low cost and high-security properties of chaotic signals,
the implementation of chaos communication in WBANs is an effective and promising solution, which can
improve communication security in WBANs. However, to the best of our knowledge, secure communication
in WBANs based on the CMPS of complex chaos under noisy conditions has seldom been studied in the
literature. The main contributions of this paper are as follows:

(1) A basic introduction of the time delay complex Chen system, including the influence of parameter
changes and time delay factors on the time delay system, is presented.

(2) On the basis of complex modified projection synchronization (CMPS), a new controller and
communication scheme are designed.

(3) This communication scheme is applied to a wireless body area network (WBAN) for encrypting
and decrypting body data that are collected by sensors.

The rest of this article is organized as follows: In Section 2, the time delay characteristics of the
complex Chen system are analyzed and its randomness, symmetry, and unpredictability are discussed.
In Section 3, the innovation and advantages of the communication scheme for wireless body area
networks are introduced. In Section 4, the CMPS controller design is described. In Section 5, the feasibility
of the scheme is verified through MATLAB simulation. In Section 6, the security of the communication
scheme for WBAN is analyzed. Section 7 summarizes this article.
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2. Characteristics of Time Delay Complex Chen System

Consider the following time delay complex Chen system:
ẏ1 = a1(y2 − y1),
ẏ2 = (a2 − a1)y1 + a2y2 − y1y3(t− τ),
ẏ3 = −a3y3(t− τ) + (1/2)(ȳ1y2 + y1ȳ2),

(1)

where 0 ≤ τ ≤ τm is the time delay factor, y1 = u1 + ju2 and y2 = u3 + ju4 are the complex state
variables, and y3 = u5 is the real state variable. Overbar ȳ1(ȳ2) stands for the complex conjugate of
y1(y2), and (a1, a2, a3)

T is the real parameter vector.
Separating the real and imaginary parts of each variable in System (1), we obtain

u̇1 = a1(u3 − u1),
u̇2 = a1(u4 − u2),
u̇3 = (a2 − a1)u1 − u1u5(t− τ) + a2u3,
u̇4 = (a2 − a1)u2 − u2u5(t− τ) + a2u4,
u̇5 = −a3u5(t− τ) + (u1u3 + u2u4).

(2)

2.1. Chaos Attractor

We adopted a1 = 35, a2 = 23, a3 = 1, and (1, 2, 3, 4, 1)T as the initial conditions. Their different
chaotic attractor projections are shown as blue attractors in Figure 1 (τ = 1 s) and Figure 2 (τ = 1.5 s),
where the red attractor is a complex Chen system with τ = 0 s. The projection of the time delay complex
Chen system is quite different than the original system. The attractor of the former occupies much more
space than the latter. Time delay systems produce time-series data with extremely high randomness and
unpredictability. The time delay complex Chen system with τ = 1 s was chaotic, while the Chen system
with τ = 1.5 s exhibited a limit cycle. This indicates that, under the same parameters and initial values,
different time delay factors cause hugely different outputs.
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Figure 1. Chaotic attractor projections for time delay complex Chen system (a1 = 35, a2 = 23, a3 = 1).
Blue attractor, complex Chen system with τ = 1 s; red attractor, complex Chen system with τ = 0 s).
(a) u2 − u5, (b) u1 − u4, (c) u1 − u3 − u5, and (d) u3 − u4 − u5.
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Figure 2. Chaotic attractor projections for time delay complex Chen system (a1 = 35, a2 = 23, a3 = 1).
Blue attractor, complex Chen system with τ = 1.5 s; red attractor, complex Chen system with τ = 0 s.
(a) u1, (b) u2, (c) u3, (d) u4.

2.2. Symmetry and Initial Value Sensitivity

System (2) was unchanged after introducing the following transformation: (u1, u2, u3, u4, u5)→
(−u1, −u2, −u3, −u4, u5); thus, the system exhibited symmetry about the u5 axis. This symmetry
held for all parameters; namely, a1, a2, and a3.

