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Abstract: Unambiguous quantum state discrimination is a strategy where the conclusive result
can always be trusted. This strategy is very important, since it can be used for various quantum
information protocols, including quantum key distribution. However, in the view of quantumness,
it is not clear what is going on in performing unambiguous quantum state discrimination. To answer
the question, we investigate coherence distribution when unambiguous discrimination is performed
by generalized measurement. Specially, we study coherence distribution in three cases, which consist
of unambiguous quantum state discrimination, sequential quantum state discrimination, and assisted
optimal discrimination, which are considered to be a family of unambiguous quantum state
discrimination. In this investigation, we show that the structure of generalized measurements
performing various types of unambiguous quantum state discrimination can be understood in
terms of coherence distribution. Our result is not limited to the discrimination of two pure quantum
states, but it is extended to the discrimination of two mixed states.

Keywords: coherence distribution; generalized measurement; unambiguous discrimination;
sequential state discrimination; assisted optimal state discrimination

1. Introduction

Unambiguous quantum state discrimination (UD) is a strategy for discriminating quantum
states without an error. The errorless results in UD require of containing the inconclusive result.
Even though many successful applications of UD have been known, it is not clear what can make
UD successful. It is known that UD can be constructed in terms of generalized measurement [1–7].
Because generalized measurement performing UD should consist of preparing an auxiliary(or ancilla)
system and interacting with a given quantum system [8,9], understanding what is going on in the
interaction of UD is very important.

One can regard UD as a game between a sender called Alice and a receiver called Bob. When the
interaction is terminated, there can be many choices for Bob in generalized measurement, according to
whether Bob’s measurement is optimal or not and which systems Bob measures on. The first choice
is that Bob only performs a local projective measurement on his auxiliary system. If Bob performs
non-optimal unambiguous discrimination, which means that Bob’s measurement does not optimize
average success probability, then one can obtain partial information from Bob’s post-measurement
state [10]. It leads to sequential state discrimination (SSD) [10–18]. The second choice is that Bob
performs local projective measurement on both Alice and his system. This choice leads to assisted
optimal state discrimination (AOSD) [19–22]. In fact, AOSD is classified into two cases, such as
AOSD1 and AOSD2. In AOSD1, Bob discriminates one out of Alice’s two quantum states. Meanwhile,
in AOSD2, Bob discriminates every Alice’s quantum state.
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Quantum coherence [23] is an important feature in revealing the quantum nature of a system.
It is known to help us to understand the concept of wave-particle duality [24–26]. Not only that, it is
suggested that quantum coherence can be related to a various quantum information processings [27–31].
Additionally, quantum coherence has an advantage in that it can be studied in a single system as
well as in a multipartite system. Further, it can be used to unify various quantum characteristics.
Additionally, it can help to understand the behavior of quantum operation [32].

Therefore, in this work, using coherence, we study what is going on when the generalized
measurement is performed for various types of UD. To do it, we investigate how coherence is
distributed in performing generalized measurements for UD, SSD, and AOSD. For the purpose,
we consider relative quantum coherence (RQC), as a coherence measure [33]. Further, in order to
understand the behavior of coherence distribution, we need to study the localization of relative
quantum coherence (RQC). For the measure of localization of relative quantum coherence (RQC),
we consider entropic quantum discord [34–40] and symmetrized discord [11,15].

Our investigation tells that the unitary operator in generalized measurement for UD moves
the localization of RQC in Alice’s initial ensemble(or average state) into Bob’s auxiliary system.
Meanwhile, the unitary operator in generalized measurement for SSD distributes RQC in Alice’s initial
ensemble to both Alice’s and Bob’s systems. Further, the unitary operator in generalized measurement
for AOSD1 moves the localization of RQC in Alice’s initial ensemble into Bob’s auxiliary system.
Meanwhile, the unitary operator in generalized measurement for AOSD2 distributes RQC in Alice’s
initial ensemble to both Alice’s and Bob’s systems.

In an operational view, our result implies that coherence distribution depends on the way
where Bob constructs his generalized measurement. As known, UD, SSD, AOSD1, and AOSD2
performs unambiguous discrimination. Because coherence is regarded as a resource for quantum
operation, understanding how coherence distribution occurs in these scenarios is an important subject
of investigation. We show that the feature of coherence distribution in these scenarios depends on the
characteristic of each scenario’s measurement. Further, we show that our argument could be extended
to cases, including two mixed states. In other words, our arguments listed above is not limited to
discrimination of two pure states. In terms of entropic quantum discord and symmetrized discord as
witnesses of RQC localization, our result can help to understand the quantum correlations.

Furthermore, our result consistently reveals a relation between quantumness and unambiguous
quantum state discrimination. It is well known that AOSD requires partially quantum dissonance,
which is defined as quantum discord in separable state [41]. Meanwhile, our result explains the
relationship between coherence distribution and AOSD. Additionally, it should be noted that we could
extend our argument successfully to two mixed states case.

This paper is organized. as follows. In Section 2, we briefly review RQC and RQC localization.
Additionally, we show that entropic quantum discord and symmetrized discord can be applied for
witnesses of RQC localization. In Section 3, we explain four strategies (UD, SSD, AOSD1, and AOSD2),
which can be understood as a deformed structure of UD. (Actually, AOSD1 and AOSD2) have
an equivalent structure as AOSD. In Section 4, we analyze coherence distribution in generalized
measurements for four cases when every two quantum state of Alice is pure. In Section 5, we extend
our argument in Section 4 to mixed states case. Finally, we conclude and discuss our result in
Section 6. Because UD based algorithms can be applied to quantum random number generation [42],
quantum key distribution [43,44], and quantum state tomography [45], our result can contribute to
understanding how coherence distribution is essential in quantum information protocols.

2. Preliminaries

2.1. Definition of RQC

Although superposition is one of the fundamental concepts in quantum physics, it is difficult to
rigorously define the notion of superposition. Despite this, the state of a system without superposition
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is expressed as a classical probability distribution, which is equivalent to the diagonal density operator.
This state is known as the incoherent state. Additionally, the incoherent operation is defined as a
completely positive map (CP map), which maps the set of incoherent state onto itself. In this way,
coherence can be defined as a quantity in which incoherent operation does not increase.

From this, the mathematical conditions of coherence measure C(·) can be provided, as follows [23]:

(C1) Assume that I is the set of incoherent states. Then, C(δ) = 0 if and only if δ ∈ I .
(C2) Assume that incoherent operation is expressed as a set of Kraus operators {K1, · · · , Kn|KiIK†

i ⊂ I ∀i}.

−Given the incoherent CPTP map, C satisfies C(ρ) ≥ C(Φ(ρ)), where Φ(ρ) = ∑n
i=1 KiρK†

i .
−For the post-measurement state ρi = KiρK†

i /pi and the corresponding probability pi = Tr[KiρK†
i ],

C satisfies C(ρ) ≥ ∑n
i=1 piC(ρi).

(C3) C is convex, meaning that C satisfies ∑n
i=1 piC(ρi) ≥ C(∑n

i=1 piρi).

According to Baumgratz, Cramer, and Plenio [23], the relative entropy of coherence satisfies the
above three conditions and it is defined as

Crel.ent(ρ) = S(ρdiag)− S(ρ).

Example 1. (Role of coherence in BB84 protocol) Most of quantum key distribution protocol uses a superposed
state as an information carrier, which has nonzero coherence, in order to provide security between a sender
and a receiver. Here, we introduce a BB84 protocol [43], which is described in Figure 1. In Figure 1a, Alice
produces a qubit |x〉 ∈ {|0〉 , |1〉}, and performs a unitary operator Ua, depending on her random bit a ∈ {0, 1}.
Here, Ua is an identity if a = 0 and a Hadamard gate if a = 1. Subsequently, Alice sends one out of four
qubits {|0〉 , |1〉 , |+〉 , |−〉}. After Alice sends a qubit to Bob, Bob performs a unitary operator Ub, depending
on his random bit b ∈ {0, 1}. Here, Ub is an identity if b = 0 and a Hadamard gate if b = 1. Subsequently,
Bob performs a projective measurement {|0〉 〈0| , |1〉 〈1|} and obtains a measurement outcome of y ∈ {0, 1}.

We assume that a and b are randomly choosen as a = 1 and b = 1, as in Figure 1b. Additionally,
we assume that Alice prepares a qubit |0〉. Subsequently, Alice’s unitary operator Ua=1 = H transforms
|0〉 into |+〉, which has nonzero coherence in the fixed basis {|0〉 , |1〉}. Because Bob’s unitary operator
Ub=1 = H transforms |+〉 into |0〉, Bob always obtains the measurement outcome of y = 0, when Alice
prepares |0〉.

