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Abstract: In order to obtain the physiological information and key features of source images to
the maximum extent, improve the visual effect and clarity of the fused image, and reduce the
computation, a multi-modal medical image fusion framework based on feature reuse is proposed.
The framework consists of intuitive fuzzy processing (IFP), capture image details network (CIDN),
fusion, and decoding. First, the membership function of the image is redefined to remove redundant
features and obtain the image with complete features. Then, inspired by DenseNet, we proposed
a new encoder to capture all the medical information features in the source image. In the fusion
layer, we calculate the weight of each feature graph in the required fusion coefficient according to the
trajectory of the feature graph. Finally, the filtered medical information is spliced and decoded to
reproduce the required fusion image. In the encoding and image reconstruction networks, the mixed
loss function of cross entropy and structural similarity is adopted to greatly reduce the information
loss in image fusion. To assess performance, we conducted three sets of experiments on medical
images of different grayscales and colors. Experimental results show that the proposed algorithm has
advantages not only in detail and structure recognition but also in visual features and time complexity
compared with other algorithms.

Keywords: intuitive fuzzy processing; capture image details network; SeLU activation function;
trace of a feature map; image entropy and cross entropy; YIQ color space

1. Introduction

Multi-modal medical image fusion is a combination of images of the same tissue or organ from
multiple sensors and doctors can obtain relevant physiological information of the tissue or organ
and its metabolic status from the fused image. Recently, the maturity of medical imaging technology
provides various image information for medical diagnosis, including positron emission tomography
(PET), computerized tomography (CT), single-photon emission computed tomography (SPECT), and
magnetic resonance imaging (MRI) [1]. Medical images of various models provide rich, intuitive,
qualitative, and quantitative physiological information of the human body to doctors and researchers
from the perspective of vision and become an important technical means to diagnose various diseases.
Due to the different imaging principles of different medical images, which reflect the anatomical or
functional information of different tissues or organs, and have different sensitivity and resolution,
they have their respective applicable scope and limitations. For example, CT images are sensitive to
dense structures, such as bones or implants in the human body. MRI images are good at capturing
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soft tissue details and has anatomical information about organs. PET and SPECT images have the best
effects in presenting organ metabolism and blood flow [2]. However, in clinical applications, single
mode images often do not provide enough information for doctors and it is necessary to combine image
information of different modalities. Multi-modal medical images are fused together to obtain more
abundant information so as to understand the comprehensive situation of diseased tissues or organs
and make accurate diagnosis or formulate appropriate treatment plans. Therefore, the multi-modal
medical image fusion technology has been developing for a long time. In multi-modal medical image
fusion, how to obtain useful information from multi-modal medical images and how to select the
appropriate fusion method are still main issues.

In general, there are two main methods for multi-modal medical image fusion, namely spatial
domain method and transform domain method. The spatial domain method is to select pixels [3] or
regions [4] of the source image without transformation [5]. The transform domain method incorporates
the corresponding transform coefficients, and the fused image can be obtained through inverse
transform. In the transform domain method, there are various transforms, including discrete wavelet
transform (DWT) [6], contourlet transform [7], dual tree complex wavelet transform (DTCWT) [8],
curvelet transform (CVT) [9], and non-subsampled contourlet transform (NSCT) [10]. Most multi-scale
transform (MST) fusion methods pay special attention to the structural information of the fused image,
and some details are not well done. S. S. Paris et al. proposed an idea called local Laplacian filters
(LLF) [11], which both ensures clear edges and enhances fused information. After that, doctors paid
more attention to the biological metabolism information they were interested in, and the information
of interest (IOI) algorithm came into being [12].

In the last five years, representation learning [13–15] become more and more popular in image
fusion. Sparse representation (SR) was first introduced into image fusion by Li and Yang et al. [16].
With the development of sparse representation, sparse representation image fusion algorithms based
on joint dictionary rise [17]. Then, low rank representation (LRR) based on dictionary learning [13]
is proposed and applied to image fusion. SR method has high time complexity. It is usually divided
into two steps. The first step is to build a dictionary through training, and the second step is to use a
suitable fusion strategy for image fusion based on the constructed dictionary.

Recently, deep learning algorithms have been widely used in the field of images, with amazing
results. Especially, the convolutional neural network (CNN) has brought new opportunities to the field
of image fusion [18]. In [19], Song et al. used two convolutional neural networks to process space-time
satellite images. Space-time satellite images include moderate-resolution imaging spectroradiometer
(MODIS) and satellite images of different resolutions. Spatio-temporal satellite image fusion is the
fusion of multi-resolution images. Specifically, two CNNs are used to perform super-resolution on
Landsat images and extract image features, and then linear computing strategies are used to reconstruct
medical images. In [20], Li et al. used the middle layer of the pre-trained visual geometry group (VGG)
network to obtain the features of the image and then used the L1 norm and weighted average strategy
to generate the details of the fused image. Prabhakar et al. [21] proposed a new multi-mode image
fusion framework, which is composed of feature extraction layer, information fusion layer, and image
reconstruction layer. The feature extraction layer adopts Siamese network architecture, and three
layers of CNN constitute its reconstruction layer. Li et al. [22] came up with a Densefuse and they
choose convolutional layers and dense block as encoding network in 2019.

As for deep learning fusion algorithm mentioned above, CNN-based fusion strategies only use
results of the last layer as the image features, which will lose some useful information contained
in the middle layer. Aiming at the uncertainty of multi-modal medical image affected by radiation
and the loss of image information after fusion, we propose a new multi-modal medical image fusion
framework. First, functional images are converted into YIQ color space to obtain its Y component.
Next, the Y component of functional images and the corresponding structural images are convolved
into DenseNet to obtain the fusion features. Then, the fusion features are input into the fusion network
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for feature fusion. Finally, we use the trained network and the previously obtained fusion features to
reconstruct the fusion image.

For clarity, the main contributions of the paper can be described as follows:

• We preprocessed two images before fusion, reconstructed the non-membership function according
to the relevant knowledge of fuzzy set theory, and obtained their membership hesitation images,
which perfectly solved the uncertainty problem caused by the input images coming from different
sensors.

• In view of the serious loss of image information in multi-mode medical image fusion, we proposed
a new feature enhancement network inspired by DenseNet. At the same time, the gradient
disappearance and model degradation are alleviated to some extent by using the new excitation
function.

• In the fusion method, we use the trace of matrix to calculate the weight coefficient of each feature
graph. The trace is the sum of eigenvalues of each characteristic graph. The eigenvalue is regarded
as the importance value of different features in the matrix and can cover the fusion features in the
most comprehensive way.

• As far as we know, it is the first time that the combined loss of sensible cross-entropy and
structural similarity has been introduced in the training of a CNN-based multi-modal medical
image fusion model. Cross entropy can better express the degree of retention of visual color
information in fused images. However, the structure similarity is better in expressing edge and
texture information in fusion images. Through introducing the combined loss of cross entropy and
structural similarity, the trained multi-mode medical image fusion model has obvious advantages
in both visual information retention and texture information acquisition.

The rest of the work is organized as follows. In Section 2, related work of the paper is described.
In Section 3, the proposed multi-modal medical image fusion framework is presented in detail.
The experimental results are given in Section 4, and conclusions and future work are presented in
Section 5.

2. Related Work

2.1. Intuitionistic Fuzzy Sets

Intuitionistic fuzzy set is an improvement of the traditional fuzzy set [23–25]. The first generation
of intuitionistic fuzzy sets introduced non-membership functions and the second-generation
intuitionistic fuzzy sets introduced hesitancy functions between membership functions
and non-membership functions, which makes the intuitionistic fuzzy set more complete.
However, when dealing with ambiguity and uncertainty, intuitionistic fuzzy set is slightly
better than the previous ones.

Atanassov [26] and Stoeva [27] proposed the first generation of intuitionistic fuzzy sets (IFS).
Intuitionistic fuzzy set F in X can be symbolized with the essential condition.