When τ = 2 s, we selected two close initial conditions—namely, (1, 2, 3, 4, 1)T and (1, 2, 3, 4, 1.001)T—
and obtained the evolution of states, as shown in Figure 3. The time delay complex Chen system
displayed sensitive dependence on the initial conditions.
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Figure 3. Initial sensitivity of time delay complex Chen system. Red curve represents initial state
(1, 2, 3, 4, 1)T; blue curve represents initial state (1, 2, 3, 4, 1.001)T). (a) u1, (b) u2, (c) u3, (d) u4, and (e) u5.
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2.3. Lyapunov Exponent and Bifurcation Diagram

The Lyapunov exponent can quantitatively reflect the chaotic performance of a system. Letting
a1 = 35, a2 = 23, and a3 = 1, we obtained the Lyapunov exponent curve of the time delay complex
Chen system, as shown in Figure 4. Table 1 shows some values of the Lyapunov exponent. Obviously,
the characteristics of the time delay complex Chen system and the number of positive Lyapunov exponents
are related to the time delay factor τ, which also indicates the randomness and unpredictability of the
delay system.
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Figure 4. Lyapunov exponent curves of time delay complex Chen system: (a) LE1, (b) LE2, (c) LE3,
(d) LE4, and (e) LE5.

Table 1. Partial values of five Lyapunov indices of time delay complex Chen system.

Variable LE1 LE2 LE3 LE4 LE5 Symbol Types

τ = 0.5 s 2.2260 −0.0857 −0.7402 −0.5030 −1.1583 (+,0,−,−,−) Chaos
τ = 0.7 s 2.2837 0.7366 −0.0176 −0.5226 −1.4729 (+,+,0,−,−) Hyperchaos
τ = 1.5 s 0.4680 0.4676 −0.0298 −0.8371 −0.8366 (0,0,0,−,−) Limit cycle

In order to more intuitively see the change of system characteristics with time delay factors, the bifurcation
diagram of the system output u5 and τ was produced, as shown in Figure 5. When 0.5 < τ ≤ 1.3, the system
was chaotic; when τ = 1.5, the system gradually exhibited limit-cycle behavior. Therefore, by choosing
different time delay parameters, τ, the time delay complex system produced different dynamic
phenomena. The existence of time delay parameters increased the complexity of the Chen system and,
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thus, the security of confidential communication. The design of a secure communication scheme based
on the CMPS of the time delay complex Chen system is described in the following section.
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Figure 5. Bifurcation diagram of time delay complex Chen system.

3. Communication Scheme Based on CMPS

3.1. Design of CMPS Controller

Consider the following n-dimensional complex chaotic non-linear system as a response system:

ẋ = f (x) + v + ε1, (3)

where x = (x1, x2, ..., xn)T is the complex state vector, x = xr + jxi, and the superscripts r and i
denote the real and imaginary parts of the complex state vector, respectively. Let x1 = xr

1 + jxi
1, x2 =

xr
2 + jxi

2, ..., xn = xr
n + jxi

n; then, xr = (xr
1, xr

2, ..., xr
n)

T , xi = (xi
1, xi

2, ..., xi
n)

T . f (x) is an n×m complex
matrix, with its elements being functions of complex state variables. f = ( f1, f2, ..., fn)T is a non-linear
complex function vector. The controller to be designed is v = vr + jvi, where vr = (vr

1, vr
2, ..., vr

n)
T

and vi = (vi
1, vi

2, ..., vi
n)

T . ε1 = (ε11, ε12, ..., ε1n)
T indicates external bounded interference, such that

|ε1l | < ρ(l = 1, 2, ..., n), where ρ1 is a positive constant (| · | is the modulus of a complex number).
Consider the drive chaotic complex system y = (y1, y2, ..., yn)T satisfying

ẏ = g(y) + ε2, (4)

where y = (y1, y2, ..., yn)T is the complex state vector, y = yr + jyi, with yr = (yr
1, yr

2, ..., yr
n)

T and
yi = (yi

1, yi
2, ..., yi

n)
T . g = (g1, g2, ..., gn)T is a non-linear complex function vector. ε2 = (ε21, ε22, ..., ε2n)

T

is bounded external interference, such that |ε2l | < ρ2(l = 1, 2, ..., n), where ρ2 is a positive constant.
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For the response System (3) and drive System (4), if there is a complex constant matrix H =

diag{h1, h2, ..., hn} = diag{hr
1 + jhi

1, hr
2 + jhi

2, ..., hr
n + jhi

n} satisfying

lim
t→∞
‖e(t)‖2 = lim

t→∞
‖x(t)− Hy(t)‖2

= lim
t→∞

(‖xr(t)− Hryr(t) + Hiyi(t))‖2

+ ‖xi(t)− Hryi(t)− Hiyr(t)‖2)

= 0,

(5)

where e(t) is an error vector, then the chaotic Systems (3) and (4) realize complex modified projection
synchronization.