In Figure 1c, Eve performs eavesdropping between Alice and Bob. Here, we assume that Eve
performs a strategy that, after performing her measurement, she sends the qubit |z〉 corresponding
to the measurement outcome of z ∈ {0, 1} to Bob. Note that Eve’s post-measurement state can be
incoherent. Subsequently, there is a possibility that Bob obtains a measurement outcome of y = 1,
which is different from x = 0. Thus, Alice and Bob can notice Eve’s presence by comparing their list of
a and b.

Consequently, it implies that coherence can be a resource for security of BB84.
Additionally, M.-L. Hu and H. Fan [33] defined the basis-dependent measure of coherence as

Crel.ent(ρ, σ) = −∑
i
〈ψi|ρ|ψi〉 log2 〈ψi|ρ|ψi〉 − S(ρ).

where {|ψi〉}i is a fixed basis, consisting of σ. This coherence measure is also known as the relative
quantum coherence(RQC). If σ is degenerate, then the basis that consists of σ is not unique [33]. Therefore,
the suprenum of the RQC under every basis of σ is considered to be

C(?)
rel.ent(ρ, σ) = sup

{|ψi〉}i

Crel.ent(ρ, σ).
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This measure of coherence is also called the maximum RQC [33]. It is well known that RQC is
applicable for bipartite system, where it can be related to various quantum correlations, including
quantum discord, measurement-induced disturbance, and nonlocality. Particularly, entropic quantum
discord has a close relationship with RQC localization.

Figure 1. Description of BB84 protocol and coherence therein. In (a), Alice prepares a qubit |x〉 ∈ {0, 1},
and Bob performs a projective measurement {|0〉 〈0| , |1〉 〈1|}. Here, Alice (Bob) performs a unitary
operator Ua (Ub), depending on a random bit a ∈ {0, 1} (b = {0, 1}). Here, Ux is an identity if x = 0,
and Ux is a Hadamard if x = 1. In (b), we assume that Alice prepares |x〉 = |0〉, and a is given as a = 1.
Subsequently, Ua = H transforms |0〉 into |+〉, which has nonzero coherence. If b = 1, Bob obtains
a measurement outcome y = 0 which is same as x = 0. In (c), Eve appears between Alice and Bob.
Eve uses a strategy to measure Alice’s qubit and sends |z〉, which corresponds to her outcome z, to Bob.
Suppose that x = 0 and a = 1. Subsequently, Eve’s operation can be incoherent, since it transforms the
coherent state |+〉 into the noncoherent state, on a fixed basis. Because of this, there is a possibility that
Bob obtains y = 1, even if x = 0.

2.2. Definition of RQC Discrepancy and Localization

In order to define the RQC of a bipartite state ρAB, the construction of a fixed basis for systems
A and B is required. Assume that both the fixed orthonormal basis {Π(P)

i }i and {Π(Q)
i }i consist

of each system A and B. The incoherent state ρPQ, which corresponds to ρAB, is then given as

ρPQ = ∑i,j Π(P)
i ⊗Π(Q)

j ρABΠ(P)
i ⊗Π(Q)

j . Likewise, the incoherent state ρP(ρQ), which corresponds
to the partial state ρA(ρB), is given as ρP = TrQρPQ(ρQ = TrPρPQ). Therefore, the RQCs of the states
ρAB, ρA, and ρB are defined as [33]

Crel.ent(ρAB, ρPQ) = S(ρPQ)− S(ρAB),

Crel.ent(ρA, ρP) = S(ρP)− S(ρA),

Crel.ent(ρB, ρQ) = S(ρQ)− S(ρB).

Because RQC is not increased under the trace out, Crel.ent(ρAB, ρPQ) must be greater than or equal
to both Crel.ent(ρA, ρP) and Crel.ent(ρB, ρQ). From an operational viewpoint, not every bipartite system
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ρAB is guaranteed to be localized into a certain subsystem localized. In order to deal with this argument
quantitively, the nonlocalized quantities of RQC are defined as

δA(ρAB) ≡ Crel.ent(ρAB, ρPQ)− Crel.ent(ρA, ρP),

δB(ρAB) ≡ Crel.ent(ρAB, ρPQ)− Crel.ent(ρB, ρQ).

δA(δB) is also known as the RQC discrepancy. If δA(δB) is equal to zero, Crel.ent(ρAB, ρPQ) is equal to
Crel.ent(ρA, ρP)(Crel.ent(ρB, ρQ)). This means that the RQC of ρAB is localized into system A(B). However,
if δA(δB) is nonzero, then the RQC of ρAB is not localized into system A(B).

2.3. Entropic Quantum Discord as a Witness of RQC Localization

According to a study that was scarried out by M.-L. Hu and H. Fan [33], the discrepancy in the
RQC is lower bounded by entropic quantum discord [34]

DA(ρAB) ≤ δA(ρAB), DB(ρAB) ≤ δB(ρAB). (1)

where DA(ρAB) and DB(ρAB) describe the entropic quantum discord, which is defined as

DA(ρAB) = I(ρAB)− max
{M(A)

k }NA
k=1

J({M(A)
k }

NA
k=1|B),

DB(ρAB) = I(ρAB)− max
{M(B)

k }
NB
k=1

J({M(B)
k }

NB
k=1|A). (2)

Here, I(ρAB) is the von Neumann mutual information between systems A and B. Additionally,
J({M(A)

k }
NA
k=1|B)(J({M(B)

k }
NB
k=1)|A) is the classical part of the mutual information between system A

and B, where the local measurement that is expressed as POVM {M(A)
k }

NA
k=1({M(B)

k }
NB
k=1) is performed

on system A(B) [46]. Equation (1) implies that entropic quantum discord is applicable as a witness for
RQC localization. If the entropic quantum discord DA(ρAB)(DB(ρAB)) is nonzero, then the RQC of
ρAB is not localized into system A(system B).

The witness in Equation (1) is asymmetric under a change in the lower index. In order to
investigate RQC localization, the witness for system A and B should be simultaneously tested. Hence,
if a witness is symmetrical under a change in the lower index, we can simultaneously investigate the
RQC localization by testing one witness. Fortunately, symmetrized discord can be exploited [11]:

DAB(ρAB) =
√

DA(ρAB)DB(ρAB),

Substituting Equation (1) into Equation (2), an inequality is obtained as

DAB(ρAB) ≤
√

δA(ρAB)δB(ρAB).

If DAB(ρAB) is nonzero, the RQC of ρAB is not localized into A or B. Moreover, if the RQC of ρAB is
localized into either system A or B, the symmetrized discord is equal to zero. Hence, the symmetrized
discord can be applied as a witness in a similar that is manner to symmetric discord [33].

Example 2. (RQC localization during CNOT operation) By using the formula that is proposed in
Ref. [36], the entropic quantum discord of the maximally entangled state is evaluated as DA(|ψ−〉 〈ψ−|) =
DB(|ψ−〉 〈ψ−|) = 1. Therefore, the symmetrized discord is nonzero. This implies that RQC of the maximally
entangled state is not localized in either the system A or the system B. Additionally, the RQC of the
maximally entangled state is Crel.ent(|ψ−〉 〈ψ−| , ρPQ) = 1, where the fixed basis is {|0〉 , |1〉} and ρPQ is
0.5 |01〉 〈01|+ 0.5 |10〉 〈10|.
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After CNOT operation, the composite state is transformed into |−0〉. Because this state is a product
state, the entropic quantum discord is zero. This implies that the RQC is localized in either the system
A or the system B. Because the RQC of the system A is evaluated as Crel.ent(|−〉 〈−| , ρP) = 1, where ρP
is a maximally mixed state, we can conclude that the RQC of the maximally entangled state is localized
in the system A by the CNOT gate. It implies that RQC localization may be understood as a resource
for implementing CNOT operation (Figure 2).

Figure 2. Relative quantum coherence (RQC) localization in CNOT operation. When the input is a
maximally entangled state |ψ−〉 = (|01〉 − |10〉)

√
2, RQC of it is not localized in either a system A or a

system B. However, after the CNOT operation, the RQC is localized in a system A.

3. Structure of Various Protocols Based on Unambiguous Discrimination

Suppose that unambiguous discrimination is performed by Alice and Bob. Subsequently, one can
assume that Alice prepares a pure state |ψi〉 ∈ {|ψ1〉 , |ψ2〉}, with a prior probability qi. Here, |ψ1〉 is
not orthogonal to |ψ2〉. Alice sends a pure state |ψi〉 to Bob through a quantum channel. Subsequently,
Bob can discriminate Alice’s pure state without any error. Mathematically, Bob’s measurement is
expressed as three elements POVM {M0, M1, M2}. Here, Mi is an element that corresponds to a
measurement outcome i ∈ {0, 1, 2}. If i 6= 0, then Bob can conclude that Alice’s pure state is |ψi〉
without any error. In this case, the outcome of measurement i is considered as a conclusive outcome.
Meanwhile, if i = 0, Bob cannot conclude which of Alice’s pure states is prepared. In this case,
the measurement outcome i = 0 is considered as the inconclusive outcome.

