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Abstract: In order to effectively improve the quality of side information in distributed video coding,
we propose a side information generation scheme based on a coefficient matrix improvement model.
The discrete cosine transform coefficient bands of the Wyner–Ziv frame at the encoder side are
divided into entropy coding coefficient bands and distributed video coding coefficient bands, and then
the coefficients of entropy coding coefficient bands are sampled, which are divided into sampled
coefficients and unsampled coefficients. For sampled coefficients, an adaptive arithmetic encoder is
used for lossless compression. For unsampled coefficients and the coefficients of distributed video
coding coefficient bands, the low density parity check accumulate encoder is used to calculate the
parity bits, which are stored in the buffer and transmitted in small amount upon decoder request.
At the decoder side, the optical flow method is used to generate the initial side information, and the
initial side information is improved according to the sampled coefficients by using the coefficient
matrix improvement model. The experimental results demonstrate that the proposed side information
generation scheme based on the coefficient matrix improvement model can effectively improve the
quality of side information, and the quality of the generated side information is improved by about
0.2–0.4 dB, thereby improving the overall performance of the distributed video coding system.

Keywords: distributed video coding; side information; Wyner–Ziv frame; arithmetic coding;
coefficient matrix improvement model

1. Introduction

Traditional video coding standards [1,2], such as H.264 [3] and MPEG, all perform complex
motion estimation at the encoder side in order to obtain higher video quality while maintaining higher
compression performance. This kind of encoding architecture makes the computational complexity
of the encoder far higher than that of the decoder, which is more suitable for application scenarios
where encoding once and decoding multiple times, such as digital TV and DVD playback and other
video services. However, with the popularization and development of wireless low-energy video
sensor networks, wireless video surveillance systems [4], and handheld mobile video terminal devices,
users have put forward new requirements for video coding. Since most of these wireless devices are
battery-powered, their energy supply and computing power are very limited, the traditional video
coding framework is challenged in terms of the computational complexity of the encoder.

A different video coding architecture, distributed video coding (DVC) [5], has begun to attract the
attention of researchers. The main advantage of DVC is that it can reduce the computational burden
on the encoder side in the video coding framework while achieving high compression performance,
which is more suitable for mobile video devices with limited energy. DVC is based on Slepian–Wolf
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theory [6] and Wyner–Ziv theory [7], it realizes the efficient compression of video information with the
lower computational complexity at the encoder side. In the DVC framework, different video frames at
the encoder side can be regarded as different sources, and they can be independently encoded, that is,
the encoder ignores the correlation between these sources, while the decoder has to jointly decode
them, which means that the decoder is responsible for exploiting the redundant information among
different sources.

In order to further improve the performance of DVC, researchers have proposed various schemes.
A new technique to realize Slepian–Wolf coding was presented in [8], and it is used for DVC.
The authors showed that coding the positions of the symbols, instead of their values, can be a good
way to implement efficient Slepian–Wolf coding and can reduce the complexity of both the encoder
and the decoder. Based on this idea, they proposed a practical DVC system. In [9], a frame-level
DVC system based on the rate control at the encoder was proposed, which effectively improves the
rate distortion (RD) performance of the DVC system at low bit rates. In [10], a new side information
successive refinement algorithm was proposed, which uses the additional information obtained after
the decoding of the previous discrete cosine transform (DCT) bands of a Wyner–Ziv frame to refine
the initial side information frame. This algorithm can considerably improve the RD performance
of the DVC system. In [11], an algorithm combined with naive Bayesian theory was proposed to
create a general model for the generation of side information in DVC. An ensemble of multilayer
perceptron networks for side information generation in DVC was proposed in [12], the main goal
of this method is to minimize the estimation error between the side information frame and the
corresponding Wyner–Ziv frame, so as to improve the overall efficiency of the DVC systems. In [13],
the authors proposed an adaptive two-step side information generation method to improve the DVC
system by generating better second-step side information. This method uses the down-sampled
decoded Wyner–Ziv frames and the decoded coefficients to progressively improve the RD performance
during the decoding procedure. In [14], an efficient scalable DVC scheme was proposed for video
transmission in wireless video sensor networks. In their scheme, the scalable Wyner–Ziv frame is
based on transmission of different wavelet information, while the key frame is based on transmission
of different residual information. The proposed scheme significantly contributes to the performance
of a DVC system. In [15], researchers proposed a side information generation method for low-delay
DVC, in which the side information results generated respectively by the autoregressive model and
the traditional extrapolation method are fused based on a probability model to get the final side
information. The experiment results show that the proposed autoregressive model can effectively
improve the RD performance. In [16], researchers proposed a DVC scheme using interval overlapped
arithmetic coding, where the key frames are compressed using traditional video coder while the
Wyner–Ziv frames are compressed using distributed arithmetic coding. The proposed scheme is
competitive and has a good RD performance. Video coding based on compressive sensing is also one
of the implementation schemes of distributed video coding. For example, Evgeny [17] presented a
novel efficient and robust JPEG compatible video coding algorithm based on the compressive sensing
framework, which is significantly more robust to packet losses compared to conventional codecs.
In [18], researchers presented a compressive-sensing-based video codec with a low-complexity encoder,
which is suitable for wireless video system requiring simple encoders but tolerant, more complex
decoders. The experiment results demonstrate that the RD performance of the proposed codec is
superior to the state-of-the-art compressive-sensing-based video codec.

