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Abstract: Photovoltaic (PV) system energy production is non-linear because it is influenced by the
random nature of weather conditions. The use of machine learning techniques to model the PV system
energy production is recommended since there is no known way to deal well with non-linear data.
In order to detect PV system faults, the machine learning models should provide accurate outputs.
The aim of this work is to accurately predict the DC energy of six PV strings of a utility-scale PV
system and to accurately detect PV string faults by benchmarking the results of four machine learning
methodologies known to improve the accuracy of the machine learning models, such as the data
mining methodology, machine learning technique benchmarking methodology, hybrid methodology,
and the ensemble methodology. A new hybrid methodology is proposed in this work which combines
the use of a fuzzy system and the use of a machine learning system containing five different trained
machine learning models, such as the regression tree, artificial neural networks, multi-gene genetic
programming, Gaussian process, and support vector machines for regression. The results showed
that the hybrid methodology provided the most accurate machine learning predictions of the PV
string DC energy, and consequently the PV string fault detection is successful.

Keywords: machine learning prediction models; PV string; PV fault; hybrid methodology;
ensemble methodology

1. Introduction

Photovoltaic (PV) systems are composed of many electrical components that are prone to faults
when exposed to weather conditions. The continuous monitoring of the PV systems ensures their
maximum energy production output since the anomalies can be detected and dealt with as soon as
possible which contributes to maintaining the return of investment (ROI) payback periods. The amount
of energy produced by a PV system depends mainly on the amount of sunlight that it absorbs and is
also influenced by other weather components such as the ambient temperature. The PV system energy
production is non-linear, since the current that runs in the PV cells and voltage at the PV cell terminals
depend on the weather that they are exposed to [1-3].

As aresult, the use of machine learning techniques to model the behavior of PV system production
is recommended for analyzing the performance of PV systems and detecting faults since they are
known to deal well with non-linear data [4-6]. These machine learning models are data-driven and
therefore require historical data measured at nearby weather stations (inputs) as well as from the PV
system (outputs). The machine learning modelling process consists of a training stage and a testing
stage where both stages require historical data. The historical data used for the training dataset should
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be measured when the PV system is working well, in order for the trained machine learning models to
mimic a PV system that works correctly.

One of the ways to detect PV system faults is to analyze the deviation between the measured data
of the PV system production and the estimated/predicted values of the PV system production provided
by machine learning regression models as described by Gigoni et al. in [5] and by Jiang et al. in [6].

The accuracy of the PV system fault detection depends on the accuracy of the prediction values
provided by the machine learning regression models. Consequently, the accuracy of the PV system
production machine learning predictions depends on the type of data that is selected for use in the
training stage (training dataset) of the machine learning regression models as well as the type of
machine learning technique that is used for modelling [4,5].

There are many techniques that have been used by the research community to select the correct
data for a training dataset such as classifying the historical data into “similar days” that include sunny
days, cloudy days and rainy days as described in [7]. Another training data selection technique
includes subdividing the data according to the seasons of the year, when annual historical data are
available as described in [8]. However, the type of training data selection technique that is adopted
depends on what historical data are available.

For this work, six PV strings that belong to the same combiner box of a utility-scale ground-mounted
PV plant were provided by a green technology company called ALTESO GmbH located in Vienna
Austria. The available historical data includes daily solar irradiation measurements in W/m? used as
the inputs and daily DC energy measurements in kWh of each of the six PV strings used as the outputs.
The data are only from the month of July (31 daily samples) of four different years, namely 2014, 2015,
2016, and 2017. Each season of the year is known to have a different trend in the weather conditions,
even though the trend is similar between spring and summer as well as between autumn and winter
as described in [7]. For this reason, it was decided that data only from the month of July would be
enough to carry out the research experiments of this work in order to minimize the issues caused by
the seasonal trend, and therefore data from other months was not requested from ALTESO GmbH.

As described before, the types of machine learning techniques that are used to predict the PV
system energy also influence the accuracy of the machine learning regression model prediction outputs.
Therefore, five machine learning techniques were chosen for this work, namely: (a) regression tree,
(b) artificial neural network (ANN), (c) multi-gene genetic programming (MG-genetic programming),
(d) Gaussian process, and (e) support vector machine for regression (SVR). The five machine learning
techniques are compared to each other by means of an error analysis by using the root mean squared
error (RMSE) and normalized root mean squared error (NRMSE) evaluation metrics.