F = {(x, µF(x), νF(x))|x ∈ X}, (1)

where the functions µF(x), νF(x) : X ∈ [0, 1] represents the degree of membership and non-membership
of an element x in X, respectively, with the essential condition 0 ≤ µF(x) + νF(x) ≤ 1.

Szmidt and Kacpryzk [28] introduced a new parameter πF(x) due to lack of knowledge when
calculating the distance between fuzzy sets (FS), called hesitation. IFS is defined as follows based on
the hesitation degree.

F = {(x, µF(x), νF(x), πF(x))|x ∈ X}, (2)

where the condition µF(x) + νF(x) + πF(x) = 1 holds.
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The research on intuitionistic fuzzy set theory has attracted great attention from scholars in
relevant fields at home and abroad, and it has been applied to many fields, such as pattern recognition,
data mining, information fusion, and information security.

2.2. DenseNet

In this section, we briefly introduce DenseNet. Huang et al. [29] start with features and achieve
better results and fewer parameters through the ultimate use of features. Under the premise of
ensuring the maximum information transmission between layers in the network, all layers are directly
connected. Figure 1 describes the layout of DenseNet. The input of the lth layer is the feature map
output by each layer of the first l-1 layers.

Xl = Hl([x0, x1, · · · xl−1]), (3)

where [x0, x1, · · · xl−1] is the concatenation of all output feature maps of the first l-1 layer. Because of
its dense connection, it is called dense convolutional network (DenseNet). To facilitate implementation,
multiple inputs of Hl(·) are concatenated into a single tensor. Motivated by [30], Hl(·) is a composite
function, which is consists of batch normalization (BN) [31], followed by a rectified linear unit
(ReLU) [32] and a 3× 3 convolution (Conv).

Figure 1. A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps
as input.

DenseNet architecture is suitable for image fusion because it has three advantages.

• This architecture can save as much information as possible in the process of image fusion.
• Due to the regularization effect of density connection, this model reduces the overfitting of

experimental tasks.
• The model can improve the gradient of the network, making it easier to train.
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2.3. YIQ Color Space

In recent years, the fusion of structural and functional images has led to important changes in
the field of medical research, particularly in cancer diagnosis [1,33–35]. A functional image is usually
considered as a color image. Combined with a structural image, it preserves more information about
biological tissue than a single image. Functional images can be viewed as color images. Compared
with single modality images, the fusion of functional images and structural images can provide more
physiological information of tissues and organs. Color images are generally in RGB color space,
which covers almost all colors that the human eye can distinguish. All three colors are treated equally
because of their strong correlation. Once the composition of the RGB image changes, it is difficult to
predict which colors will change. In multi-mode medical images, the channel numbers of functional
images and structural images are different, so it is difficult to apply RGB color space. At the same
time, if the coefficients of the R, G, or B components change due to strong correlation, the color of the
fused image will also change. The details of the functional image and the color information should be
separated from each other, so that the features of the structural image and the details of the functional
image can be merged together, while the color information is easy to retain. In order to avoid the
disadvantages of RGB color model, other color models, like IHS and YCrCb, have been introduced into
the field of medical image fusion. Of course, they have their drawbacks [36,37]. In IHS color space, the
three components cannot be completely independent of each other; in YCrCb color space, the blue and
red offsets are not decomposed according to the color sensitivity of the human eye. The YIQ color space
has great advantages in preserving color information. The color vision characteristics of the human eye
indicate that the human eye has the strongest ability to distinguish between red and yellow, and the
weakest ability to distinguish between blue and purple. There is a certain change, I corresponds to the
chromaticity most sensitive to the human eye, and Q corresponds to the chromaticity least sensitive to
the human eye. In this way, a narrower bandwidth can be used to transmit Q, and a wider frequency
band can be used when an I signal is transmitted with a higher resolution. Corresponding to the
digitization process, these components can be recorded with different numbers of bytes. These are
advantages that color spaces, such as HSV, IHS, and CMY, do not have. At the same time, doctors rely
heavily on color vision characteristics, and they need to use sensitive colors to judge whether the
metabolism of organs or tissues is normal. Therefore, we, finally, chose the YIQ color space.

The conversion formula from RGB color space to YIQ color space is as follows [38]: Y
I
Q

 =

 0.299 0.587 0.144
0.596 0.274 0.322
0.211 0.523 0.312

×
 R

G
B

 . (4)

3. A New Framework for Image Fusion

In this section, our method will be introduced in detail. The framework of the method is shown
in Figure 2.

As shown in Figure 2, we select two registered multi-modal images, MRI and PET. First, the PET
is decomposed into the YIQ color space to obtain three channels, and its gray channel Y is taken out,
and the two images of Y and MRI are input to the intuitionistic fuzzy set processing module to remove
some redundant features and enhance the salient features. Then, input the enhanced two images
into FusionNet for image fusion. Finally, the O obtained after fusion is combined with the I and Q
channels of PET, and the fusion image space is obtained by converting the YIQ color space to RGB
color. In the whole framework, FusionNet, as the core part of the framework, eliminates the uncertain
factors in the Y channel of functional images and structural images, extracts fusion features from CIDN,
realizes feature fusion, and reconstructs the image after fusion. FusionNet is described in detail in
Figure 3.
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Figure 2. Our fusion framework.

Figure 3. The details of FusionNet.

As we can see, FusionNet is composed of encoder, fusion strategy, and decoder. Encoder is
composed of a convolutional layer and CIDN. CIDN contains three filters, among which CIDN2 plays
an important role in feature multiplexing. In terms of fusion strategy, we choose the trace that can
better show the matrix characteristics as the criterion for assigning weights in the strategy. The decoder
is composed of three convolutional layers that are used to reconstruct the input image.
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3.1. Intuitive Fuzzy Processing (IFP)

In an intuitionistic fuzzy set, the construction of membership degree, non-membership degree
and hesitation function is the key step. The traditional fuzzy set processing mostly constructs the
membership image by fixed functions, such as gaussian and trigonometric functions. These methods
rely on prior knowledge to select appropriate functions for different kinds of images, and are difficult
to be applied to complex multi-modal situations. Considering that entropy can reflect the amount of
information in an image, what we care about in multi-modal medical image fusion is the retention
degree of the image information after fusion. Considering that, if we only rely on the membership
degree image and ignore the hesitation degree image, it is likely to lose some effective information of
the medical image, we construct the non-membership function to obtain the non-membership image,
and then we can calculate the image without missing the key information.

The following are the detailed steps to redefine the non-membership function of image I.
The image I of size and grayscale L is regarded as a set of units. Suppose g is each element of the

image and νF(I(x, y)) is the degree to which element g does not belong to image set I.

νF(I(x, y)) =
gmax − g

gmax − gmin
, (5)

where gmin and gmax represent the minimum and maximum values of image I. The corresponding
non-membership image can be defined as

νIFS(I(x, y); λ) = [νF(I(x, y))]λ. (6)

Our image to be fused can be expressed as

ξ IFS(I(x, y); λ) = 1− νIFS(I(x, y); λ.) (7)

The value of parameter λ is determined by the selected image. Since a lot of IFSs can be obtained
for an image by changing the value of λ, finding the optimal solution becomes the most important task,
which needs to be realized by entropy. De Luca and Termini [39] proposed the definition of entropy
in FS theory. Scholars in [28,40–42] have proposed different entropy measures based on IFS theory.
Inspired by the above methods, we propose a new definition method of entropy for multi-modal
medical images, and the definition formula is as follows:

entory(IFS; λ) =
1

M× N

M−1

∑
i=0

N−1

∑
j=0

2µIFS (I(i, j); λ) ξ IFS (I(i, j); λ)

µ2
IFS (I(i, j); λ) + ξ2

IFS (I(i, j); λ)
. (8)

Through the above methods, we will obtain pre-processed multi-modal medical images to
be fused.