It is worth noting that the side information generation at the decoder side is an important part
of the DVC framework, and the quality of the side information directly affects the performance of
Wyner–Ziv frame decoding. Therefore, improving the quality of side information can improve the
overall performance of the DVC system. In this paper, we propose an improved side information
generation scheme in the transform domain. Firstly, the optical flow method in [19] is used to
generate the initial side information. Since the optical flow method can perform motion estimation
better, the generation of side information by using the optical flow method is also more advantageous.



Entropy 2020, 22, 1427 3 of 14

However, using only key frames to generate the side information for the Wyner–Ziv frame still has some
limitations. Secondly, we consider transmitting part of the important information of the Wyner–Ziv
frames to the decoder side losslessly, and using this important information to further improve the initial
side information, specifically, performing the block-based 4 × 4 DCT [20] for Wyner–Ziv frame at the
encoder side, and then the block-based 4 × 4 DCT coefficients are organized into 16 bands by zig-zag
scan order. The important coefficients information after DCT is encoded by an adaptive arithmetic
encoder [21] and transmitted to the decoder, the side information is also transformed by DCT at the
decoder side. Therefore, the important coefficients information decoded by the adaptive arithmetic
decoder is used to improve the side information, that is to say, the lossless DCT coefficients information
obtained at the decoder is used to replace the DCT coefficients information at the corresponding
position in the initial side information. Finally, the coefficient matrix improvement model (CMIM) is
used for further improvement based on the lossless coefficients information, thereby the reliability and
quality of side information will be effectively improved.

2. Distributed Video Coding System

DVC is a video coding scheme that is different from traditional video coding architecture. DVC can
reduce the computational complexity of the encoder side while ensuring a high compression ratio.
For DVC in the transform domain, the original video sequence is divided into key frames and
Wyner–Ziv frames, and for key frames, the traditional video encoder is used to encode them directly,
while for Wyner–Ziv frames, a block-based DCT is performed, and then the DCT coefficients of each
pixel block in the same position are extracted to form a DCT band. For a Wyner–Ziv frame, if a
4 × 4 block-based DCT is performed, then 16 DCT bands can be obtained. To encode each DCT band,
a predefined number of quantization levels are used depending on the quality of the Wyner–Ziv
frames [22]. Eight quantization matrices are illustrated in Figure 1. The quantized information is
processed by using a low density parity check accumulate (LDPCA) encoder, which can generate the
respective syndromes (parity bits) [23]. The larger the number of quantization levels is, the higher
the bit rate is, and the higher the decoded video quality will be, so that the decoding results with
different bit rates can be obtained. At the decoder side, the key frames are directly decoded by the
traditional video decoder, and are used for motion estimation, thereby the side information is obtained.
For Wyner–Ziv frames, according to the side information generated at the decoder side and the parity
bits transmitted from the encoder, the LDPCA decoder can perform iterative decoding to get the final
decoded Wyner–Ziv frames according to the correlation between frames. It can be seen from above that
the side information is a noisy version of the Wyner–Ziv frame. The less “noise” of the side information
relative to the original Wyner–Ziv frame, the better the final decoded result will be, which means
that the quality of the side information will directly affect the decoded result of the Wyner–Ziv frame.
Therefore, improving the accuracy of the generated side information is essential for improving the
performance of a DVC system.

Figure 1. Cont.
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Figure 1. Quantization matrices.