If the possibility that Bob obtains an inconclusive outcome is excluded, then Bob cannot carry
out the measurement which discriminates Alice’s pure states without an error. This is because
nonorthogonal pure states cannot be perfectly discriminated, according to quantum theory.

When the generalized measurement is considered, Bob needs to extend the Hilbert space,
where Alice’s pure state resides. If the Hilbert space of Alice (Bob) is denoted as HA(HB), the task
of generalized measurement should consider a unitary operator UAB : HA ⊗ HB → HA ⊗ HB,
where Alice’s pure state resides inHA and the state of Bob’s auxiliary system is found inHB.

After the unitary operator UAB is performed, Bob’s composite state is measured via a
projective measurement. Bob then discriminates Alice’s pure states without any error, which is
obtained by the projective measurement. The structure of UAB depends on how Bob constructs the
projective measurement.

3.1. The Structure of Unambiguous Discrimination (UD) and Sequential State Discrimination (SSD)

First, if Bob only performs a local projective measurement on his ancilla system, the structure of
UAB is:

UAB |ψi〉A ⊗ |b〉B =
√

αi |φi〉A ⊗ |i〉B +
√

1− αi |φ0〉A ⊗ |0〉B . (3)

Bob’s local projective measurement is expressed as {|i〉 〈i|}2
i=0. The non-negative real value αi is the

probability that Bob obtains the conclusive outcome i, and 1− αi is the probability that Bob obtains the
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inconclusive outcome (see Figure 3). A controlled-unitary operator Uc performs |φ0〉 ⊗ |0〉 → |φi〉 ⊗ |0〉
and |φi〉 ⊗ |i〉 → |φi〉 ⊗ |i〉. Therefore, we can consider UAB as UcUAB → UAB, without any loss of
generality. Therefore, Equation (3) can also be expressed as

UAB |ψi〉A ⊗ |b〉B = |φi〉A ⊗ {
√

αi |i〉B +
√

1− αi |0〉B}.
(4)

The necessary and sufficient condition for global unitary operator of Equations (3) and (4) can be
obtained by the following Lemma [47].

Lemma 1. Consider two sets {|ψ1〉 , · · · , |ψN〉} and {|φ1〉 , · · · , |φN〉}, which consist of finite vectors.
For ∀i ∈ {1, · · · , N}, the necessary and sufficient condition for global unitary operator performing U |ψi〉 =
|φi〉 is that for ∀i, j ∈ {1, · · · , N}, one has 〈ψi|ψj〉 = 〈φi|φj〉.

Applying this Lemma to Equations (3) and (4), the necessary and sufficient condition for UAB and
UAB is given, as follows:

〈ψi|ψj〉 =
√
(1− αi)(1− αj) 〈φi|φj〉 . (5)

In other words, the strategy of quantum state discrimination when considering Equations (3)
and (4) has the identical constraint. This implies that, without losing consistency, one can choose
the formalism of Equation (4). (If the post-measurement state of Bob is given by one of the set
{|φ1〉 , |φ2〉}, then Charlie can discriminate the post-measurement state of Bob without any error.
Therefore, the formalism of Equation (4) provides sequential state discrimination (SSD) of Bob
and Charlie.)

Suppose that Alice prepares one of two pure states |ψ1〉 , |ψ2〉. Here, let us assume that 〈ψ1|ψ2〉 is
a real number. Subsequently, the explicit form of UAB is expressed as [11]

UAB =
1

1− s2

(
|φ1〉 〈ψ̃1|A ⊗ |η1〉 〈b|B + |φ2〉 〈ψ̃2|A ⊗ |η2〉 〈b|B

)
+ V .

Here, s = 〈ψ1|ψ2〉, |ψ̃i〉 = |ψi〉 − |ψj〉 〈ψj|ψi〉 and |ηi〉 =
√

αi |i〉+
√

1− αi |0〉. V is an operator,
which acts on the subspace of {|1〉 , |2〉}. This explicitly means that V |ψi〉A ⊗ |b〉B = 0 for all i ∈ {1, 2}.
When Equation (5) is satisfied, the structure of UAB provides various explicit forms of two input state
|ψ1〉 , |ψ2〉 and post-measurement states |φ1〉 , |φ2〉. For instance, an explicit form of |ψ1〉 , |ψ2〉 can be
given by

|ψj〉 =
√

1 + s
2
|0〉+ (−1)j+1

√
1− s

2
|1〉 .

Afterwards, the explicit form of post-measurement states is provided by

|φj〉 =
√

1 + s′

2
|0〉+ (−1)j+1

√
1− s′

2
|1〉 , s′ =

s√
(1− α1)(1− αj)

. (6)

When explicit forms of input states and post-measurement states are provided, UAB is determined.
In UD, Bob discriminates pure states of Alice optimally. Therefore, the post-measurement states of Bob
are completely overlapped (s′ = 1). According to explicit form of Equation (6), the post-measurement
states become |φ1〉 = |φ2〉 = |0〉, which are identical. (Suppose that |φ1〉 = |φ2〉 = |+〉. Because there
exists an incoherent unitary operator performing |+〉 → |0〉, the explicit form of post-measurement
states cannot be fixed. In fact, the incoherent unitary operator acts on Alice’s system and it does not
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affect the optimal success probability and optimal conditions.) This implies that, in UD, the coherence
of Alice’s ensemble is localized in Bob’s ancilla system.

In Equation (4), the unitary operator UAB generates a post-measurement state |φi〉,
which corresponds to the measurement outcome i. Therefore, there is a subsequent measurement,
which can extract an information from Bob’s post-measurement state, if Bob performs a nonoptimal
unambiguous discrimination. If Charlie constructs a subsequent measurement, Alice, Bob and Charlie
can perform sequential state discrimination [10]. In this case, Charlie’s measurement includes the
unitary operator UAC : HA ⊗HC → HA ⊗HC, which is expressed as

UAC |φi〉A ⊗ |c〉C = |χi〉A ⊗ {
√

α′i |i〉C +
√

1− α′i |0〉}C.

(7)

Figure 3. (a) Unambiguous discrimination between Alice and Bob, where Bob’s measurement is
expressed as POVM {M0, M1, M2}. (b) The structure of unambiguous quantum state discrimination
(UD), where Bob performs a local projective measurement on his auxiliary system. In this structure,
the unitary operator generates a post-measurement state that corresponds to a specific measurement
outcome. If Bob carries out a non-optimal unambiguous discrimination, Charlie can discriminate
Bob’s post-measurement states. In this case, (b) is obviously in the form of sequential state
discrimination (SSD).

Charlie’s local projective measurement is expressed as {|i〉 〈i|}2
i=0. The non-negative real value α′i

is the probability that Charlie obtains a conclusive result i, and 1− α′i is the probability that Charlie
obtains a inconclusive result. The structure of sequential state discrimination (SSD) consists of UAB in
Equation (4) and UAC in Equation (7). The structure of Charlie’s measurement depends on the setting of
Bob’s measurement [10]. From Bob’s viewpoint, whether his measurement has structure of UD or SSD
depends only on whether he performs an optimal discrimination or not. Because UD does not include
Charlie, Bob has to optimally discriminate Alice’s states. However, in SSD, Bob should not perform
optimal discrimination. If Bob performs the optimal unambiguous discrimination, then Charlie cannot
perform unambiguous discrimination on Bob’s post-measurement states.
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3.2. Structure of Assisted Optimal State Discrimination (AOSD)

Second, if Bob performs a projective measurement on both Alice’s system and his own, the unitary
operator VAB is in the form [22]

VAB |ψ1〉A ⊗ |0〉B =
√

1− |α1|2 |0〉A ⊗ |0〉B + α1 |Φ〉A ⊗ |1〉B ,

VAB |ψ2〉A ⊗ |0〉B =
√

1− |α2|2 |1〉A ⊗ |0〉B + α2 |Φ〉A ⊗ |1〉B ,

where {|0〉 , |1〉} is the orthonormal basis which consists of HA and HB. It is also apparent that
|Φ〉 = cos β |0〉+ sin βeiδ |1〉. Here, the inner product 〈ψ1|ψ2〉 is expressed as α∗1α2 = | 〈ψ1|ψ2〉 |eiδ.

Bob performs a local projective measurement {|i〉 〈i|}1
i=0 on each system X ∈ {A, B} (See Figure 4).