3.2. FusionNet

FusionNet contains the convolutional layer and CIDN. The convolutional layer contains 3× 3
filters to capture the rough features of medical images and CIDN is good at obtaining the detailed
information of medical images. CIDN consists of three convolutional layers that also contain 3× 3
filters. In our network, we use the second layer as the main feature reuse layer. Feature multiplexing
layer takes the features of all previous layers as input, and then the output directly acts on the next
layer and the fusion layer. This network structure is effective in multi-modal medical image fusion
and reduces the loss of biological information in the fusion process. Our encoder can input images of
any size, which is an advantage of our network as an encoder.

We chose a relatively novel fusion strategy in the fusion layer, which will be introduced in
Section 3.2.3.
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The decoder consists of three convolutional layers (3× 3 filters). Its input comes from the output
of the fusion layer, and we use this simple and effective architecture to reconstruct the fusion image.

3.2.1. CIDN

Multi-modal medical image fusion focuses on the acquisition of image information from different
sensors. However, it is not the better to get more feature information, which will result in blurring
or even distortion of the final fusion image. The traditional DenseNet network has many feature
multiplexing layers, which is not suitable for direct use in multi-modal medical image fusion.
Inspired by DenseNet, we take the last three layers of the encoder as the characteristic multiplexing
network and design the penultimate layer as the network multiplexing layer. It not only avoids the
negative effect of repeated aggregation of many features in the middle layer on the final layer fusion
effect but also solves the cost of feature redundancy in the time complexity of the algorithm.

CIDN will use SeLU as the activation function instead of the traditional ReLU. SeLU function is
defined as follows:

SeLU(x) = λ

{
x if x > 0

α(ex − 1) if x ≤ 0
, (9)

where x is the input feature, and α is a constant greater than one.
As we all know, ReLU activation has many advantages. It can make the network training faster,

while increasing the nonlinearity of the network. The most important thing is that it can prevent the
gradient from disappearing and reduce overfitting. During the training process, some neurons “die”,
that is, they stop producing anything but zero. In some cases, half of the neurons in the network will
have the above situation, especially when high learning rates are used. Once the neuron’s weight is
updated during training so that its input weighted sum is negative, it starts to output zero. The reason
is that, when the input is negative, the gradient of the ReLU function is zero, and the neuron can only
output zero.

In view of the above problems with ReLU activation function, we use SeLU as the activation
function of CIDN. First, the SeLU activation function can accelerate the convergence speed of
the network because the internal normalization speed is higher than the external normalization
speed. Second, it avoids the “ReLU dead zone” problem. Finally, when the input is greater than
0, activating the output amplifies the input. This will greatly improve the efficiency of CIDN in
processing multi-modal medical images.

3.2.2. Loss Function

In the training stage, we temporarily ignore the fusion layer and select the existing image data
set to try to train our encoder and decoder network to reconstruct the input image. After the weights
of encoder and decoder are determined, the appropriate fusion strategy is adopted to fuse the depth
characteristics obtained by encoder. The biggest advantage of this method is that it can design an
appropriate fusion method according to the characteristics of the source image, which will lay a solid
foundation for adaptive fusion in the future.

In order to obtain a better reconstructed image, we made great efforts to select the loss function.
According to the characteristics of functional images and structural images, we intend to use the cross
entropy loss function and structural similarity loss function to form the mixed loss function. We choose
the mixed loss function to train the encoder and decoder. The mixed loss function is shown as follows:

Lossmix = αLosscross_entropy + βLossssim, (10)

where alpha and beta are the weights of the two loss functions. Given the different characteristics of
different organs and tissues, some organs are more concerned with functional information, while others
have more important structural information. Therefore, it is necessary to use two parameters to adjust
the loss function in the reconstruction of the fused image neural network.
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The cross entropy loss function is described as

Losscross_entropy = −∑ I log(O) + (1− I) log(1−O). (11)

The structural similarity loss function is described as

Lossssim = 1− SSIM(I, O), (12)

where I represents the input image, and O represents the output image. SSIM(.) represents the
structural similarity operation, and structural similarity will be described in detail in the section of
evaluation metrics.

As shown in Figure 4, our images reduce a lot of information loss when passing through the
encoder and decoder which use this loss function.

Figure 4. The evolution of images through encoder and decoder.

3.2.3. Fusion Strategy

There are many ways to fuse the convolution function of multiple inputs. The two most
representative methods are addition strategy and l1-norm strategy. The performance of the addition
strategy has been fully demonstrated in [22], but, for the fusion of salient features, this method is
particularly rough. As for l1-norm strategy, it has a large amount of computation, high time complexity,
and too much redundant information. In view of the above problems in the fusion strategy, the trace
of the feature graph is the sum of all the eigenvalues of the matrix of the feature graph. The trace of
the matrix is described as

Tr(B) =
n

∑
i=1

bii. (13)

B is the matrix and bii is the diagonal member of the matrix B. We will calculate the weight value
of feature maps according to their traces.

ωi(x, y) =
∑n

1 Tr
(

ϕ1:n
i (x, y)

)
∑k

i=1 ∑n
1 Tr

(
ϕ1:n

i (x, y)
)
,

(14)

where ϕ1:n
i (x, y) indicates the feature maps, and we calculate f n(x, y) that represents the fused feature

maps by
f n(x, y) = ∑k

i=1 ωi (x, y)× φn
i (x, y), (15)

where k is the index of feature maps which are obtained from input images. The fused features
will be concatenated and input into decoder. Finally, our fused image F is obtained through
image reconstruction.
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4. Experimental Results and Discussion

4.1. Experimental Settings

In this section, we first used the image data set to train the whole network for feature extraction
and image reconstruction ability. Then, we performed three fusion experiments of different modal
medical images. In the process of experimental analysis, subjective expert scores and objective fusion
metrics are used. As for the expert score, we drew the obtained score into a histogram using the mean
value to facilitate comparison and ten metrics were taken to evaluate the fusion results. The best
metrics have been marked in bold.

4.1.1. Data Set and Compared Algorithms

The images to be merged in the experiment were taken from the Harvard Brain Database. Each
group of images is composed of functional images and structural images that have been registered.
We choose MRI as the structural image of the source image. MRI images have a flow blank effect that
allows blood vessels and soft tissue to be easily separated. For the corresponding functional image,
we selected several different functional images. The features of each functional image are described in
the corresponding part of the experiment.

In the selection of comparison algorithm, we adopt several representative methods. Among them,
there are pyramidal wavelet transform, such as DTCWT and NSCT [43]. A sparse representation
image fusion algorithm called Laplacian pyramid sparse representation (LPSR) [44] (download from:
http://home.ustc.edu.cn/~liuyu1/) is also in our contrast algorithm. There are also popular deep
learning image fusion algorithms, such as Fusion convolutional neural network based algorithm
(FusionCNN) [45] and dual-discriminator conditional generative adversarial network based algorithm
(DDcGAN) [46]; besides, guided filtering fusion algorithm (GFF) [47] (download from: http:
//xudongkang.weebly.com/) and internal generative mechanism (IGM) [48] are also indispensable
two contrast algorithms. The code of all the contrast algorithms comes from the relevant papers and
some from the relevant academic forums. The parameters are the default settings.

4.1.2. Training Settings and Fusion Metrics

Microsoft Common Objects in COntext (MS-COCO) data set was selected as the data set for
training FusionNet feature extraction and reconstruction ability. As is well known, MS-COCO data
set is a large, rich image data set. The data set is targeted at scene understanding. It is mainly
intercepted from complex daily scenes, and the targets in the image are demarcated by precise
segmentation. It is appropriate to use this data set to train the ability of network image reconstruction.
We selected 80,000 images from MS-COCO data set [49], adjusted the size of these images to 256× 256,
and converted them to grayscale images, using them to train our network. Learning rate, batch size,
epochs, and parameter α are set as 0.0005, 32, 10, and 500, respectively. Our training was realized with
NVIDIA RTX 2080 GPU and Tensorflow is utilized as the back end for the network architecture.