3. DVC System Based on the Proposed Side Information Generation Scheme

The side information is obtained by motion estimation using the decoded key frames at the
decoder side, which is an approximate version of a Wyner–Ziv frame. In order to obtain the ideal side
information, the optical flow method [19] is used to generate the initial side information. However,
when the coding and decoding parameters of the key frames are constant, especially when the bit rate
of the key frame is not high, the generation of side information will still show limitations. In other
words, there are many “errors” in the generated side information, which are not conducive to the error
correction of the LDPCA decoder. In order to solve such problems, we propose a side information
generation scheme based on CMIM. The coefficient bands of the Wyner–Ziv frame after DCT are
divided into entropy coding coefficient bands (ECCB) and distributed video coding coefficient bands
(DVCCB). The coefficients of ECCB are sampled and divided into sampled coefficients and unsampled
coefficients. For the sampled coefficients, an adaptive arithmetic encoder is used for lossless encoding.
For unsampled coefficients and the coefficients of DVCCB, the LDPCA encoder is used to calculate
the parity bits, and then the lossless sampled coefficients are used with CMIM at the decoder side to
improve the coefficient matrix of the side information. As shown in Figure 2, it is a block diagram of
DVC system based on the proposed side information generation scheme.

Figure 2. Distributed video coding system based on the proposed side information generation Scheme.

3.1. Video Splitter, Transform, and Quantization

It can be seen from the block diagram that the input original video sequence is divided into multiple
GOP (group of pictures). When the size of GOP is 2, it means that each group is composed of a key frame
and a Wyner–Ziv frame. For the key frames, it needs to be restored with high quality at the decoder side
to generate side information, so the H.264 intra encoder is chosen for encoding. For a Wyner–Ziv frame,
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since the decoder can generate the side information for the Wyner–Ziv frame, we only need to use the
LDPCA encoder to generate its parity bits.

The application of DCT is due to the fact that it can remove spatial redundancy of pixels within a
frame, which helps improve the performance of DVC.

The two-dimensional 4 × 4 DCT coefficient matrix A can be expressed as:

A = C·a·CT (1)

where a denotes the 4 × 4 signal matrix and C denotes the DCT transform matrix. C can be expressed as:

C =
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transform matrix, E f is the correction matrix, and “⊗” denotes the multiplication of the corresponding
position elements of the matrices. This integer DCT derives from DCT, preserving original feature of
DCT. Its main idea is to separate the floating-point operations in the transform matrix and put them in
the quantization stage. Therefore, a DCT-like matrix retains only integer elements for transformation.
That means only additions, subtractions, and shifts are used to implement the integer DCT transform.
In conclusion, the integer DCT on the signal matrix a can be expressed as:

A f = C f ·a·C
T

f (3)

The DCT based on 4 × 4 blocks will generate 16 DCT coefficient bands, and we rank them by
importance according to the zig-zag scanning order.

3.2. DCT Coefficient Bands Dividing and Sampling Process

For DCT coefficient bands, quantization is also required, and a uniform quantizer with 2Mk

quantization levels is used for quantization, where 2Mk ∈ {0, 2, 4, 8, 16, 32, 64, 128}, 2Mk = 0 indicates
that the corresponding band do not need to be encoded and transmitted to the decoder, but directly
replaced with the corresponding transform coefficient of the side information. Figure 1 shows the
8 quantization matrices Qi (i = 1,2,3,...,8), it is easy to know that the larger the value of i, the higher the
bit rate that needed for transmitting, and the higher the quality of the decoded Wyner–Ziv frames.
In order to improve the quality of side information, we divide the DCT coefficient bands based on the
importance of the quantization matrix and the DCT coefficient bands. The quantization splitter matrices
are shown in Figure 3. The specific dividing process is shown in Figure 4 with the quantization splitter
matrix Q1_splitter as an example. As can be seen from the figure, for the ECCB, we need to form it into
a coefficient matrix, and then sample it according to the way in the figure (the odd-numbered positions
of the odd-numbered rows are sampled, and the even-numbered positions of the even-numbered rows
are also sampled), so that we can get the sampled coefficients and the unsampled coefficients. For the
sampled coefficients, we use an adaptive arithmetic encoder for encoding, and for the unsampled
coefficients, we use an LDPCA encoder to calculate the parity bits. In this way, we can use both
interframe correlation and intracoefficient correlation at the decoder side, which can effectively improve
decoding performance.