Here, |αi| is the probability that Bob obtains the conclusive result i, and
√

1− |αi|2 is the probability
that Bob obtains the inconclusive result. If Bob obtains a conclusive result “0” by measuring system
B, then he can discriminate Alice’s pure state, from the measurement outcome on system A. If the
measurement outcome of system A is i, then, without any error, Bob can conclude that Alice’s pure
state is |ψi〉. Meanwhile, if Bob obtains the conclusive result “1” by measuring system B, he cannot
discriminate Alice’s pure states. Hence, the measurement outcome on system B informs Bob as to
whether the measurement outcome is conclusive or not, and the result on system A tells Bob which
pure state Alice has prepared.

Figure 4. The structure of assisted optimal state discrimination (AOSD), where using a projective
measurement, Bob measures both his system and Alice’s system. After the unitary operation is
terminated, Bob performs local projective measurements on a system A and his auxiliary system
B, respectively. Bob’s measurement outcome is expressed in the measurement table. Let each outcome
of the projective measurements be denoted as j and k. If k = 1, then Bob’s outcome is inconclusive,
regardless of j. Meanwhile, if k = 0, Bob can guess that Alice prepared |ψj〉 without an error.

This structure is known as assisted optimal state discrimination (AOSD). However, every case
of AOSD uses both of the local projective measurements. Suppose that Bob discriminates one of
Alice’s pure states(in this case, it is called AOSD1). Bob then only needs the measurement outcome on
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system B. Meanwhile, if Bob discriminates every pure state of Alice (in this case, it is called AOSD2),
Bob should consider every measurement outcome.

4. Investigating Coherence Distribution in Various Protocols

4.1. Coherence Distribution in UD and SSD

Because the unitary operators of UD and SSD have the same structure, the coherence distribution
of UD and SSD can be analyzed while using the same geometric structure. This geometric structure
comes from the necessary and sufficient condition that the unitary operator UAB exists. Because UAB
preserves the inner product between two pure states, the necessary and sufficient conditon that UAB
exists is expressd as [14,16]

(1− α1)(1− α2) ≥ s2. (8)

Here, s ≡ | 〈ψ1|ψ2〉 |. In Equation (8), it is assumed that, for post-measurement states |φ1〉 and
|φ2〉, | 〈φ1|φ2〉 | ≤ 1. The set of two-dimensional real vectors (α1, α2), which satisfies Equation (8),
can be geometrically expressed, as seen in Figure 5. Here, Bob’s measurement setting has one-to-one
correspondence with a real vector (α1, α2). Additionally Bob’s optimal measurement corresponds to a
tangential point between the curve Q1PQ2 and the line P(B)

s = q1α1 + q2α2 (here, P(B)
s is the average

success probability of Bob).
In many discrimination strategies, Alice informs Bob of her prior probability distribution.

This means that, from the viewpoint of Bob, Alice’s state is expressed as the initial ensemble
(or average state) q1 |ψ1〉 〈ψ1|+ q2 |ψ2〉 〈ψ2| [11,22]. Therefore, the unitary operator UAB will produce
an average state, expressed as

ρAB = UAB
{
(q1 |ψ1〉 〈ψ1|+ q2 |ψ2〉 〈ψ2|)A ⊗ |b〉 〈b|B

}
U†

AB

= ∑
i∈{1,2}

qi |φi〉 〈φi|A ⊗ {
√

αi |i〉+
√

1− αi |0〉}{
√

αi 〈i|+
√

1− αi 〈0|}B.

In UD, the post-measurement states become identical, which means that |φ1〉 = |φ2〉. Therefore,
ρA(= TrBρAB) is an incoherent state. Meanwhile, in SSD, |φ1〉 and |φ2〉 are neither orthogonal nor
identical. Therefore, ρA = q1 |φ1〉 〈φ1|+ q1 |φ2〉 〈φ2| has nonzero coherence. Therefore, UD and SSD
have a difference in coherence distribution.

Now, let us evaluate coherence distribution of UD and SSD by using measure of coherence.
Because Alice’s two pure states are non-orthogonal, the initial ensemble consists of nonzero coherence.
Now, we investigate how the unitary operator UAB distributes the coherence of the initial ensemble.
First, let us consider the maximum RQC of system B. The maximum RQC of system B is expressed,
as [15,33]

C(?)
rel.ent(ρB) = 1− H(4q1q2{1− (1− α1)(1− α2)}). (9)

Hence, C(?)
rel.ent(ρB) is expressed as a function of (α1, α2). Here, H(x) is a function of

entropy: H(x) = −∑1
k=0

1+(−1)k√1−x
2 log2

1+(−1)k√1−x
2 , where x ∈ [0, 1]. According to Equation (9),

as (1− α1)(1− α2) becomes closer to s2, C(?)
rel.ent(ρB) becomes closer to the maximum. This implies that if

Bob performs an optimal unambiguous discrimination, then C(?)
rel.ent(ρB) will reach the maximum.

Furthermore, when (α1, α2) corresponds to the optimal measurement that exists on curve Q1PQ2,
two post-measurement states |φ1〉 and |φ2〉 overlap completely [14,16]. This implies that, in UD,
the coherence in Alice’s initial ensemble is localized to Bob’s auxiliary system via unitary operator UAB.
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Figure 5. Geometric representation of the structures of UD and SSD. In (a), Bob’s POVM corresponds
to a real vector (α1, α2) in a set S ∪ ∂S, where S represents an interior of a circular sector OQ1Q2 and
∂S represents a curve Q1Q2 (solid black line). In (b), Bob’s POVM of optimal UD correponds to a real
vector (α1, α2) on the ∂S. In (c), Bob’s POVM used for SSD corresponds to the interior or the surface of
a closed convex set S̃ (solid red line). That is because, if (α1, α2) is included in S− S̃, one of Charlie’s
POVM element is negative definite. In (d), Bob’s POVM of optimal SSD corresponds to a real vector
(α1, α2) on the curve B1 A1 A2B2 (solid blue line).

In this time, let us assume that Bob and Charlie perform sequential state discrimination. If vector
(α1, α2) that correponds to Bob’s measurement is on curve Q1PQ2, then Charlie cannot perform
unambiguous discrimination. Therefore, the vector (α1, α2) should be inside sector Q1OQ2. Because the
success probability of sequential state discrimination is given as function P(B,C)

s (α1, α2), the optimal
vector (α1, α2) always satisfies the equality ~∇P(B,C)

s (α1, α2) = 0. We can numerically verify that a
vector, satisfying a zero-gradient condition, will always be on curve B1 A1 A2B2. Every vector on this
curve satisfies:

(1− α1)(1− α2) = s(= (
√

s)2). (10)

Equation (10) is equivalent to an argument proposed by J. A. Bergou et al. [10].
Next, we investigate symmetrized discord to understand the RQC localization in SSD. Here,

entropic quantum discord is derived as [11,15]

DA(ρAB) = H(τA)− H(τE) + H(τB − τABE),

DB(ρAB) = H(τB)− H(τE) + H(τA − τABE). (11)
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Here, the tangles τA, τB, τE, τABE are given as

τA = 4q1q2

{
1− s2

(1− α1)(1− α2)

}
,

τB = 4q1q2{1− (1− α1)(1− α2)},
τE = 4q1q2(1− s2), (12)

τABE = 4q1q2

{
1− s2

(1− α1)(1− α2)

}
{1− (1− α1)(1− α2)}.

Because ρAB is rank-2, Equation (11) is derived from the Koashi–Winter formula [48].
According to Equation (11) and Equation (12), symmetrized discord is also given as a function

of (α1, α2). Therefore, we numerically find an optimal vector that maximizes the symmetrized
discord. Consequently, we can see that the optimal vector (α1, α2) always exists on a curve A1B1B2 A2.
This implies that, in SSD, the coherence in Alice’s initial ensemble is distributed to both system A and
B. In other words, the coherence of ρAB is localized to neither system A nor B.

Observation 1. Suppose that Alice prepares one of two pure states. In UD, the unitary operator
UAB localizes the coherence in Alice’s initial ensemble into system B. Meanwhile, in SSD, UAB distributes the
coherence in Alice’s initial ensemble to both systems A and B.

From Observation 1, we propose that coherence distribution obviously depends on which strategy
Bob chooses. If Bob chooses UD, the coherence in the initial ensemble is localized in the ancilla system.
If Bob chooses SSD, the coherence in the initial ensemble is not localized in B.

4.2. Coherence Distribution in AOSD1 and AOSD2

Here, we investigate the coherence distribution in the unitary operator VAB, where assisted
optimal state discrimination is performed.