The accuracy improvement of the machine learning models is a very important issue to address,
in order for the data-driven models to mimic the physical system (in this case it is a PV system) as
accurately as possible. Asaresult, there are many research experiments that propose the implementation
of new machine learning methodologies designed to improve the machine learning models. All these
research experiments that improve the accuracy of the machine learning models can be organized into
four main machine learning methodologies such as the data mining methodology, the machine learning
technique benchmarking methodology, the hybrid methodology and the ensemble methodology.

The data mining methodology considers all the techniques that are used to organize the historical
data so that the machine learning model outputs are improved, and this includes the training data
selection techniques and feature selection techniques.

The machine learning technique benchmarking methodology considers the comparison of various
machine learning models provided by different machine learning techniques in order to determine
which one provides the most accurate results. The five machine learning techniques that were selected
to be studied in this work will be used in the machine learning technique benchmarking methodology.

The hybrid methodology considers the combination of various modelling sub-fields of the artificial
intelligence field such as the combination of a fuzzy logic modelling system and a machine learning



Entropy 2020, 22, 205 30f18

modelling system. Other hybrid methodologies include the combination of a physical model and a
machine learning model to provide the most accurate machine learning results such as the PHANN [9].

The ensemble methodology considers the averaging of all the results of various machine learning
models provided by different machine learning techniques and also provided by variations of the same
machine learning technique (decision trees) such as the random forests [10].

This information about the different methodologies served as motivation to devise various
experiments that would test out all of these machine learning methodologies in order to determine
which one would provide the most accurate machine learning model outputs of the daily DC energy of
each of the six PV strings. As a result, six experiments and 41 scenarios that are fully described in the
methodology Section were devised. Experiments 1 and 2 consider both the data mining methodology
(training data selection) as well as the machine learning benchmarking methodology (benchmark the
five machine learning techniques).

A new hybrid methodology is proposed in this work and is described in Experiment 3. This new
hybrid methodology is designed to improve the machine learning model prediction accuracy which
combines the use of a fuzzy system and the use of five trained machine learning models.

A new ensemble methodology is also proposed in this work, which averages the results of the five
trained machine learning models by using a simple mean equation. Experiments 4, 5, and 6 consider
the ensemble methodology where each of the experiments includes an ensemble technique (averaging
method) that is configured differently. The ensemble technique of Experiment 4 averages all the results
of the five machine learning techniques. The ensemble technique of Experiment 5 averages the top
three results of the five machine learning techniques. Finally, the ensemble technique of Experiment 6
averages only the results of the less popular machine learning techniques such as the regression tree,
multi-gene genetic programming and the Gaussian process (the ANN and SVR are referred to as the
more popular machine learning techniques).

The aim of this work is to accurately predict the daily DC energy output of the PV strings of a
utility-scale PV system by using a data-driven machine learning approach. In order to achieve this aim,
the results of four machine learning methodologies known to improve the accuracy of the machine
learning models were benchmarked. The four machine learning methodologies are namely the data
mining methodology, machine learning technique benchmarking methodology, hybrid methodology,
and the ensemble methodology. The machine learning PV string performance analyzer proposed in
this work has the task of detecting anomalies in the solar production output of the PV strings in order
for the maintenance team to act on them as soon as possible and to ensure maximum PV system output
efficiency. This task is usually carried out by performing a deviation analysis between the measured
data from the PV plant strings and the estimated data provided by the machine learning technique
prediction models of the corresponding PV plant strings [5,6]. However, the results of this work also
show that the comparison of the prediction values (provided by the machine learning regression
models) between the neighboring PV strings can also be used to detect PV string anomalies.

The organization of this work is as follows: after the introduction all the experiments and scenarios
devised in this work are described in the methodology, Section 2. The results of the experiments are
discussed in the results and discussion, Section 3, and finally the main conclusions are mentioned in
the conclusion, Section 4.

2. Materials and Methods

This section describes the six experiments that were used to determine which machine learning
methodology should be implemented to provide the most accurate machine learning regression model
outputs of the daily DC energy of the PV system strings.