There are generally many evaluation indicators for image fusion. We selected five types of
objective evaluation indicators in this article. They are based on statistical characteristics, amount of
information, structural similarity, visual fidelity, and Piella model. In terms of statistical characteristics,
we choose to be good at describing the average gradient (AG) of image sharpness and the root mean
square error (RMSE) of captured image differences; in terms of information, in addition to mature
information entropy (EN) and cross-entropy (CE) indicators, we use feature mutual information
(FMI) [50] to improve image information and the lack of quantitative assessment. Structural similarity
(SSIM) [51] and Piella model [52] are complementary in the evaluation of image structure. Because of
the important structural information in our fused image, it is obtained from MRI images. Since the
other source image is a functional image, we additionally chose visual fidelity (VIF) [53] as the last
evaluation metric of the fused image.

http://home.ustc.edu.cn/~liuyu1/
http://xudongkang.weebly.com/
http://xudongkang.weebly.com/
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In the field of image fusion, mutual information is used to represent the similarity of image
intensity distribution between the fused image and the source image. Traditional mutual information
calculation is based on pixel points, but the process of image fusion is a process of feature retention.
Therefore, we should pay more attention to feature mutual information, which is more suitable
for measuring the quality of fused images. Feature mutual information uses “gradients”, “DCT”,
and “wavelets” to find out whether edge and contour information exists in the fused image.
Feature mutual information is defined as follows:

FMI = ∑
f ,a

PFA(i, j, k, l) log
PFA(i, j, k, l)

PF(i, j)PA(k, l)
+ ∑

f ,b
PFB(i, j, k, l) log

PFB(i, j, k, l)
PF(i, j)PB(k, l)

, (16)

where PFA and PFB are the joint distribution between the fused image F and each of the source images
A or B.

Average gradient can be used to measure the sharpness of the image to analyze the detail and
texture of the fused image. The larger the average gradient value is, the richer the retained information
of the fused image will be and the better the fusion effect will be. In addition, AG is an evaluation
metrics independent of standard reference images and suitable for medical image fusion.

AG =
1

M× N

M

∑
i=1

N

∑
j=1

√
1
2
((F(i, j)− F(i + 1, j))2 + (F(i, j)− F(i, j + 1))2). (17)

The root mean square error is a special measure of the fusion accuracy of the fused image and
the source image. Assuming that the size of the image is M× N, F(i, j) represents the pixel in which
the position is (i, j) in the fused image. F(i, j) represents the pixel in which the position is (i, j) in the
source image. The mean square error can be described as

RMSEs f =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(
F(i, j)− F(i, j)

)2. (18)

The root mean square error of multimodal medical image fusion is defined as follows:

RMSE = ωaRMSEa f + ωbRMSEb f , (19)

where a and b are the source images, and f is the fusion image. ωa and ωb are usually set to 0.5.
As a quality metric, Q f

ab plays an important role in image fusion. It is defined as follows:

Q f
ab =

1
|ω|∑ω∈W (λ (ω) Q0(a, f |ω ) + (1− λ (ω)) Q0(b, f |ω )), (20)

Q0(a, b) =
1
|W|∑ω∈W Q0(a, b |ω ), (21)

where W is the family of all windows, and |W| is the cardinality of W. Starting from the top-left corner
of the two images a, b, a sliding window of fixed size (with n pixels) moves pixel by pixel over the
entire image until the bottom-right corner is reached. For each window ω, the local quality metric
Q0(a, b|ω) is computed for the values a(i, j) and b(i, j) where pixels (i, j) lie in the sliding window ω.
Thus, in regions where image a has a large saliency compared to b, the quality metric and (a, b, f ) are
mainly determined by the input image a. On the other hand, in regions where the saliency of b is much
larger than that of a, the metric Q0(a, b|ω) is determined mostly by input image b.

Structural similarity index measure: SSIM is the widely used metric which models the loss
and distortion between two images according to their similarities in light, contrast, and structure
information. Mathematically, SSIM between images x and y can be defined as follows:
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SSIMxy = ∑
xi ,yi

2µxi µyi + c1

µxi
2 + µyi

2 + c1
·

2σxi σyi + c2

σxi
2 + σyi

2 + c2
·

σxi yi
+ c3

σxi σyi + c3
. (22)

Qw gives an indication of how much of the salient information contained in each of the input
images has been transferred into the fused image without introducing distortions. It is a different kind
of fusion quality metrics, by giving more weight to those windows in which the input images are
more significant. These areas are likely to be perceptually important parts of an undulating landscape.
Therefore, when determining the comprehensive quality metric, the fusion image quality of these areas
is particularly important. The overall saliency of a window is defined as C (ω) = max(s(a |ω ), s(b |ω )).
The weighted fusion quality metric is then defined as

Qw(a, b, f ) = ∑ω∈W c (ω) (λ(ω)Q0(a, f |ω)) + (1− λ(ω)) Q0(b, f |ω). (23)

Qe considers some aspect of the HVS, namely the importance of edge information. Note that
we can evaluate Qw above using ’edge images’ (e.g., the Euclidean norm of the horizontal and
vertical gradient images) instead of the original grey-scale images a, b, and f. Let us denote the edge
image corresponding with a by a′. Now, we combine Qw(a, b, f ) and Qw(a′, b′, f ′) into a so-called
edge-dependent fusion quality metric by

Qe(a, b, f ) = Qw(a, b, f )1−α ·Qw(a′, b′, f ′)α, (24)

where the parameter α ∈ [0, 1] expresses the contribution of the edge images compared to the original
images: the closer α is to 1, the more important is the edge image.

Image entropy is a statistical form of image features, which reflects the average amount
of information in the image. When we do image quality assessment, we generally use the
image’s two-dimensional entropy. Compared with the one-dimensional entropy of the image,
the two-dimensional entropy of the image not only represents the information contained in the
aggregation features of the image grayscale distribution but also adds the grayscale characteristic
information. The image entropy formula can be described as

EN = −
M−1

∑
x=0

N−1

∑
y=0

f (x, y)
M× N

log
f (x, y)
M× N

, (25)

where (x, y) represents the position of the pixel in the image, and f (x, y) represents the pixel value at
(x, y). M× N represents the size of the image.

The image cross entropy is expressed as follows:

D(P : Q) =
M

∑
i=1

N

∑
j=1

pij log
pij

qij
+

M

∑
i=1

N

∑
j=1

qij log
qij

pij
. (26)

In the scene of image fusion, if P is the probability distribution of source image, Q is merged with
the source image size in the image of the probability distribution of local image; depending on the
image of cross entropy, the definition of the consistent P and Q, the cross entropy value is smaller,
says the template image, and the greater the similarity between the local image in real time.

The cross entropy of multimodal medical image fusion is described as

CE = ηaD(a : f ) + ηbD(b : f ), (27)

where a is the MRI image, b is the PET image, and f is the fusion image. In a survey of fifty physicians
in the department of Neurology, thirty-five of them were more interested in the structural information
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in the fused images, while the rest were more interested in the color information in the fused images.
So, ηa is 0.7, and ηb is 0.3.

Visual information fidelity (VIF) is a measure of information fidelity which is consistent with the
human visual system. The process of obtaining this index value is complex. First, filter and divide
the source images and the fused image into different blocks. Next, evaluate the visual information of
each block. Then, calculate the VIF value of each subband. Finally, calculate the overall measurement.
The larger VIF indicates that the fusion method has good performance.

4.1.3. Subjective Evaluation Methods

Subjective evaluation methods generally rely on doctors in the field of organizing medical imaging
to evaluate the visual effects of fused images. The evaluation method is relatively reliable. After all,
the evaluation results are based on the doctors’ years of experience. However, there are also differences
in the scores caused by the difference between the field of personal expertise and the research direction.
The objective method predicts the visual quality of the fused image by modeling the human visual
system, which can avoid the disadvantages of the subjective method. However, due to the complexity
of the human visual system, modeling is impossible, so the evaluation result will deviate from human
judgment. In our experiment, we used the above two methods to compare our algorithm with another
seven representative algorithms. In order to minimize the interference of other factors on the subjective
evaluation, we selected 10 male doctors and 10 female doctors in different hospitals, all of whom were
from the medical imaging department. In order to reduce the impact of the environment on them,
the assessment work is carried out in the same office. All images will be displayed on the computer
monitor at the same resolution, so that you can ensure that everyone sees the same quality fused image.
Scoring is done on a MATLAB GUI, which provides an enlarged tool for doctors to check details.
The GUI is shown in Figure 5.