Therefore, on the basis of active control and [22,24,25], we designed the controller as

v = Hg(y)− f (x) + Ke, (6)

where K = diag(k1, k2, ..., kn) is the real control intensity matrix. The specific proof process can be
found in [22,24].

3.2. Communication Scheme for Wireless Body Area Network

In wireless body area networks, sensors are used to measure the temperature, blood pressure,
heart rate, and other physiological information of users, first transmitting the measurement results to
smart mobile devices (e.g., smartphones) and, then, sending them to a telematics terminal. After mutual
authentication between the smart mobile device and the telematics terminal, the smart mobile device
encrypts the collected sensor information (clear text) and the shared chaotic signal (produced from time
delay complex Chen system with the same parameters and initial values) of the telematics terminal
after authentication and sends them to storage devices for remote services. After the remote service
storage device successfully receives the data, it synchronously decrypts the data, according to the
complex modified proportional projection, such that the plain-text is obtained in the data buffer of
the remote service storage device. The communication block diagram is based on CMPS, as shown in
Figure 6.

L1

H(kT)=F(y,m)

v 

s/x 

L2

H(kT)

Decode

g(y)

Dε(t)

s(kT) s(kT)

x

Sending ReceivingTransmitting

Controller

Figure 6. Communication scheme based on complex modified projection synchronization (CMPS) for
a wireless body area network.

We use L1 and L2 to represent smart devices (transmitting end) and the telematics terminal
(receiving end), respectively. The plain-text signals to be transmitted are body temperature hr

1, high
blood pressure value hi

1, low blood pressure value hr
2, heart rate hi

2, and blood sugar h3, which are
all complex scale factors in CMPS; the duration of every sample was 1 min. Then, the ciphertext
transmission signal
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s(t) = Hg(y) + Dε(t)

= diag{hr
1 + jhi

1, hr
2 + jhi

2, h3}g(y)
+ diag{Dε(t) + jDε(t), Dε(t) + jDε(t), Dε(t)}

(7)

is expanded into five channels; that is,

sr
1(t) = hr

1g1(y)r − hi
1g1(y)i + Dε(t),

si
1(t) = hr

1g1(y)i + hi
1g1(y)r + Dε(t),

sr
2(t) = hr

2g2(y)r − hi
2g2(y)i + Dε(t),

si
2(t) = hi

2g2(y)r + hr
2g2(y)i + Dε(t),

s3(t) = h3g3(y) + Dε(t),

(8)

where Dε(t) simulates the noise generated by the communication channel and noise source. The controller v
at the receiving end was designed as (6), which contains the transmission signal s(t) and v = s(t)− f (x) +
ke. As CMPS occurs, x(t) approaches H(t)y(t) (H(t) = diag{hr

1 + jhi
1, hr

2 + jhi
2, h3}). The information

signal recovered at the receiving end is Hg(t) = diag{hg1, hg2, hg3} = diag{x1/y1, x2/y2, x3/y3}.
Compared with other examples of communication systems [26–33], the CMPS-based communication

scheme has the following advantages:
(1) As shown in Equation (7), two layers masked by noise and chaotic signals are used here, where

the chaotic signal is the derivative of the system state variable, not the state variable itself, which differs
from traditional chaotic masking, thus increasing the difficulty of decoding.

(2) The method of recovering plain-text signals is essentially different. In traditional chaos masking,
a transmission signal is used to subtract a synchronized chaotic signal, in order to recover a plain-text signal.
The effect of channel noise is theoretically ignored and the bit error rate (BER) cannot be guaranteed to be
zero. In our communication scheme, we use a CMPS controller to ensure that the signal at the receiving end
is equal to the product of the plain-text and chaotic signals. Therefore, BER = 0 for the recovered signal
in theory.