The historical data associated with PV systems include weather data and PV system data.
The weather data are measured by on-site or remote weather stations that measure the solar irradiation,
ambient temperature, wind speed etc. while the PV system data are measured by PV monitoring
systems that measure the power and/or energy produced by the PV system both on the DC (direct
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current) or/and the AC (alternate current) side of the PV system. An inverter divides the PV system
into the AC and DC side, since it is used to invert the DC current produced by the PV modules into the
AC current which is used in the electrical grid, and therefore the DC side of the PV system refers to the
components between the PV modules and the inverter while the AC side of the PV system refers to the
components between the inverter and the electrical grid. The machine learning techniques provide a
model based on the relationship between the weather data (inputs) and the PV system data (outputs)
of the historical data.

For the scope of this work, the historical data from six PV strings that belong to the same combiner
box and the historical on-site solar irradiation measurements were selected and they includes daily
samples from the month of July of four consecutive years namely the years 2014, 2015, 2016 and 2017.
Since the measurements of the PV strings are made in the combiner box the PV system data consists of
DC energy measurements. Each PV string is associated with 31 daily input samples (solar irradiation)
and 31 daily output samples (DC energy measurements), since the measurements were made during
the 31 days of the month of July. Therefore, the total number of samples that are available is 744,
associated to the data measured from the six PV strings in four years (6 PV strings x 31 July days x
4 years).

The machine learning modelling process consists of various procedures such as

Acquiring and pre-processing the historical data
Selecting the machine learning techniques
Training and testing the machine learning techniques

Ll N

Analyzing the model error

In this work, the pre-processing of the raw historical data consists of normalizing the historical
data samples and dividing the PV string samples into two groups. The raw historical data are
pre-processed before training the prediction models, by normalizing both the inputs and outputs with
a pre-processing technique called Min-Max normalization to speed up the prediction model training
process. The minimum and maximum values of the input samples (accumulated solar irradiation
values) were respectively 1 W/m? and 10000 W/m?, while the minimum and maximum values of the
output samples (accumulated PV system DC energy values) were respectively 1 kWh and 40 kWh.
These values are the highest and lowest values that the PV string experienced during the month of July
over all four years.

There is a vast number of machine learning techniques to choose from, however the most popular
ones among the research community are namely the artificial neural networks (ANN) and the support
vector machines (SVM). In order to verify which machine learning technique provides the most accurate
model results for the problem at hand, a benchmark analysis is performed by evaluating the models
provided by various machine learning techniques as described in [7].

The vast number of machine learning techniques can be narrowed down by following the concept
introduced by Domingos in his book [11], where he suggests that all machine learning techniques can
be organized into five “tribes”, in which each one is represented by its own master algorithm (Table 1).
This machine learning selection scheme represents all types of machine learning techniques from the
machine learning field of research. Based on this information, five machine learning techniques were
chosen for this work and are namely: the (a) regression tree, (b) artificial neural network, (c) multi-gene
genetic programming, (d) Gaussian process, and (e) support vector machine for regression.

The training and testing steps of the machine learning modelling process require their own sets of
historical data which are referred to as the training dataset and testing dataset. These two datasets
should contain different data in order to correctly evaluate the model. The type of historical data
selected for the training dataset influences how well the model generalizes to new unseen data (testing
dataset) when the testing procedure takes place. For the scope of this work, the 2015 July PV string
data are used for the training dataset, while the July PV string data of years 2014, 2016, and 2017 are
used for the testing dataset.
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Table 1. Machine learning tribes and respective master algorithms [11].

Tribe Master Algorithm Machine Learning Techniques

Selected for This Work
Tribe 1 Symbolists Inverse deduction/Induction Regression Tree
Tribe2  Connectionists Backpropagation Artificial Neural Network
Tribe3  Evolutionaries Genetic Programming Multi-Gene Genetic Programming
Tribe 4 Bayesians Probabilistic Inference Gaussian Process
Tribe 5 Analogizers Kernel Machines Support Vector Machines

The last procedure of the machine learning modelling process is to perform an error analysis of
the machine learning model by using evaluation metrics to calculate the error of the machine learning
model. The evaluation metrics used in this work are related to the machine learning regression models
that are used to predict the PV string energy and they include the root mean squared error (RMSE) and
the normalized root mean squared error (NRMSE). The RMSE is easily interpreted due to having the
same units as the sample outputs (kWh) and calculates the average error compared to the measured
output value (Equation (1)). A large positive RMSE value represents a large deviation scale in the
prediction values from the measured values, and therefore represents a large error value, and therefore
the closer to zero the RMSE value is the better. As previously described, the maximum amount of daily
DC energy produced by the PV strings during the month of July in any of the four years is 40 kWh,
and therefore the RMSE and NRMSE error values are related and compared to this maximum energy
value. The NRMSE provides the average percentage value of the error (Equation (2)), in relation to
the difference between the unnormalized minimum and maximum output values, which is 39 kWh
(40 kWh - 1 kWh = 39 kWh) assumed in this work, where Yt is the measured value and Yp is the
predicted output and n is the number of observations. Therefore, a 5% NRMSE value is assumed as
acceptable for the scope of this work since it represents a 1.95 kWh RMSE value.