Figure 5. Interface of subjective scoring system.

Doctors could give a score between 1 and 10 based on the texture, detail, and color changes in the
fused image. For each fusion image, we will calculate its average score and variance as its subjective
score. In view of the fact that there are three types of our functional images in the experiment, in the
corresponding three types of fused images, we will select four groups of representative fused images
for subjective scoring for each type.

4.1.4. Parameters Selection

In this part, we focus on the training details of the encoder and decoder in FusionNet.
First, the data set we use is 80,000 images from the MS-COCO data set. In learning rate, epoch,
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and batch size, since the value of batch size does not affect the calculation time, it is limited by
hardware memory. According to Leslie’s theory, we set the batch size to 32 according to the actual
situation of our hardware memory. Learning rate determines whether the objective function can
converge to the local minimum and when it converges to the minimum. A proper learning rate can
make the objective function converge to a local minimum in a proper time. So, we have to get an
appropriate learning rate through experiments. Therefore, whether the setting of the learning rate is
appropriate has a great impact on the performance of the model. The learning rate is generally set to a
large number at the beginning; the purpose is to learn fast. Later, the model training was unstable.
So, after a certain number of rounds, the learning rate should be gradually reduced. At this time,
the convergence speed is slow, and it is easy to overfit. So, we use exponential decay learning rate.
The formula is as follows:

lr = 0.95epoch_num · lr0. (28)

lr represents the learning rate after decay, lr0 represents the learning rate before decay, and epoch_num
represents the number of iterations.

Since epoch should be greater than 1, and for our data set composed of 80,000 pictures, the value
of epoch is related to whether our model is under-fitting or over-fitting. In order to eliminate the
interference of human factors, we randomly generated one hundred sets of learning rates and epochs,
and then decayed them exponentially. Finally, according to whether the model converges too slowly
and cannot be learned, or converges too fast and loses a lot, decide which group is the best solution in
the end. After comparing one by one, we selected the set of parameters with a learning rate of 0.0005
and an epoch of 10. Our model can obtain the optimal space under this parameter.

In previous intuitionistic fuzzy sets, scholars usually set λ to the order of 10 squares. Here, we set
λ to 200, 300, 400, 500, 600, 700, and 800, respectively. Then, the image enhancement experiment is
carried out, and the experimental results are shown in Figure 6. According to the results, we can find
that, when λ is set to 500, the result is better than others.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Source image and its image reconstructed by different algorithms): (a) Source image,
(b) λ = 200, (c) λ = 300, (d) λ = 400, (e) λ = 500, (f) λ = 600, and (g) λ = 700, (h) λ = 800.

4.2. The Fusion of MRI-SPECT

SPECT image can absorb radionuclide distribution diagram from different directions in vivo and
draw the distribution. Three-dimensional reconstruction diagram of radionuclides in each cross section
in vivo after computer comprehensive processing. It is something that structural MRI does not have.
So, the combination of the two could allow doctors to get more accurate physiological information.
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In this section, there are four multi-modal image sets and each set is consist of MRI image and SPECT
image that are corresponding to the sanme location slice of the brain as shown in Figure 7. Among them,
Figure 7e,f are captured from patients who have suffered a subacute stroke. Figure 7a–d,g,h are captured
from patients who have brain tumor. The fused images with different fusion methods based on DTCWT,
NSCT, GFF, LPSR, IGM, DDcGAN, FusionCNN, and the proposed methods are shown in Figures 8–11.
It can be seen that the fused images obtained by LPSR and FusionCNN algorithm have serious color
distortion. Based on DTCWT and NSCT algorithm, the fusion image structure information is not obvious.
The fused images obtained by GFF and IGM algorithm contain almost no color information, which is not
conducive for doctors to make correct diagnosis. The image obtained by the DDcGAN algorithm saves the
color information in the SPECT to a great extent; however, the brightness of the fused image is too large,
which causes the image to have no sense of hierarchy and the contrast to decrease. By comparing with
other algorithms, we find that our algorithm has good color retention effect, clear structure information,
moderate brightness, and no artifacts.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Four pairs of magnetic resonance imaging (MRI)-single-photon emission computed
tomography (SPECT) source images: (a,c,e,g) are MRI images; (b,d,f,h) are SPECT images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Fused medical images obtained by different algorithms (Figure 7a,b): (a) dual tree
complex wavelet transform (DTCWT), (b) guided filtering fusion (GFF), (c) non-subsampled contourlet
transform (NSCT), (d) Laplacian pyramid sparse representation (LPSR), (e) internal generative
mechanism (IGM), (f) Fusion convolutional neural network based (FusionCNN), (g) dual-discriminator
conditional generative adversarial network based (DDcGAN), and (h) FusionNet.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Fused medical images obtained by different algorithms (Figure 7c,d): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Fused medical images obtained by different algorithms (Figure 7e,f): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Fused medical images obtained by different algorithms (Figure 7g,h): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.
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From Figures 12 and 13, we find that algorithm obtains the greatest preference, indicating
that FusionNet can get better fusion results from the subjective aspect. The objective evaluation
metrics of fused images of all methods in the MRI-SPECT image fusion are shown in Figures 14–23.
Our FusionNet performs well on SSIM, Q f

ab, Qw, and VIF in MRI and SPECT fusion images. In terms of
EN, CE, AG, and FMI, our algorithm is slightly inferior to DDcGAN, IGM, GFF, and FusionCNN. As for
the remaining two indicators, our algorithm is similar to other algorithms. Subjective evaluation and
objective evaluation are inconsistent sometimes; however, in medical diagnosis, objective evaluation
cannot be a complete basis for diagnosis, while subjective evaluation is often more comprehensive.
However, the fusion images got by FusionNet have achieved good results in subjective and objective
evaluation.

Figure 12. The averaged subjective scores of the fused images (MRI-SPECT): (a) is composed of eight
images in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of eight images in
Figure 10, (d) is composed of eight images in Figure 11.

Figure 13. The standard deviations of subjective scores of the fused images (MRI-SPECT).

Figure 14. Values of entropy (EN) in the fused images (MRI-SPECT): (a) is composed of eight images
in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of eight images in Figure 10,
(d) is composed of eight images in Figure 11.
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Figure 15. Values of cross entropy (CE) in the fused images (MRI-SPECT): (a) is composed of eight
images in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of eight images in
Figure 10, (d) is composed of eight images in Figure 11.

Figure 16. Values of root mean squared error (RMSE) in the fused images (MRI-SPECT): (a) is composed
of eight images in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of eight images
in Figure 10, (d) is composed of eight images in Figure 11.

Figure 17. Values of structural similarity (SSIM) in the fused images (MRI-SPECT): (a) is composed of
eight images in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of eight images
in Figure 10, (d) is composed of eight images in Figure 11.

Figure 18. Values of feature mutual information (FMI) in the fused images (MRI-SPECT): (a) is
composed of eight images in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of
eight images in Figure 10, (d) is composed of eight images in Figure 11.
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Figure 19. Values of Q f
ab in the fused images (MRI-SPECT): (a) is composed of eight images in Figure 8,

(b) is composed of eight images in Figure 9, (c) is composed of eight images in Figure 10, (d) is
composed of eight images in Figure 11.

Figure 20. Values of Qw in the fused images (MRI-SPECT): (a) is composed of eight images in Figure 8,
(b) is composed of eight images in Figure 9, (c) is composed of eight images in Figure 10, (d) is
composed of eight images in Figure 11.

Figure 21. Values of Qe in the fused images (MRI-SPECT): (a) is composed of eight images in Figure 8,
(b) is composed of eight images in Figure 9, (c) is composed of eight images in Figure 10, (d) is
composed of eight images in Figure 11.