The unitary operator VAB transforms Alice’s initial ensemble into the following:

ωAB = VAB
{
(q1 |ψ1〉 〈ψ1|+ q2 |ψ2〉 〈ψ2|)A ⊗ |b〉 〈b|B

}
V†

AB.

According to Zhang, Chen, Kwek, and Vedral [22], zero concurrence in the average state σAB is
analytically expressed as

δ = −θ, β = tan−1
[ q1|α1|

√
1− |α1|2

q2|α2|
√

1− |α2|2
]
.

Because the success probability is not affected by the two parameters δ and θ, we can assume that
δ = θ = 0 without any loss of generality. δ and θ do not affect the success probability. In other words,
〈ψ1|ψ2〉 can be considered as a real number.

Assume that q1 ≤ q2 holds. When 〈ψ1|ψ2〉 ≤
√

q1/q2, Bob’s optimal strategy is described as
AOSD2. In this case, ρAB is given, as follows [22]:

ωAB = |ξ1〉 〈ξ1|A ⊗ |0〉 〈0|B + |Φ〉 〈Φ|A ⊗ |ξ2〉 〈ξ2|B .

Here, |ξi〉 is provided, as follows:

|ξ1〉 =

√
q1q2√

q1|α1|2 + q1|α2|2
(√

1− |α1|2α2 |0〉 −
√

1− |α2|2α1 |1〉
)

,

|ξ2〉 =

√
(1− |α1|2)|α1|2 p2

1 + (1− |α2|2)|α2|2 p2
2√

q1|α1|2 + q1|α2|2
|0〉+

√
q1|α1|2 + q1|α2|2

α1

|α1|
|1〉 .
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According to Ref. [22], DB(ωAB) is nonzero. This implies that the RQC in ωAB is not localized in
system B. According to structure of ωAB, the partial state ωA is an ensemble that is composed of two
nonorthogonal pure states. Hence, RQC is not localized in system B.

Meanwhile, if
√

q1/q2 ≤ 〈ψ1|ψ2〉 ≤ 1, Bob’s optimal strategy is described as AOSD1. In this case,
ωAB is given, as follows [22]:

ωAB = |1〉 〈1|A ⊗ {p1 |1〉 〈1|+ p2 |µ〉 〈µ|}B.

Here, |µ〉 becomes

|µ〉 =
√

1− s2 |0〉+ α2eiδ |1〉 .

Clearly, ρA is an incoherent state. Furthermore, DB(ωAB) is obviously zero, since ωAB is a product
state. This implies that the RQC in ωAB has the potential to be localized in system B. According to
Zhang, Chen, Kwek, and Vedral [22], the partial state ωA is given as a pure incoherent state. Therefore,
the RQC shown in ωAB is obviously localized in system B.

Observation 2. Suppose that Alice prepares one of two pure states. In AOSD2, the coherence in ωAB
is not localized in system B. Meanwhile, in AOSD1, the coherence in ωAB is localized in system B.

From Observation 2, we can tell that the coherence distribution in AOSD also depends on which
strategy Bob chooses. If Bob chooses AOSD2, the coherence is distributed to both system A and B.
If Bob chooses AOSD1, the coherence is localized in system B. These results imply that the structure of
generalized measurements performing unambiguous discrimination, sequential state discrimination,
and assisted optimal state discrimination can be understood by coherence distribution.

Zhang, Chen, Kwek, and Vedral [22] attempted to explain the structure of AOSD in terms of
quantum discord (or dissonance) However, if there is significant overlap between two pure states,
the entropic quantum discord becomes zero. In other words, the relationship between AOSD and
entropic quantum discord holds only when specific constraints concerning overlap are imposed.
Meanwhile, According to Figure 6, the RQC of system B is nonzero in the region

√
q1/q2 ≤ 〈ψ1|ψ2〉 ≤ 1,

where it is assumed that q1 < q2. Therefore, Observation 2 implies that there is a consistent relationship
between coherence distribution and AOSD.

Figure 6. RQC of system B in AOSD. The black, dark-blue, light-blue, purple and red solid lines
correspond to q1 = 1/4, 1/5, 1/6, 1/7, and 1/8, respectively. This figure implies that RQC is nonzero
when inner product 〈ψ1|ψ2〉 satisfies

√
q1/q2 ≤ 〈ψ1|ψ2〉 ≤ 1. In this region, the optimal strategy of Bob

is to discriminate only |ψ2〉 out of two pure states of Alice. In this case, AOSD is equivalent to AOSD1.
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5. Generalization of Coherence Distribution to 2 Mixed States Discrimination

Here, let us suppose that Alice prepares a mixed state ρi ∈ {ρ1, ρ2}, with a prior probability qi.
If the support of ρ1 and ρ2 do not ovelap completely, then Bob’s measurement can discriminate Alice’s
mixed state without any error [49,50]. Additionally, the POVM element M1(M2) consists of the kernel
of ρ2(ρ1). Unfortunately, the general structure of POVM, which can discriminate a general mixed
state without an error, has been unknown yet. However, if Alice’s Hilbert space has a special form
in HA = H(1)

A ⊕H
(2)
A ⊕ · · · ⊕ H

(R)
A , the structure of POVM for unambiguous discrimination is well

known [51]. If we assume that the state space S(HA) is constructed from this form of Hilbert space,
then Alice’s mixed state can be expressed as

ρi = r(1)i |r
(1)
i 〉 〈r

(1)
i | ⊕ · · · ⊕ r(R)

i |r(R)
i 〉 〈r

(R)
i | . (13)

Here, R is maximum rank of ρi. If | 〈r(Q)
1 |r

(Q)
2 〉 | < 1 holds for all of Q ∈ {1, 2, · · · , R}, then

Bob can discriminate Alice’s mixed states without any error. Fortunately, Bob’s POVM consists of R
sub-POVMs, where each sub-POVM discriminates |r(Q)

i 〉 , |r(Q)
i 〉 ∈ H

(Q)
A (Q ∈ {1, 2, · · · , R}) without

any error. This implies that we can consistently substitute our argument of pure states into that of
mixed states (the detailed evaluation can be found in Appendixices A and B).

5.1. Generalized Witness of RQC Localization

Now, let us consider ρi ∈ S(H
(1)
A ⊕ · · · ⊕ H

(R)
A ). That is, unitary operator UAB ∈ {UAB, VAB}

maps S(H(1)
A ⊕ · · · ⊕ H

(R)
A ⊗ HB) onto itself. This unitary operator UAB transforms Alice’s initial

ensemble into an average state expressed as

ρAB = UAB
{
(q1ρ1 + q2ρ2)A ⊗ |b〉 〈b|B

}
U †

AB =
R⊕

Q=1

σ
(Q)
AB =

R⊕
Q=1

(Trσ
(Q)
AB )σ′

(Q)
AB . (14)

Here, σ′
(Q)
AB = σ

(Q)
AB /Trσ

(Q)
AB ∈ S(H

(Q)
A ⊗ HB) is a normalized positive-semidefinite operator.

Because every σ′
(Q)
AB is of rank-2, then the Koashi–Winter formula can be used in order to obtain a

lower bound for the entropic quantum discord and symmetrized discord:

DA(ρAB) ≥
R

∑
Q=1

(Trσ
(Q)
AB )DA(σ

′(Q)
AB ) ≡WA(ρAB),

DB(ρAB) ≥
R

∑
Q=1

(Trσ
(Q)
AB )DB(σ

′(Q)
AB ) ≡WA(ρAB),

DAB(ρAB) ≥
R

∑
Q=1

(Trσ
(Q)
AB )DAB(σ

′(Q)
AB ) ≡WAB(ρAB).

Because δX(σ
′(Q)
AB ) ≥ DX(σ

′(Q)
AB ) holds for all of Q ∈ {1, 2, · · · , R} and X ∈ {A, B}, the lower

bound of the RQC discrepancy in ρAB becomes:

δA(ρAB) =
R

∑
Q=1

(Trσ
(Q)
AB )δA(σ

′(Q)
AB ) ≥ WA(ρAB),

δB(ρAB) =
R

∑
Q=1

(Trσ
(Q)
AB )δB(σ

′(Q)
AB ) ≥ WB(ρAB), (15)√

δA(ρAB)δB(ρAB) ≥ WAB(ρAB).
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In Equation (15), WA(ρAB), WB(ρAB), and WAB(ρAB) describe the generalized RQC discrepancy
in ρAB. If R = 1, the generalized RQC discrepancy is equivalent to the entropic quantum discord and
symmetrized discord of pure states. Equation (15) implies that the generalized RQC discrepancy can
be a witness of RQC localization.

5.2. Generalization of Coherence Distribution in UD and SSD

In cases of UD and SSD, unitary operator UAB has the specific form of UAB = U(1)
AB ⊕ · · · ⊕U(R)

AB .