(3) Compared with CS, which is often used for chaotic communication, CMPS can be observed from
partially or completely different dynamic systems. CS requires the sender and receiver to be identical,
which is difficult in practical applications; especially for long-term device operation. With regard to
CMPS, the channel transmitter and receiver can be the same or different, which avoids this problem at a
basic level.

(4) The transmission signal involves complex operations, such as the multiplication of complex
numbers and taking derivatives. The ciphertext signal transmitted by each channel is a combination
of five pieces of plain-text information and chaotic signal derivatives. The smartphone samples the
sensor every minute. Even if a certain channel is intercepted, it is extremely hard to crack the plain-text
in one minute, thereby increasing attack resistance and information security.

(5) The dynamic characteristics of the time delay complex Chen system are more complicated than
those of the time delay-free complex system, which can increase the secrecy of chaotic communication.

4. Controller Design

We adopted the following time delay complex Chen system as the drive system L1 at the sending
end and response system L2 at the receiving end:

L1 :


ẏ1 = a1(y2 − y1),
ẏ2 = (a2 − a1)y1 + a2y2 − y1y3(t− τ),
ẏ3 = −a3y3(t− τ) + (1/2)(ȳ1y2 + y1ȳ2),

(9)
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L2 :


ẋ1 = a1(x2 − x1) + v1 + jv2,
ẋ2 = (a2 − a1)x1 + a2x2 − x1x3(t− τ) + v3 + jv4,
ẋ3 = −a3x3(t− τ) + (1/2)(x̄1x2 + y1 x̄2) + v5,

(10)

where y1 = u1 + ju2 and y2 = u3 + ju4 are the complex state variables of the drive system L1,
x1 = u′1 + ju′2, and x2 = u′3 + ju′4 are the complex state variables of the response system L2, and the
real variables are y3 = u5 and x3 = u′5. The controller is v = diag{v1 + jv2, v3 + jv4, v5}. Here, τ = 1 s
and the system is chaotic, as shown as Figure 1.

The system parameters (a1 = 35, a2 = 23, a3 = 1, τ = 1 s) and initial conditions (u(0) = (1, 2, 3, 4, 1)T,
u′(0) = (1, 2, 3, 4, 1)T) are certified by the sender and receiver. We employed controller (6), with k1 =

k2 = k3 = k4 = k5 = −100. Therefore, the controller was designed as:

vr
1 = sr

1 − f r
1(x) + k1er

1
= s1 − a1(u′3(t− τ)− u′1)− k1(u′1 − h1 ∗ u1 + h2 ∗ u2)

vi
1 = si

1 − f i
1(x) + k2ei

1
= s2 − a1(u′4 − u′2)− k2(u′2 − h1 ∗ u2 − h2 ∗ u1)

vr
2 = sr

2 − f r
2(x) + k3er

2
= s3 − (a2 − a1)u′1 − a2u′3(t− τ)− u′1u′5
−k3(u′3(t− τ)− h3 ∗ u3 + h4 ∗ u4)

vi
2 = si

2 − f i
2(x) + k4ei

2
= s4 − (a2 − a1)u′2 − a2u′4 − u′2u′5
−k4(u′4 − h3 ∗ u4 − h3 ∗ u4)

v3 = s3 − f3(x) + k5e5

= s5 + a3u′3(t− τ)− (u′1 ∗ u′3(t− τ) + u′2 ∗ u′4)
−k5(u′5 − h5 ∗ u5)

(11)

First, we chose h1 = h2 = j, h3 = −1, which means that e1 = (u′1 + u2) + j(u′2 − u1) = 0,
e2 = (u′3(t− τ) + u4) + j(u′4 − u3) = 0, and e3 = u′5 + u5 = 0. In fact, x1, x2 and y1, y2 realize CCS,
while x3 and y3 realize anti-synchronization. The attractor projections of this synchronization for the
time delay complex Chen system are shown in Figure 7.