Figure 22. Values of average gradient (AG) in the fused images (MRI-SPECT): (a) is composed of eight
images in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of eight images in
Figure 10, (d) is composed of eight images in Figure 11.
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Figure 23. Values of visual information fidelity (VIF) in the fused images (MRI-SPECT): (a) is composed
of eight images in Figure 8, (b) is composed of eight images in Figure 9, (c) is composed of eight images
in Figure 10, (d) is composed of eight images in Figure 11.

4.3. The Fusion of MRI-FDG

Fludeoxyglucose (FDG) image in cancer diagnosis plays an important role; at the same time,
it provides the functional information that can predict a pathological reaction to certain types of cancer
treatment. As a kind of PET image, FDG image has some features of PET image, such as texture
analysis [54] and shape analysis [55], may also provide additional knowledge associated with the
treatment outcome. However, FDG image has no structural information, which is its biggest defect.
Therefore, the fusion of MRI and FDG can give doctors a great help in the process of cancer diagnosis.

In this section, all FDG images are derived from the normal human brain, but the angle is chosen
differently in Figure 24. In Figures 25–28, we find that the color information obtained by the image
fusion method based on NSCT, DTCWT, and LPSR is better preserved, but the structure information
is lost more. The fusion image based on GFF, IGM, and FusionCNN method retains the complete
structure information in the MRI image, but the color obtained from the FDG image is distorted.
The image color information obtained by DDcGAN fusion method is too bright, resulting in unclear
color area details and low contrast of color region. In contrast, the image obtained by our algorithm
has moderate brightness of color information, complete structure information, and complete biological
detail information.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 24. Four pairs of MRI-Fludeoxyglucose (FDG) source images: (a,c,e,g) are MRI images; (b,d,f,h)
are FDG images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 25. Fused medical images obtained by different algorithms (Figure 24a,b): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 26. Fused medical images obtained by different algorithms (Figure 24c,d): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 27. Fused medical images obtained by different algorithms (Figure 24e,f): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.



Entropy 2020, 22, 1423 22 of 36

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 28. Fused medical images obtained by different algorithms (Figure 24g,h): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.

The averaged subjective scores of MRI-FDG fused images obtained by 8 algorithms are
shown in Figures 29 and 30, and objective evaluation indicators are all shown from Figures 31–40.
Overall, our algorithm performs well in EN, FMI, RMSE, AG, SSIM, Qw, Qe, and Q f

ab. Our algorithm is
the best of eight algorithms in the fusion of image structure information. In the metric of cross entropy
and visual information fidelity, our algorithm is slightly inferior to other algorithms. However, from the
overall evaluation, the algorithm has obvious advantages in fusion MRI and FDG.

Figure 29. The averaged subjective scores of the fused images (MRI-FDG): (a) is composed of eight
images in Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight images in
Figure 27, (d) is composed of eight images in Figure 28.
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Figure 30. The standard deviations of subjective scores of the fused images (MRI-SPECT).

Figure 31. Values of entropy (EN) in the fused images (MRI-FDG): (a) is composed of eight images in
Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight images in Figure 27,
(d) is composed of eight images in Figure 28.

Figure 32. Values of cross entropy (CE) in the fused images (MRI-FDG): (a) is composed of eight images
in Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight images in Figure 27,
(d) is composed of eight images in Figure 28.

Figure 33. Values of root mean squared error (RMSE) in the fused images (MRI-FDG): (a) is composed
of eight images in Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight
images in Figure 27, (d) is composed of eight images in Figure 28.
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Figure 34. Values of structural similarity (SSIM) in the fused images (MRI-FDG): (a) is composed of
eight images in Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight images
in Figure 27, (d) is composed of eight images in Figure 28.

Figure 35. Values of feature mutual information (FMI) in the fused images (MRI-FDG): (a) is composed
of eight images in Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight
images in Figure 27, (d) is composed of eight images in Figure 28.

Figure 36. Values of Q f
ab in the fused images (MRI-FDG): (a) is composed of eight images in Figure 25,

(b) is composed of eight images in Figure 26, (c) is composed of eight images in Figure 27, (d) is
composed of eight images in Figure 28.

Figure 37. Values of Qw in the fused images (MRI-FDG): (a) is composed of eight images in Figure 25,
(b) is composed of eight images in Figure 26, (c) is composed of eight images in Figure 27, (d) is
composed of eight images in Figure 28.
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Figure 38. Values of Qe in the fused images (MRI-FDG): (a) is composed of eight images in Figure 25,
(b) is composed of eight images in Figure 26, (c) is composed of eight images in Figure 27, (d) is
composed of eight images in Figure 28.

Figure 39. Values of average gradient (AG) in the fused images (MRI-FDG): (a) is composed of eight
images in Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight images in
Figure 27, (d) is composed of eight images in Figure 28.

Figure 40. Values of visual information fidelity (VIF) in the fused images (MRI-FDG): (a) is composed
of eight images in Figure 25, (b) is composed of eight images in Figure 26, (c) is composed of eight
images in Figure 27, (d) is composed of eight images in Figure 28.

4.4. The Fusion of MRI-CBF

Cerebral blood flow diagram (CBF), which indicates the amount of blood flow in brain tissue with
color. Red, yellow, green, blue, and black successively indicate the amount of blood flow from more
to less. It is mainly used to detect the blood flow supply condition, elasticity, tension, and peripheral
resistance. However, with the development of medical science, CBF image is often inferior in the
diagnosis of brain diseases due to its lack of structural information. Therefore, MRI which is good at
expressing structural information, is introduced to fuse in the current trend of brain medicine.

In this section, there are four image sets to fuse, each containing a MRI image and its corresponding
CBF image in Figure 41. In Figures 42–45, it can be seen that the structural information of fusion images
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obtained by our algorithm is complete. The color is not distorted, and the spectral features are natural.
The fusion image based on DTCWT and NSCT algorithm have high color fidelity but less structural
information. Other algorithms, such as IGM, LPSR, and FusionCNN, only focus on the structural
information of the MRI image and ignore the color information of the fused image. Although the
image structure information obtained by DDcGAN fusion algorithm is relatively complete, the edge of
color information is not clear, which has a great influence on image contrast.

The averaged subjective scores of MRI-CBF fusion images obtained by the above methods are
shown from Figures 46 and 47. Our fusion algorithm has obvious advantages in EN, FMI, SSIM, Qw,
Q f

ab, and AG from Figures 48–57. Other metrics are inferior to those of FusionCNN, GFF, and LPSR
fusion algorithm. However, as we have mentioned before, there may be inconsistency between
subjective indicators and objective indicators, but this does not affect the assessment of image quality.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 41. Four pairs of MRI-cerebral blood flow diagram (CBF) source images: (a,c,e,g) are MRI
images; (b,d,f,h) are CBF images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 42. Fused medical images obtained by different algorithms (Figure 41a,b): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 43. Fused medical images obtained by different algorithms (Figure 41c,d): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 44. Fused medical images obtained by different algorithms (Figure 41e,f): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 45. Fused medical images obtained by different algorithms (Figure 41g,h): (a) DTCWT, (b) GFF,
(c) NSCT, (d) LPSR, (e) IGM, (f) FusionCNN, (g) DDcGAN, and (h) FusionNet.
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Figure 46. The averaged subjective scores of the fused images (MRI-CBF): (a) is composed of eight
images in Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight images in
Figure 44, (d) is composed of eight images in Figure 45.

Figure 47. The standard deviations of subjective scores of the fused images (MRI-SPECT).

Figure 48. Values of entropy (EN) in the fused images (MRI-CBF): (a) is composed of eight images in
Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight images in Figure 44,
(d) is composed of eight images in Figure 45.
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Figure 49. Values of cross entropy (CE) in the fused images (MRI-CBF): (a) is composed of eight images
in Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight images in Figure 44,
(d) is composed of eight images in Figure 45.

Figure 50. Values of root mean squared error (RMSE) in the fused images (MRI-CBF): (a) is composed
of eight images in Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight
images in Figure 44, (d) is composed of eight images in Figure 45.