3.3. Coefficient Matrix Improvement Model (CMIM)

For the side information generation part, we use the optical flow method in [19] to perform motion
estimation to obtain the side information. Since the optical flow method can generate smoother and
more accurate motion vectors, the accuracy of the generated side information is also higher. In order to
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further improve the initial side information generated by the optical flow method, we propose CMIM
to improve the initial side information. Specifically, the side information obtained by the decoder side
is subjected to a 4 × 4 integer DCT, and the coefficients of the corresponding positions of the initial side
information after 4 × 4 integer DCT are extracted to form 16 coefficient matrixes. According to the
division of DCT coefficient bands and sampling process, the coefficients in the corresponding coefficient
matrix of side information are replaced by the sampled coefficients. In this way, the coefficient matrixes
to be improved can be obtained. It is easy to know that this process can effectively improve the
quality of side information. However, it should be noted that the above operation is at the cost of
requiring more bits. In order to make full use of this part of the sampled information at the decoder
side (that is, make full use of the intracoefficient correlation), we modify the coefficient matrices to be
improved, mainly using the undistorted sampled coefficients to correct the inaccurate coefficients in
the matrices. The variance of each 3 × 3 matrix in the corresponding coefficient matrix of the previous
key frame is calculated, thus the average variance σ2

m of the whole coefficient matrix of the previous
key frame can be obtained. The average variance σ2

m is used as the benchmark to classify each 3 × 3
matrix. Specifically, if the variance of the 3 × 3 matrix in the previous key frame is less than the
average variance σ2

m, it means that the texture complexity of this block is low. Assuming that there is
a high correlation between adjacent frames, the matrix of the corresponding position of the current
side information coefficient matrix 3 × 3 will also show the same texture complexity characteristics.
Then the coefficients in the coefficient matrix of the side information generated by the optical flow
method will be accurate, that is to say, these coefficients are accurate coefficients. On the contrary,
if the variance of the 3 × 3 matrix in the previous key frame is greater than the average variance σ2

m,
optical flow method cannot accurately perform a motion estimation. It means that the coefficients in
the current side information coefficient matrix are inaccurate coefficients. In this case, we use CMIM to
modify them. As shown in Figure 5, suppose any coefficients to be corrected in the coefficient matrix
of the initial side information is C0

K, and its true value is set as C0R
K . In the coefficient matrix to be

improved, we use the adjacent sampled coefficients around the inaccurate coefficient C0
K to perform

linear weighting and get the coefficient C0M
K according to the probability fusion method [24], and C0M

K
is considered to be an improved version of C0

K. The adjacent coefficients are set to Ci
K(i = 1, . . . , 4).

Figure 3. Quantization splitter matrices (Dotted circles indicate the position of the entropy coding
coefficients).
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Figure 4. Coefficient bands dividing and sampling process.

Figure 5. Coefficient matrix improvement model (CMIM).

In the coefficient matrix to be improved, the differences between the real value C0R
K and the

adjacent coefficients around it are: Ci
K − C0R

K = ∆i
K (i = 1, . . . 4). It is impossible to know the true

value C0R
K of the inaccurate coefficient in the coefficient matrix to be modified, so the real difference

∆i
K could not be obtained. However, the above difference can be estimated indirectly through the

decoded key frame XK−1. According to the position of the inaccurate coefficient in the current
coefficient matrix to be improved, the coefficient at the corresponding position of the key frame
XK−1 can be located. Additionally, according to the formula: Ci

K−1 − C0
K−1 = ∆Ci

K−1 (i = 1, . . . 4), the
corresponding coefficient differences between the coefficient of the previous key frame XK−1 and
its surrounding adjacent coefficients can be calculated: ∆Ci

K−1(i = 1, . . . , 4). It is assumed that the
corresponding region between adjacent frames has a strong correlation, that is, the change at the
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corresponding position of the coefficient matrix between adjacent frames is similar, so we can get
equation: ∆i

K ∝ ∆Ci
K−1 (i = 1, . . . 4). In this way, the difference factors ∆i

K around an inaccurate coefficient
in the current side information frame can be estimated by the differences at the corresponding position
of the key frame XK−1 : ∆Ci

K−1. Suppose α1, . . . ,αN are the weighting coefficients of the sampled
coefficients corresponding to each difference factor, C1

K, . . . , CN
K represent the N sampled coefficients

around the current inaccurate coefficient, then the corresponding probability fusion result can be
obtained according to these weighting coefficients:

f
(
C1

K, . . . , CN
K

)
=

N∑
n=1

αnCn
K (4)

According to Bayesian rules:

αn = p
(
n
∣∣∣∣ f (C1

K, . . . , CN
K

))
(5)

The a posteriori probability can be obtained by (6):

p
(
n
∣∣∣∣ f (V1

K, . . . , VN
K

))
=

p
(

f
(
V1

K . . . , VN
K

)∣∣∣∣n)p(n)∑N
l=1 p

(
f
(
V1

K, . . . , VN
K

)∣∣∣∣l)p(l) (6)

p(n) represents the a priori probability of the nth sampled coefficient. Apparently, p(n) = 1/N.