Here, U(Q)
AB is sub-unitary and it is defined as

U(Q)
AB |r

(Q)
i 〉A ⊗ |b〉B = |s(Q)

i 〉A ⊗ {
√

α
(Q)
i |i〉B +

√
1− α

(Q)
i |0〉B}.

After UAB is terminated, then Bob’s local projective measurement {|i〉 〈i|}2
i=0 is performed

on system B.
The necessary and sufficient condition that U(Q)

AB must exist is expressed in a similar manner while

using Equation (10). This implies that Bob’s measurement consists of R real vectors (α(Q)
1 , α

(Q)
2 ) ∈ C(Q).

Here, each convex set C(Q) has the same structure as that seen in Figure 5. Therefore, we can apply our
argument of SSD to cases, including mixed states [14].

From the structure of Equation (14), the maximum RQC of ρAB is explicitly derived as

C(?)
rel.ent(ρB) =

R

∑
Q=1

(Trσ
(Q)
AB ){1− H(τ

(Q)
B )} = 1−

R

∑
Q=1

(Trσ
(Q)
AB )H(τ

(Q)
B ).

If the prior probabilities of the two mixed states ρ1 and ρ2 are given as q1 and q2, respectively,
then the entire unambiguous discrimination consists of R discrimination problems, where the pure
state |r(Q)

i 〉 ∈ {|r
(Q)
1 〉 , |r(Q)

2 〉} is prepared with the prior probability qir
(Q)
i /Tr[σ(Q)

AB ]. Hence, tangle τ
(Q)
B

is given as

τ
(Q)
B = 4

q1r(Q)
1

Trσ
(Q)
AB

q2r(Q)
2

Trσ
(Q)
AB

{1− (1− α
(Q)
1 )(1− α

(Q)
2 )}.

For all of Q ∈ {1, 2, · · · , R}, if (α(Q)
1 , α

(Q)
2 ) is on the boundary of the convex set C(Q), the maximum

RQC of ρB becomes maximized. Meanwhile, the support between the two post-measurement states
is completely overlapped. Therefore, system A does not contain coherence. In conclusion, we can
successfully extend Observation 1 to cases of mixed states.

Observation 3. Suppose that Alice prepares one out of two mixed state. In UD, the unitary operator
UAB localizes the coherence in Alice’s initial ensemble into system B. In SSD, UAB distributes the coherence in
Alice’s initial ensemble to both system A and B.

5.3. Generalization of Coherence Distribution in AOSD1 and AOSD2

Likewise, the unitary operator VAB also has a specific form of VAB = V(1)
AB ⊕ · · · ⊕ V(R)

AB . Here,

V(Q)
AB performs

V(Q)
AB |r

(Q)
1 〉A ⊗ |0〉B =

√
1− |α(Q)

1 |2 |0
(Q)〉A ⊗ |0〉B + α

(Q)
1 |φ(Q)〉A ⊗ |1〉B ,

V(Q)
AB |r

(Q)
2 〉A ⊗ |0〉B =

√
1− |α(Q)

2 |2 |1
(Q)〉A ⊗ |0〉B + α

(Q)
1 |φ(Q)〉A ⊗ |1〉B .

Here, {|0(Q)〉 , |1(Q)〉} is an orthonormal basis consisting of H(Q)
A . Moreover, |φ(Q)〉 =

cos βQ |0(Q)〉+ sin βQeiδQ |1(Q)〉. The inner product between two vectors 〈r(Q)
1 |r

(Q)
2 〉 is expressed as
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α
(Q)
1 α

(Q)
2 = | 〈r(Q)

1 |r
(Q)
2 〉 |e

iδQ . After VAB is terminated, Bob performs the projective measurement
{|0〉 〈0| , |1〉 〈1|} on his system.

Likewise, in UD and SSD, in AOSD, VAB maps S(H(1)
A ⊕ · · · ⊕H

(R)
A ⊗HB) to itself.

Therefore, we can successfully extend Observation 2 to instances of mixed states.

Observation 4. Suppose that Alice prepares one out of two mixed states. Subsequently, In AOS12,
the coherence of an initial bipartite ensemble is localized in system B. Meanwhile, in an AOSD2, the coherence
of in an initial bipartite ensemble is not localized in system B.

6. Conclusions and Future Work

In this paper, we investigated how the distribution of coherence occurs when generalized
measurement performs various types of unambiguous discrimination. By investigating the RQC
localization, we showed that the coherence distribution depends on the types of quantum unambiguous
discrimination (See Figure 7). In other words, we found that the types of quantum unambiguous
discrimination determine how coherence is distributed in performing unambiguous discrimination.
Further, we showed that our argument could be extended to cases, including two mixed states.

Figure 7. The coherence distribution in UD, SSD, AOSD1, and AOSD2. In UD, the unitary operator
localizes the coherence in Alice’s initial ensemble (ρA) into Bob’s auxiliary system. In SSD, the unitary
operator distributes the coherence in Alice’s initial ensemble into both Alice and Bob’s systems.
In AOSD1, the unitary operator localizes the coherence in Alice’s initial ensemble into Bob’s system.
In AOSD2, the unitary operator distributes the coherence in Alice’s initial ensemble to both Alice’s and
Bob’s systems. This figure shows that the way where coherence distribution occurs depends on the
structure of Bob’s measurement.

In fact, generalized measurement can be applied to performing not only unambiguous
discrimination, but also minimum error discrimination [52–58] and the fixed rate of inconclusive
result [59,60]. Therefore, while using the argument provided in this work, it is interesting to investigate
whether coherence distribution can explain the structure of generalized measurements performing
other quantum state discriminations. In other words, it can be important to study coherence distribution
in various quantum state discrimination strategies.

Beyond the discrimination tasks, a generalized measurement can be applied to various quantum
information and computation tasks. The quantum classifier [32], whose efficiency is given as O(

√
N)

for the number of data N, can be a good example. In training a quantum classifier, which is composed
of (a), a parametric multilayer quantum circuit performed on both feature register and index register
(b) local projective measurements performed on index register, it is shown that the successfully
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trained parametric multilayer quantum circuit distributes coherence in the index register [61]. It can
be understood that, in the generalized measurement of the problem, the measurement on the index
register is important. Further, in the quantum classifier, the Grover algorithm depletes the index
register’s coherence as a resource [28,30]. Therefore, investigating coherence distribution in generalized
measurement may provide a clue for quantum advantage in quantum tasks.
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Appendix A. Deriving the Relationship between Discord and Generalized Witness in the Case of
Two Mixed States

Firstly, the rank-2 state is considered to be

ρAB = q1r1 |s1〉 〈s1|A ⊗ |B1〉 〈B1|B ⊕ q2r2 |s2〉 〈s2|A ⊗ |B2〉 〈B2|B
+ q1r̄1 |s̄1〉 〈s̄1|A ⊗ |B̄1〉 〈B̄1|B ⊕ q2r̄2 |s̄2〉 〈s̄2|A ⊗ |B̄2〉 〈B̄2|B (A1)

= σAB ⊕ σ̄AB.

Although we consider the case in which the states are rank-2, our method can be extended to
the rank-N states case. Obviously, the bipartite state ρAB resides in state space S(HAB ⊕ H̄AB). Here,
let us consider the entropic quantum discord DA(ρAB). Since Equation (A1) is decomposed as a direct
sum between the two rank-2 positive semidefinite operator, POVM {Mk}N

k=1 can also be expressed as

M(A)
k =

[
Πk Γk
Γ†

k Π̄k

]
. (A2)

Here, Πk(Π̄k) is a positive semidefinite operator defined over Hilbert spaceH(H̄) and Γk(Γ̄k) is a
linear map in whichH → H̄(H̄ → H).

As Mk is positive semidefinite, 〈v|Mk|v〉 is also positive semidefinite for all |v〉 ∈ H ⊕ H̄.
Obviously, |x〉 ⊕ |0̄〉 and |0〉 ⊕ |x̄〉 are also elements ofH⊕H̄. Here, |0〉(|0̄〉) is zero vector in sub Hilbert
space H(H̄). Thus, (〈x| ⊕ 〈0̄|)Mk(|x〉 ⊕ |0̄〉) = 〈x|Πk |x〉 and (〈0| ⊕ 〈x̄|)Mk(|0〉 ⊕ |x̄〉) = 〈x̄| Π̄k |x̄〉
are also positive semidefinite for all |x〉 ∈ H and |x̄〉 ∈ H̄. In other words, ifMk is positive semidefinite,
then Πk and Π̄k are also positive semidefinite.