Figure 51. Values of structural similarity (SSIM) in the fused images (MRI-CBF): (a) is composed of
eight images in Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight images
in Figure 44, (d) is composed of eight images in Figure 45.

Figure 52. Values of feature mutual information (FMI) in the fused images (MRI-CBF): (a) is composed
of eight images in Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight
images in Figure 44, (d) is composed of eight images in Figure 45.



Entropy 2020, 22, 1423 30 of 36

Figure 53. Values of Q f
ab in the fused images (MRI-CBF): (a) is composed of eight images in Figure 42,

(b) is composed of eight images in Figure 43, (c) is composed of eight images in Figure 44, (d) is
composed of eight images in Figure 45.

Figure 54. Values of Qw in the fused images (MRI-CBF): (a) is composed of eight images in Figure 42,
(b) is composed of eight images in Figure 43, (c) is composed of eight images in Figure 44, (d) is
composed of eight images in Figure 45.

Figure 55. Values of Qe in the fused images (MRI-CBF): (a) is composed of eight images in Figure 42,
(b) is composed of eight images in Figure 43, (c) is composed of eight images in Figure 44, (d) is
composed of eight images in Figure 45.
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Figure 56. Values of average gradient (AG) in the fused images (MRI-CBF): (a) is composed of eight
images in Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight images in
Figure 44, (d) is composed of eight images in Figure 45.

Figure 57. Values of visual information fidelity (VIF) in the fused images (MRI-CBF): (a) is composed
of eight images in Figure 42, (b) is composed of eight images in Figure 43, (c) is composed of eight
images in Figure 44, (d) is composed of eight images in Figure 45.

4.5. Metrics Discussion

What we do is the image fusion of structured images and multi-type functional images. Due to
the diversity of functional image categories and their different imaging principles, the ten indicators
for objective evaluation cannot all be equally good. But the reason why we list all ten indicators is to
allow all multi-modal medical image fusions to be evaluated fairly under the same quality evaluation
system, and the other is to distinguish which indicators are more suitable for which type of image
fusion evaluation. In MRI-SPECT fusion, our fusion results are slightly worse than some MST image
fusion algorithms on RMSE. The overall characteristic of MST fusion algorithm is that the loss of
image information is small and fast. But it cannot handle texture and details well, resulting in unclear
texture and blurry details of the fused image. So, it performs well in RMSE, But the fusion effect
is not satisfactory. On the indicator of Qe, our model is inferior to GFF, IGM, and FusionCNN on
several pictures. The difference is extremely small, all of which are four decimal places. This can only
show that the above three algorithms are slightly better than our model in terms of edge similarity
structure. But in the final fusion image, we can also clearly see that their colors are poorly fused, either
there is almost no color, or the color distortion is particularly severe. Therefore, RMSE and Qe are not
the most important evaluation indicators in MRI-SPECT. In MRI-FDG fusion, our model is weaker
than LPSR in both CE and VIF performance. The LPSR algorithm is an image fusion algorithm that
completely relies on the training dictionary. The more complete the dictionary, the more information
can be obtained in the fused image, but this does not mean that the fused image will have a better
effect, and it will be more helpful to the doctor. The results of the experiment just verify my point
of view. The image obtained by the LPSR algorithm has high visual fidelity, and the fused image
contains a lot of information of the source image, but the same location information is too much and
blurred, which is not what doctors want. Therefore, CE and VIF are not the most important indicators
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in MRI-FDG fusion. In MRI-CBF fusion, in the above four indicators, the performance of our model
is not as good as GFF, LPSR, and DDcGAN, respectively. The GFF and LPSR algorithms have been
explained in detail above and will not be repeated here. The DDcGAN algorithm is an improvement
of the GAN algorithm and is better than our algorithm on VIF. Because its fusion process is a game
process, the output fusion image has high brightness and rich color information, resulting in lack
of structural details, which affects observation. In summary, CE, LPSR, Qe, and VIF can be used as
reference evaluation metrics in our model, but they are not the most important evaluation metrics.

4.6. Proposed Framework Analysis

Our proposed FusionNet is inspired by DenseNet. DenseNet has achieved great success in
infrared and visible image fusion, however, there are great differences between medical images and
two types of images that are mentioned above. DenseNet directly does multi-mode medical image
fusion, which is not ideal. Therefore, we have done many improvements. In view of the advantages of
intuitionistic fuzzy sets in image processing, we improved the intuitionistic fuzzy sets as part of image
preprocessing and added them to our framework. In our experiment, two methods, DenseNet and
traditional IFP, were introduced to help us analyze our own methods. Figure 58a,b are source images;
Figure 58c is the result of DenseNet fusion; Figure 58d is the fusion result of traditional IFP; Figure 58e
is the fusion result of our proposed method.

(a) (b) (c) (d) (e)

Figure 58. Source images and fused medical images obtained by different algorithms: (a) MRI,
(b) positron emission tomography (PET), (c) DenseNet, (d) traditional intuitive fuzzy processing (IFP),
and (e) FusionNet.

In DenseNet, all middle layer reuses many features of the image, resulting there are few
information features, low image brightness, and loss of edge structure information, thus losing
the significance of MRI fusion. In traditional IFP, the membership image, the non-membership image
and the hesitation image are obtained by the membership function of the multi-mode medical image.
Then, the membership image is taken for subsequent fusion operations. This approach allows us to
remove more useful information, such as textures of structural images. Considering the disadvantages
of DenseNet and traditional IFP, we try to use only the second layer as the unique feature reuse layer
to ensure that the respective features of the source image, which can be perfectly reflected in the final
fused image. At the same time, the traditional IFP is improved to improve its ability to retain valid
information. As can be seen from the experimental results of the following images, FusionNet can
retain the structural features and color information required for medical diagnosis in the fused images.

4.7. Computational Time Comparison

The time complexity of our method is compared with that of other fusion techniques. In Figure 59,
we listed the running time of different fusion methods in the fusion of two 256× 256 pixel multi-modal
medical images under the condition of 2.20 Ghz CPU and 16GB RAM. Among them, DTCWT, GFF,
NSCT, and IGM are implemented in pure MATLAB, while LPSR, FusionCNN, DDcGAN, and the
method in this paper adopt MATLAB and Python mixed programming. We can see that our method
has a lower computational efficiency compared with the above comparison method.
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Figure 59. The time complexity of different types of multi-modal medical images.

As can be seen from Figure 59, the time complexity of NSCT-based algorithm is relatively high,
and the fusion time is generally more than 4 s. The algorithm based on DTCWT has the lowest time
complexity and fusion time is less than 2 s. The fusion results obtained by the two methods are
similar, the color information is complete, but the edge information is not ideal. IGM algorithm has the
highest time complexity, but the image after fusion is too bright, so the details are not clear. The time
complexity of the remaining algorithms is similar to that of FusionNet; however, their fusion results
are not as good as that of FusionNet.

5. Conclusions and Future Development

In this article, we propose a multi-modal medical image fusion model based on feature
multiplexing. Compared with other models, it has four main advantages: (1) Our model is the
first model that is close to the application of multi-modal medical image fusion, that is, subjective
evaluation is completely dependent on the prior knowledge of imaging, rather than simply relying
on personal preference. (2) Our model uses an appropriate feature reuse layer instead of a complex
DenseNet for feature extraction, which not only increases the utilization of features in the last layer
but also reduces the time complexity. (3) Since our experimental data is not very limited, especially
in functional images, three categories have been involved, and the diversity of image data has been
realized, so that the robustness of our model has been greatly improved. (4) For the first time,
the cross-entropy and structural similarity joint loss function is introduced into the image fusion model
to optimize the model, which promotes the model to reconstruct images with more detailed texture
and color. The model has good performance in all categories of objective indicators, especially on
SSIM, EN, Qabf, FMI, Qw, and AG. Although the performance on RMSE, Qe, CE, and VIF was average,
it did not affect the final fusion effect. Diversified experimental data and comprehensive evaluation
methods once again prove the stability of our model in multi-modal medical image fusion. At the
same time, it has abandoned the previous concept that only medical images were used as the object of
image fusion, making it lose its application significance.