Suppose p( f
(
C1

K . . . , CN
K

)∣∣∣∣n) is a Gaussian probability function:

p
(

f
(
C1

K . . . , CN
K

)∣∣∣∣n) = p
(
∆n

K

)
∝ exp

(
−∆n

K
2
)
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By replacing p
(

f
(
C1

K . . . , CN
K

)∣∣∣∣n) in (6) with (7) and considering (5), we have:

αn = p
(
n
∣∣∣∣ f (C1

K, . . . , CN
K

))
=

exp(
−∆n

K
2

2σw2 )∑N
l=1 exp(

−∆l
K

2

2σw2 )

(8)

The parameter σw
2 in the formula can be used to adjust the shape of the Gaussian probability

distribution function, which is empirically set to 50.
By using CMIM, the side information coefficient matrices to be improved can be further modified,

thereby improved side information can be obtained.

4. Experiment Results and Analysis

In this section, we conduct a lot of experiments to demonstrate the effectiveness of the proposed
scheme. Key frames are encoded with H.264/AVC intra. The video sequences used in this experiment are
standard video test sequences (QCIF@15Hz): Coastguard, Soccer, Hall Monitor, Foreman. We conduct
experiments on the standard test sequence to evaluate the quality of side information (the evaluation
standard is Peak-Signal-to-Noise Ratio (PSNR)).

We compare the quality of side information generated by each scheme in Table 1. They are
extra [25], OF [26], optical flow [19], hybrid (Qi, i = 1, replace the coefficients in the side information
coefficient matrix with sampled coefficients, without CMIM), and the proposed method (CMIM).
The quantization parameter QPs are chosen as in [26]. The GOP size in this experiment is 2. It can be
seen from Table 1 that the proposed method can generate higher quality side information than other
schemes. For the Coastguard sequence, the side information generated by the proposed scheme is 4.96,
1.74, and 3.49 dB higher than that of extra [25], OF [26], and optical flow [19], respectively. For the soccer
sequence, the side information generated by the proposed scheme is 5.03, 0.78, and 2.18 dB higher than
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that of extra [25], OF [26], and optical flow [19], respectively. It can be seen that for the Soccer sequence,
the overall quality of side information is not good. This is due to the fact that there are multiple moving
objects in the Soccer sequence and the video motion intensity is high. For the Hall Monitor sequence,
because the motion intensity of the whole video is small, the quality of side information generated
by each method is relatively high. For the Foreman sequence, the side information generated by the
proposed scheme is 7.26, 1.05, and 3.03 dB higher than that of extra [25], OF [26], and optical flow [19],
respectively. Besides, the proposed scheme can improve the quality of side information generated by
hybrid, and PSNR of the proposed side information generation scheme is about 0.4–0.2 dB higher than
that of the hybrid. In particular, for the Hall Monitor sequence, the background of the video is almost
static, therefore, the improvement effect of the proposed model is limited. Figure 6 is a comparison of
the subjective quality of the generated side information, where the generated side information frames
by the hybrid scheme and the proposed CMIM scheme are compared to show the effectiveness of
CMIM. Generally speaking, the subjective quality of side information improved by the proposed model
is obviously different from that without the model. After the improvement with the proposed model,
the ghosting and blocking effects almost disappear completely. For example, in the subjective quality
comparison of the Coastguard sequence in Figure 6a, the hull in the video frame improved by CMIM
become clearer and the blocking effects are significantly reduced, which is closer to the original frame.

Table 1. Average PSNR comparison of generated side information (Qi, i = 1).

Sequences Extra [25] OF [26] Optical Flow [19] Hybrid CMIM

Coastguard 28.55 dB 31.77dB 30.02 dB 33.08 dB 33.51 dB

Soccer 19.26 dB 23.51 dB 22.11 dB 23.91 dB 24.29 dB

Hall Monitor 33.24 dB 35.90 dB 33.89dB 36.65 dB 36.86 dB

Foreman 25.20 dB 31.41 dB 29.43 dB 32.02 dB 32.46 dB

Figure 6. Comparison of subjective quality of side information.