The completeness of two sub-POVMs {Πk}N
k=1, {Π̄k}N

k=1 is directly checked as

N

∑
k=1
M(A)

k =
N

∑
k=1

[
Πk Γk
Γ†

k Π̄k

]
=

[
∑N

k=1 Πk ∑N
k=1 Γk

∑N
k=1 Γ†

k ∑N
k=1 Π̄k

]
=

[
IA O
O ĪA

]
= IA.

Here, O is the null operator. IA is an identity operator over Hilbert space HAB. IA( ĪA) is an
identity operator over Hilbert spaceHA(H̄A). Therefore, if ∑kMk = IA, then the equalities ∑k Πk =

IA, ∑k Π̄k = ĪA, ∑k Γk = O automatically hold. Without loss of generality, we can assume that every
nonzero operator Γk satisfies ∑k Γk = O. That is, because the explicit form of Γk does not affect the
expression for the lower bound of quantum discord. Therefore, two sub-POVMs {Πk}N

k=1 and {Π̄k}N
k=1
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also satisfy completeness condition.
Substituting Equation (A2) into Equation (A1), we obtain the expression for pk and ρB|k:

pk = Tr(σABΠk ⊗ IB) + Tr(σ̄ABΠ̄k ⊗ IB),

ρB|k =
TrA(σABΠk ⊗ IB) + TrA(σ̄ABΠ̄k ⊗ IB)

pk
.

Using concavity of von Neumann entropy, we derive the inequality of conditional entropy as

N

∑
k=1

pkS(ρB|k) =
N

∑
k=1
{Tr(σABΠk ⊗ IB) + Tr(σ̄ABΠ̄k ⊗ IB)}S

(TrA(σABΠk ⊗ IB) + TrA(σ̄ABΠ̄k ⊗ IB)

Tr(σABΠk ⊗ IB) + Tr(σ̄ABΠ̄k ⊗ IB)

)
≥

N

∑
k=1

{
Tr(σABΠk ⊗ IB)S

(TrA(σABΠk ⊗ IB)

Tr(σABΠk ⊗ IB)

)
+ Tr(σ̄ABΠ̄k ⊗ IB)S

(TrA(σ̄ABΠ̄k ⊗ IB)

Tr(σ̄ABΠ̄k ⊗ IB)

)}
= (TrσAB)

N

∑
k=1

p′kS(σ′B|k) + (Trσ̄AB)
N

∑
k=1

p̄′kS(σ̄′B|k).

Here, we define σ′AB and σ̄′AB as σ′AB := σAB/Tr[σAB] and σ̄′AB:=σ̄AB/Tr[σ̄AB].
In order that the quantum discord is evaluated, we minimize the conditional entropy under

every POVM {M(A)
k }

N
k=1 [34]. Since POVM elementM(A)

k consists of Πk, Γk and Π̄k, the minimum
conditional entropy satisfies

min
{M(A)

k }N
k=1

N

∑
k=1

pkS(ρB|k) = min
{Πk}N

k=1,{Γk}N
k=1,{Π̄k}N

k=1

N

∑
k=1

pkS(ρB|k)

= min
{Πk}N

k=1,{Π̄k}N
k=1

N

∑
k=1

pkS(ρB|k) ≥ min
{Πk}N

k=1

(TrσAB)
N

∑
k=1

p′kS(σ′B|k)

+ min
{Π̄k}N

k=1

(Trσ̄AB)
N

∑
k=1

p′kS(σ̄′B|k).

As pk and ρB|k are independent on Γk, conditional entropy is also independent on {Γk}N
k=1.

Therefore, the second equality holds. Inequality can be derived from the convexity of von Neumann
entropy. We apply the Koashi-Winter formula [48] to final expression. The purification of σ′AB and σ̄′AB
is expressed as

|ψ〉ABE =

√
q1r1

q1r1 + q2r2
|s1〉A ⊗ |B1〉B ⊗ |e1〉E +

√
q2r2

q1r1 + q2r2
|s2〉A ⊗ |B2〉B ⊗ |e2〉E ,

|ψ̄〉ABĒ =

√
q1r̄1

q1r̄1 + q2r̄2
|s̄1〉A ⊗ |B̄1〉B ⊗ |ē1〉Ē +

√
q2r̄2

q1r̄1 + q2r̄2
|s̄2〉A ⊗ |B̄2〉B ⊗ |ē2〉Ē .

Here, {|e1〉 , |e2〉}({|ē1〉 , |ē2〉}) is orthonormal basis constructing system E(system Ē). According
to the Koashi-Winter formula, we can derive the inequality as [11,15]

min
{M(A)

k }N
k=1

N

∑
k=1

pkS(ρB|k) ≥ (TrσAB)E f (σ
′
BE) + (Trσ̄BĒ)E f (σ̄

′
BĒ),
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where E f (·) is entanglement of formation [62]. We can easity derive the equality S(ρA)− S(ρAB) =

(TrσAB){S(σ′A)− S(σ′AB)}−(Trσ̄AB){S(σ̄′A)− S(σ̄′AB)}. Hence, we obtain the inequality:

DA(ρAB) = S(ρA)− S(ρAB) + min
{M(A)

k }N
k=1

N

∑
k=1

pkS(ρB|k)

≥ (TrσAB){S(σ′A)− S(σ′AB) + E f (σ
′
BE)}+ (Trσ̄AB){S(σ̄′A)− S(σ̄′AB) + E f (σ̄

′
BE)}

= (TrσAB)DA(σ
′
AB) + (Trσ̄AB)DA(σ̄

′
AB) = WA(ρAB).

A.2 Deriving the relationship between discord DB(ρAB) and generalized witness WB(ρAB)

Likewise, we can obtain the expression for pk and ρA|k as

pk = Tr(σAB IA ⊗M
(B)
k ) + Tr(σ̄AB ĪA ⊗M

(B)
k ),

ρA|k =
TrB(σAB IA ⊗M

(B)
k )⊕ TrB(σ̄AB ĪA ⊗M

(B)
k )

pk
.

Here, ρA|k is decomposed as direct sum between the two positive semidefinite operators. Therefore,
von Neumann entropy S(ρA|k) satisfies

S(ρA|k) = S
( Tr(σAB IA ⊗M

(B)
k )

Tr(σAB IA ⊗M
(B)
k ) + Tr(σ̄AB ĪA ⊗M

(B)
k )

TrB(σAB IA ⊗M
(B)
k )

Tr(σAB IA ⊗M
(B)
k )

+
Tr(σ̄AB ĪA ⊗M

(B)
k )

Tr(σAB IA ⊗M
(B)
k ) + Tr(σ̄AB ĪA ⊗M

(B)
k )

TrB(σ̄AB ĪA ⊗M
(B)
k )

Tr(σ̄AB ĪA ⊗M
(B)
k )

)

= S
( Tr(σAB IA ⊗M

(B)
k )

Tr(σAB IA ⊗M
(B)
k ) + Tr(σ̄AB ĪA ⊗M

(B)
k )

σ′A|k +
Tr(σ̄AB ĪA ⊗M

(B)
k )

Tr(σAB IA ⊗M
(B)
k ) + Tr(σ̄AB ĪA ⊗M

(B)
k )

σ̄′A|k

)

≥
Tr(σAB IA ⊗M

(B)
k )

Tr(σAB IA ⊗M
(B)
k ) + Tr(σ̄AB ĪA ⊗M

(B)
k )

S(σ′A|k)

+
Tr(σ̄AB ĪA ⊗M

(B)
k )

Tr(σAB IA ⊗M
(B)
k ) + Tr(σ̄AB ĪA ⊗M

(B)
k )

S(σ̄′A|k).

Hence, conditional entropy satisfies

N

∑
k=1

pkS(ρA|k) ≥
N

∑
k=1

Tr(σAB IA ⊗M
(B)
k )S(σ′A|k) +

N

∑
k=1

Tr(σ̄AB IA ⊗M
(B)
k )S(σ̄′A|k).

Also, minimum of conditional entropy also satisfies

min
{M(B)

k }

N

∑
k=1

pkS(ρA|k) ≥ min
{M(B)

k }

[
(TrσAB)

N

∑
k=1

p′kS(σ′A|k) + (Trσ̄AB)
N

∑
k=1

p̄′kS(σ̄′A|k)
]

︸ ︷︷ ︸
Problem I

≥ (TrσAB) min
{M(B)

k }

N

∑
k=1

p′kS(σ′A|k) + (Trσ̄AB) min
{M̄(B)

k }

N

∑
k=1

p̄′kS(σ̄′A|k)︸ ︷︷ ︸
Problem II

= (TrσAB)E f (σ
′
AE) + (Trσ̄AB)E f (σ̄

′
AĒ).
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This inequality consists of two optimization problems (Problem I and Problem II). The Problem I
contains additional equality constraintM(B)

k = M̄(B)
k (∀k), but this constraint is not included in the

Problem II. Therefore, minimum of the Problem I is not smaller than that of the Problem II. Finally,
we obtain the lower bound of quantum discord as

DB(ρAB) = S(ρB)− S(ρAB) + min
{M(B)

k }

N

∑
k=1

pkS(ρA|k)

≥ S(ρB)− S(ρAB) + (TrσAB)E f (σ
′
AE) + (Trσ̄′AB)E f (σ̄

′
AĒ)

= (TrσAB)DB(σ
′
AB) + (Trσ̄AB)DB(σ̄

′
AB) = WB(ρAB).