This work has laid a pioneering foundation for image fusion applications of convolutional neural
networks in the real medical field. However, despite the extensive experimental results verifying the
advantages of the proposed model, there are still some problems that need to be further resolved in
order to obtain a better performance image fusion model. First of all, our selection of structural images
is currently a bit single. All we select are structural images in MRI. There are actually many types
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of medical structural images, such as CT, X-ray imaging, etc., so the data set is expanded to a wider
range Structured data sets may improve the performance of the model. Secondly, the multi-modal
medical image is preprocessed before entering our model, and the image is enhanced using the
intuitive fuzzy set. Can we directly integrate a multi-modal image enhancement algorithm based
on the prior knowledge of imaging in our encoder? This will have more application significance.
Thirdly, our source images are always registered images, but, in actual operation, it is difficult to obtain
registered images. Therefore, the development of image fusion models for non-registered images has
great potential. Finally, our model can already obtain the multi-modal fusion image that doctors need,
but whether the fusion details of the image can be used to discover the causes of abnormalities in the
tissue will be challenging and of far-reaching significance.

Author Contributions: Conceptualization, K.G. and T.F.; methodology, K.G. and T.F.; software, K.G.; validation,
H.Z.; formal analysis, K.G. and X.L.; writing—original draft preparation, K.G.; writing—review and editing, X.L.
and T.F.; visualization, K.G.; supervision, X.L., H.Z. and T.F.; funding acquisition, X.L. and T.F. All authors have
read and agreed to the published version of the manuscript.

Funding: The work was supported in part by the National Natural Science Foundation of China under Grant
61801190, in part by the National Key Research and Development Project of China under Grant 2019YFC0409105,
in part by the Nature Science Foundation of Jilin Province under Grant 20180101055JC, in part by the Outstanding
Young Talent Foundation of Jilin Province under Grant 20180520029JH, in part by the China Postdoctoral Science
Foundation under Grant 2017M611323, in part by the Industrial Technology Research and Development Funds of
Jilin Province under Grant 2019C054-3. The authors also thanks for supporting by the “Thirteenth Five-Year Plan”
Scientific Research Planning Project of Education Department of Jilin Province (JJKH20200678KJ,JJKH20200997KJ).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. James, A.P.; Dasarathy, B.V. Medical image fusion: A survey of the state of the art. Inf. Fusion 2014, 9, 4–19.
[CrossRef]

2. Liu, Y.; Xun, C.; Cheng, J.; Hu, P. A medical image fusion method based on convolutional neural networks.
In Proceedings of the 2017 20th International Conference on Information Fusion, Xi’an, China, 10–13 July
2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 1–7

3. Li, S.; Kang, X.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion
2017, 33, 100–112. [CrossRef]

4. Zribi, M. Non-parametric and region-based image fusion with Bootstrap sampling. Inf. Fusion 2010, 11,
85–94. [CrossRef]

5. Li, H.; Qiu, H.; Yu, Z.; Li, B. Multifocus image fusion via fixed window techniqueof multiscale images and
non-local means filtering. Signal Process. 2017, 138, 71–85. [CrossRef]

6. Yang, Y. A novel DWT based multi-focus image fusion method. Procedia Eng. 2011, 24, 177–181. [CrossRef]
7. Yang, S.; Wang, M.; Jiao, L.; Wu, R.; Wang, Z. Image fusion based on a newcontourlet packet. Inf. Fusion

2010, 11, 78–84. [CrossRef]
8. Yu, B.; Jia, B.; Ding, L.; Cai, Z.; Wu, Q.; Law, R.; Huang, J.; Song, L.; Fu, S. Hybrid dual-tree complex wavelet

transform and support vector machine for digital multi-focus image fusion. Neurotoxinmenge 2016, 182, 1–9.
[CrossRef]

9. Nencini, F.; Garzelli, A.; Baronti, S.; Alparone, L. Remote sensing image fusion using the curvelet transform.
Inf. Fusion 2007, 8, 143–156. [CrossRef]

10. Li, H.; Qiu, H.; Yu, Z.; Zhang, Y. Infrared and visible image fusion scheme basedon NSCT and low-level
visual features. Infrared Phys. Technol. 2016, 76, 174–184. [CrossRef]

11. Paris, S.S.; Hasinoff, W.S.; Kautz, J. Local Laplacian filters: Edgeaware image processing with a Laplacian
pyramid. ACM Trans. Graph. 2011, 30, 1244–1259. [CrossRef]

12. Wang, J.; Zha, H.; Cipolla, R. Combining interest points and edges for content-based image retrieval.
In Proceedings of the IEEE International Conference on Image Processing, Genova, Italy, 14 September 2005;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2005; pp. 1256–1259.

http://dx.doi.org/10.1016/j.inffus.2013.12.002
http://dx.doi.org/10.1016/j.inffus.2016.05.004
http://dx.doi.org/10.1016/j.inffus.2008.08.004
http://dx.doi.org/10.1016/j.sigpro.2017.03.008
http://dx.doi.org/10.1016/j.proeng.2011.11.2622
http://dx.doi.org/10.1016/j.inffus.2009.05.001
http://dx.doi.org/10.1016/j.neucom.2015.10.084
http://dx.doi.org/10.1016/j.inffus.2006.02.001
http://dx.doi.org/10.1016/j.infrared.2016.02.005
http://dx.doi.org/10.1145/2010324.1964963


Entropy 2020, 22, 1423 35 of 36

13. Li, H.; Wu, X. Multi-focus image fusion using dictionary learning and low-rank representation.
In Proceedings of the International Conference on Image and Graphics, Shanghai, China, 13–15 September
2017; Springer: Cham, Switzerland, 2017; pp. 675–686.

14. Chen, Z.; Wu, X.; Kittler, J. A sparse regularized nuclear norm based matrix regression for face recognition
with contiguous occlusion. Pattern Recogn. lett. 2019, 125, 494–499. [CrossRef]

15. Chen, Z.; Wu, X.; Yin, H.F.; Kittler, J. Robust Low-Rank Recovery with a Distance-Measure Structure for Face
Recognition. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Nanjing,
China, 28–31 August 2018; Springer: Cham, Switzerland, 2018; pp. 464–472.

16. Yang, B.; Li, S. Multifocus Image Fusion and Restoration with Sparse Representation. Inf. Fusion 2010, 59,
884–892.

17. Yin, H.; Li, Y.; Chai, Y.; Liu, Z.; Zhu, Z. A novel sparse-representation-based multi-focus image fusion
approach. Neurocomputing 2016, 216, 216–229. [CrossRef]

18. Liu, Y.; Chen, X.; Wang, Z.; Wang, Z.J.; Ward, R.K.; Wang, X. Deep learning for pixel-level image fusion:
recent advances and future prospects. Inf. Fusion 2018, 42, 158–173. [CrossRef]

19. Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal Satellite Image Fusion Using Deep
Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [CrossRef]

20. Li, H.; Wu, X.; Kittler, J. Infrared and Visible Image Fusion using a Deep Learning Framework. In Proceedings
of the 2018 24th International Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; Institute
of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 2705–2710.

21. Prabhakar, K.R.; Srikar, V.S.; Babu, R.V. DeepFuse: A Deep Unsupervised Approach for Exposure Fusion
with Extreme Exposure Image Pairs. In Proceedings of the 2017 IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway,
NJ, USA, 2017; pp. 4724–4732.

22. Li, H.; Wu, X. DenseFuse: A Fusion Approach to Infrared and Visible Images. IEEE Trans. Image Process.
2019, 28, 2614–2623. [CrossRef]

23. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-II. Inform. Sci.
1975, 8, 301–357. [CrossRef]

24. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inform. Sci.
1975, 8, 199–249. [CrossRef]

25. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inform. Sci.
1975, 9, 43–80. [CrossRef]

26. Atanassov, K.T. Intuitionistic fuzzy set. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
27. Atanassov, K.T.; Stoeva, S. Intuitionistic fuzzy set. In Proceedings of the Polish Symposium on Interval &
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