Figure 7. Attractor projections of special synchronization for time delay complex Chen system. Red attractor,
system L1; green attractor, system L2. (a) u2 − u5, (b) u1 − u4, (c) u1 − u3 − u5, and (d) u3 − u4 − u5.
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5. Application and Simulation

In this section, we describe the simulation of the information transmission process for a real
wireless body area network. We chose

• hr
1 = 35 + 5 ∗ rand(1, 1) as the temperature, within the range of [35, 40] (◦C);

• hi
1 = 70 + 130 ∗ rand(1, 1) to stand for the high blood pressure value, within the range of [70, 200]

(mmHg);
• hr

2 = 40 + 60 ∗ rand(1, 1) to stand for the low blood pressure value, within the range of [40, 100]
(mmHg);

• hi
2 = 60 + 40 ∗ rand(1, 1) as the heart rate, within the range of [60, 100] (beats per minute, bpm); and

• h3 = 3.9 + 6.1 ∗ rand(1, 1) as blood sugar, within the range of [3.9, 10] (mmol/L).

We obtained the CMPS error, as shown in Figure 8. The sender system collected data every minute,
such that system errors were larger at the beginning of every minute, but quickly converged to zero.
This indicates that CMPS takes place with complex scaling factors h1, h2, h3. In reality, the physiological
condition of the human body does not suddenly change and, so, the CMPS controller is able to maintain
synchronization in one sampling period. The information transmission process is depicted in Figures 9–13.
The transmitted signal s(t) completely covered the information signal, while information signals h(t)
were recovered with high precision. The above simulations demonstrate that the experimental results
were in accordance with our theoretical analysis. The proposed communication system can quickly
transmit information with high security.
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6. Security Analysis

In this section, we analyze the security of the proposed CMPS communication scheme for WBAN.

6.1. Key Space Analysis

For the convenience of analysis, noise is not considered in the communication scheme. If a
third party intercepts the signals of transmission channel such as s(t), as sr

1(t) = hr
1g1(y)r − hi

1g1(y)i

or si
1(t) = hr

1g1(y)i + hi
1g1(y)r, the message signal H cannot be decrypted without the private keys

such as the function g(y). In particular, when the amplitude of H is much smaller than that of g(y),
s(t)� g(y). It is impossible to decrypt the message signal H using only the signals of transmission
channel. Therefore, for private keys g(y) include parameters, initial conditions and time lag τ, the key
space of our algorithm is infinite.

6.2. Key Sensitivity Analysis

In the proposed scheme, the most important private key is the system parameters and initial
conditions. To analyze the sensitivity, the message signal H was transmitted with two close initial
conditions u′1(0) = (1, 0, 0, 0, 0)T in the senor node and u′2(0) = (1, 0, 0, 0, 0.1)T at the sink node.
The CMPS process is presented in Figure 14. The results demonstrate that the proposed algorithm has
good sensitivity to the private key.
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Figure 14. The CMPS process with u′1(0) = (1, 0, 0, 0, 0)T and u′2(0) = (1, 0, 0, 0, 0.1)T.

7. Conclusions

We first analyzed the characteristics of time delay complex Chen systems, outlining their randomness
and unpredictability. Then, we proposed an innovative communication scheme based on CMPS for
wireless body area networks and discussed its advantages. As the complex scale factor is more complicated
than the real scale factor and the calculation of complex numbers is more complicated, the scheme can
greatly increase the security of communication systems. Finally, we verified the effectiveness of the
proposed communication system by conducting simulation experiments. The system could quickly and
securely transmit information with strong robustness against noise. From the beginning, when Lorenz
discovered and proposed chaos theory based on weather changes in nature, to the current chaos theory
being applied in many fields, chaos theory has been constantly enriched and developed. The application
of chaos communication theory in the field of WBANs is an important branch. The proposed chaotic
communication scheme based on CMPS for WBANs only has its feasibility verified at the theoretical
stage. It will be realized in the future, thus enhancing WBAN development.
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Abbreviations

The following abbreviations are used in this manuscript:

CMPS complex modified projection synchronization
WBAN wireless body area network
PS projection synchronization
MPS modified projection synchronization
CS complete synchronization
AS anti synchronization
CCS complex complete synchronization
BER bit error rate
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