However, just comparing the side information generation schemes is not enough to reflect the
effectiveness of the proposed scheme, we compare the RD performance in Figures 7–9 so that the
decoding quality can be objectively compared under the same bit rate.
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Figure 7. Rate distortion (RD) performance comparison (group of pictures (GOP) = 2).

Figure 8. RD performance comparison (GOP = 4).
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Figure 9. RD performance comparison (GOP = 8).

Figure 7 shows the RD performance of each scheme. We compare the proposed scheme with [26],
the DISCOVER scheme [22], H.264/AVC (Intra), H.264/AVC (No Motion), and H.263+ (Intra). For the
Coastguard test sequence, the RD performance of the proposed scheme is better than that of [26] and
the DISCOVER scheme, especially when the bit rate is greater than 80. For the Soccer test sequence,
the RD performance of the proposed scheme will gradually exceed that of the hybrid scheme and the
DISCOVER scheme, but there is still a big gap between H.264/AVC (Intra) and H.264/AVC (No Motion),
which may be caused by the motion intensity and video motion characteristics of the Soccer video
sequence. For the Hall Monitor test sequence, the background of the video is almost static, but the
motion of characters is not a simple translation, so the RD performance of the proposed scheme is
slightly worse than that of H.264/AVC (no motion) when the bit rate is greater than 80, but it is still
better than that of [26], DISCOVER, H.264/AVC (intra), and H.263 + (intra). Compared with the
DISCOVER scheme, the gain of the proposed scheme is about 0.2–0.6dB. This means that the proposed
CMIM scheme can further narrow the gap with H.264/AVC (no motion) in RD performance. For the
Foreman test sequence, the motion of objects basically is simple translation. The RD performance of the
proposed scheme is better than that of the [26], and the gain is about 0.5dB. To sum up, the proposed
CMIM in this paper can effectively improve the side information quality while simultaneously improve
the RD performance of the DVC system.

Figures 8 and 9 show the RD performance comparison in the condition of GOP = 4 and GOP
= 8. It can be seen from the figures that the RD performance of the proposed scheme is better than
that of [26] and the DISCOVER scheme generally. Besides, the RD performance gain of the proposed
scheme is also improved compared with that of GOP = 2. However, when the GOP size is increased,
the gap between the RD performance of the proposed scheme and H.264/AVC (No Motion) is further
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widened, especially for the Soccer sequence. This is due to the large motion intensity of the Soccer
sequence, which is not conducive to the generation of accurate side information.

It should be pointed out that the rate allocation between LDPCA bits and arithmetic coding bits
in this work might not be the best solution. That is to say, there is an optimal balance point between
LDPCA bits and arithmetic coding bits to get the best PSNR for a given fixed number of overall bits.
Therefore, we take Q1_Splitter as an example, QP = 37, to conduct experiment with the standard test
sequence Hall Monitor. As shown in Figure 10, we can see that when LDPCA bits proportion is about
50%, PSNR is the best. It should be noted that this is only for the Hall Monitor sequence, and the best
balance point might be different for different test sequences.

Figure 10. PSNR for different low density parity check accumulate (LDPCA) bits proportion.

5. Conclusions

In this paper, a coefficient matrix improvement model is proposed to improve the quality of
side information. We divide the DCT coefficient bands of the Wyner–Ziv frame into entropy coding
coefficient bands and distributed video coding coefficient bands at the encoder side, in which the
coefficients of entropy coding coefficient bands are divided into unsampled coefficients and sampled
coefficients. Sampled coefficients are encoded by an adaptive arithmetic encoder, so that it could
be restored without distortion at the decoder side. Unsampled coefficients and the coefficients of
distributed video coding coefficient bands are encoded by the LDPCA encoder to obtain parity
bits. At the decoder side, the optical flow method is used to generate the initial side information.
Besides, the decoded lossless sampled coefficients are used to further improve the initial side information
with the coefficient matrix improvement model, so as to obtain higher quality side information.
Experiment results show that the proposed scheme can effectively improve the quality of side
information, and in terms of RD performance, the proposed scheme is generally better than [26] and
the DISCOVER scheme.

In future research, we will try to find the best rate balance between the LDPCA encoder and
arithmetic encoder and improve the sampling process to further improve the rate distortion performance
of distributed video coding.
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