A.3 Deriving the relationship between discord DAB(ρAB) and generalized witness WAB(ρAB).
In this case, derivation is more straightforward. Substituting DA(ρAB) and DB(ρAB) into

DAB(ρAB), we obtain

DAB(ρAB) =
√

DA(ρAB)DB(ρAB)

≥
√
(TrσAB)DA(σ

′
AB) + (Trσ̄AB)DA(σ̄

′
AB)×

√
(TrσAB)DB(σ

′
AB) + (Trσ̄AB)DB(σ̄

′
AB)

=
∥∥∥[√(TrσAB)DA(σ

′
AB),

√
(Trσ̄AB)DA(σ̄

′
AB
]∥∥∥

2

∥∥∥[√(TrσAB)DB(σ
′
AB),

√
(Trσ̄AB)DB(σ̄

′
AB
]∥∥∥

2

≥
[√

(TrσAB)DA(σ
′
AB),

√
(Trσ̄AB)DA(σ̄

′
AB)
]
·
[√

(TrσAB)DB(σ
′
AB),

√
(Trσ̄AB)DB(σ̄

′
AB)
]

= (TrσAB)
√

DA(σ
′
AB)DB(σ

′
AB) + (Trσ̄AB)

√
DA(σ̄

′
AB)DB(σ̄

′
AB)

= (TrσAB)DAB(σ
′
AB) + (Trσ̄AB)DAB(σ̄

′
AB) = WAB(ρAB).

In second inequality, the Cauchy Schwarz inequality is used: ||u||2||v||2 ≥ u · v (for all real vectors u, v).

Appendix B. Deriving the Generalized RQC Discrepancy

In this Appendix, we derive the generalized RQC discrepancy. Two positive semidefinite operators
σAB and σ̄AB in Equation (A1) are defined over sub-Hilbert space H and H̄. Therefore, the entire
Hilbert space H⊕ H̄ consists of orthonormal basis {|v(A)

i 〉 ⊗ |v
(B)
j 〉}i,j and {|v̄(A)

i 〉 ⊗ |v̄
(B)
j 〉}i,j. Here,

sub-Hilbert spaceH(H̄) is composed of {|v(A)
i 〉 ⊗ |v

(B)
j 〉}i,j({|v̄

(A)
i 〉 ⊗ |v̄

(B)
j 〉}i,j). Using this property of

Hilbert space, we can evaluate von Neumann entropy of the incoherent state ρPQ as [33]

S(ρPQ)

= −∑
i,j
〈v(A)

i ⊗ v(B)
j |ρAB|v

(A)
i ⊗ v(B)

j 〉 log2 〈v
(A)
i ⊗ v(B)

j |ρAB|v
(A)
i ⊗ v(B)

j 〉

−∑
i,j
〈v̄(A)

i ⊗ v̄(B)
j |ρAB|v̄

(A)
i ⊗ v̄(B)

j 〉 log2 〈v̄
(A)
i ⊗ v̄(B)

j |ρAB|v̄
(A)
i ⊗ v̄(B)

j 〉

= −(TrσAB)∑
i,j
〈v(A)

i ⊗ v(B)
j |

σAB
TrσAB

|v(A)
i ⊗ v(B)

j 〉
{

log2 〈v
(A)
i ⊗ v(B)

j |
σAB

TrσAB
|v(A)

i ⊗ v(B)
j 〉+ log2(TrσAB)

}
−(Trσ̄AB)∑

i,j
〈v̄(A)

i ⊗ v̄(B)
j |

σ̄AB
Trσ̄AB

|v̄(A)
i ⊗ v̄(B)

j 〉
{

log2 〈v̄
(A)
i ⊗ v̄(B)

j |
σ̄AB

Trσ̄AB
|v̄(A)

i ⊗ v̄(B)
j 〉+ log2(Trσ̄AB)

}
= (TrσAB)S(σ′PQ) + (Trσ̄AB)S(σ̄′PQ)− (TrσAB) log2(TrσAB)− (Trσ̄AB) log2(Trσ̄AB).
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Also, the RQC of ρAB is evaluated as

Crel.ent (ρAB, ρPQ)

= S(ρPQ)− S(ρAB)

= (TrσAB){S(σ′PQ)− S(σ′AB)}+ (Trσ̄AB){S(σ̄′PQ)− S(σ̄′AB)}
= (TrσAB)Crel.ent(σ

′
AB, σ′PQ) + (Trσ̄AB)Crel.ent(σ̄

′
AB, σ̄′PQ).

Next, we evaluate the RQC of system A and B. First, we consider the partial state ρA:

ρA = q1r1 |s1〉 〈s1|+ q2r2 |s2〉 〈s2|+ q1r̄1 |s̄1〉 〈s̄1|+ q2r̄2 |s̄2〉 〈s̄2| = σA + σ̄A.

As the supports of σA and σ̄A are orthogonal, von Neumann entropy of ρA is expressed as

S(ρA) = S(σA + σ̄A) = (TrσA)S(σ′A) + (Trσ̄A)S(σ̄′A)− (TrσA) log2(TrσA)− (Trσ̄A) log2(Trσ̄A)

= (TrσA)S(σ′A) + (Trσ̄A)S(σ̄′A)− (TrσAB) log2(TrσA)− (Trσ̄AB) log2(Trσ̄A).

As the partial state ρP is given as ρP = σP ⊕ σ̄P, von Neumann entropy of ρP is also expressed as

S(ρP) = −∑
i
〈v(A)

i |ρA|v
(A)
i 〉 log2 〈v

(A)
i |ρA|v

(A)
i 〉 −∑

i
〈v̄(A)

i |ρA|v̄
(A)
i 〉 log2 〈v̄

(A)
i |ρA|v̄

(A)
i 〉

= −(TrσA)∑
i
〈v(A)

i |
σA

TrσA
|v(A)

i 〉
{

log2 〈v
(A)
i |

σA
TrσA

|v(A)
i 〉+ log2(TrσA)

}
− (Trσ̄A)∑

i
〈v̄(A)

i |
σ̄A

Trσ̄A
|v̄(A)

i 〉
{

log2 〈v̄
(A)
i |

σ̄A
Trσ̄A

|v̄(A)
i 〉+ log2(Trσ̄A)

}
= (TrσA)S(σ′P) + (Trσ̄A)S(σ̄′P)− (TrσA) log2(TrσA)− (Trσ̄A) log2(Trσ̄A)

= (TrσAB)S(σ′P) + (Trσ̄AB)S(σ̄′P)− (TrσAB) log2(TrσA)− (Trσ̄AB) log2(Trσ̄A).

Therefore, the RQC of system A is derived as

Crel.ent(ρA, ρP) = S(ρP)− S(ρA)

= (TrσAB){S(σ′P)− S(σ′A)}+ (Trσ̄AB){S(σ̄′P)− S(σ̄′A)}
= (TrσAB)Crel.ent(σ

′
A, σ′P) + (Trσ̄AB)Crel.ent(σ̄

′
A, σ̄′P).

Finally, we derive generalized RQC discrepancy δA(ρAB) as

δA(ρAB) = Crel.ent(ρAB, ρPQ)− Crel.ent(ρA, ρP)

= {(TrσAB)Crel.ent(σ
′
AB, σ′PQ) + (Trσ̄AB)Crel.ent(σ̄

′
AB, σ̄′PQ)}

−{(TrσAB)Crel.ent(σ
′
A, σ′P) + (Trσ̄AB)Crel.ent(σ̄

′
A, σ̄′P)}

= (TrσAB){Crel.ent(σ
′
AB, σ′PQ)− Crel.ent(σ

′
A, σ′P)}

+(Trσ̄AB){Crel.ent(σ̄
′
AB, σ̄′PQ)− Crel.ent(σ̄

′
A, σ̄′P)}

= (TrσAB)δA(σ
′
AB) + (Trσ̄AB)δA(σ̄

′
AB).

In a similar manner, the generalized RQC discrepancy δB(ρAB) is also derived as

δB(ρAB) = (TrσAB)δB(σ
′
AB) + (Trσ̄AB)δB(σ̄

′
AB).
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