_ |1y 2
RMSE = JEZ(Yt—Yp) 1)

i=1

RMSE
NRMSE = Yimax — Ytmin @

One of the main goals of the six research experiments and 41 scenarios that were devised is to
provide information about the types of machine learning techniques that should be selected to provide
the most accurate model results. The other main goal of these experiments and scenarios is to provide
information about the machine learning methodology that should be implemented to provide the most
accurate model results.

As described before, one of the most important procedures to take place is the selection of the
samples to include in the training dataset. This training data selection process is part of the machine
learning data mining methodology that is used in this work, as described in the introduction Section.
In order to understand what number and what types of samples to include in the training dataset
for the machine learning regression model to generalize well to new unseen data (testing dataset)
and provide the most accurate prediction outputs, Experiments 1 and 2 were devised as illustrated in
Figure 1. All the historical data are divided into two groups namely the “ODD” strings (orange) and
the “EVEN” strings (blue) and each of these groups is associated with a year and a dataset (training or
testing). In Experiment 1 the 2015 “ODD” and “EVEN" PV string historical data (6 PV strings with 186
samples) were used for the training dataset (green) while all the other historical data were used for the
testing dataset. In Experiment 2 only the 2015 “ODD” PV string historical data (3 PV strings with 93
samples) were used for the training dataset, while all the other historical data were used for the testing
dataset. This dataset size (93 samples) has been proven to be adequate to provide accurate machine
learning model results as described in [7] and in [12].
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2014 2014

oDD String 1 | String3 | String5 Test Scenario 1 oDD String 1 | String3 | String5 Test Scenario 7

EVEN Test  Scenario 2 EVEN Test Scenario 8
2015 2015

oDD String 1 | String3 | String5 | Train oDD String 1 | String3 | String5 | Train

EVEN String 2 | String4 | String6 [ Train EVEN Test Scenario 9
2016 2016

oDD String 1 | String 3 | String 5 Test Scenario 3 obD String 1 | String3 | String5 Test Scenario 10

EVEN Test Scenario 4 EVEN Test Scenario 11
2017 2017

oDD String 1 | String 3 | String 5 Test Scenario S obD String 1 | String3 | String5 Test Scenario 12

EVEN Test Scenario 6 EVEN Test Scenario 13

(a) (b)

Figure 1. Illustrating the Training and Testing Datasets of (a) Experiments 1 and (b) Experiment 2.

At the same time these two experiments are performing the machine learning data mining
methodology to determine which historical data should be included in the training dataset, they
are also performing the machine learning technique benchmarking methodology described in the
introduction section since the five machine learning techniques are used in the training process.
Therefore, the comparison between these two experiments provides information about what number
of samples needs to be included in the training dataset to train the machine learning regression
model as well as information about which machine learning technique is able to provide the most
accurate results.

The Machine Learning for Regression model parameter settings for this work are mainly the
Matlab® 2017b default Machine Learning model settings. The machine learning techniques were only
trained with simple/default parameter settings and then tested. Validation and cross-validation were
not performed on any of the models in this work unless automatically done by the fitting command of
the Matlab® 2017b toolbox.

Experiment 3 considers the hybrid methodology where a Fuzzy Logic Inference System (FIS) is
combined with a machine learning system consisting of five trained machine learning models that
were trained in Experiment 2. The fuzzy system analyses the input (solar irradiation) and selects the
trained machine learning model that would provide the most accurate model prediction of the PV
string daily DC energy.

There are many fuzzy systems such as the Mamdani fuzzy system that uses classes as the fuzzy
logic output as illustrated in Figure 2 and the Takagi-Sugeno fuzzy system that uses a constant number
as the fuzzy logic output as illustrated in Figure 3.

Rainy Cloudy Sunny

Fuzzy Logic

~

>

Solar Irradiation W/m?

X1 X2 X3 x4 X5

Figure 2. Illustration of a Fuzzy Logic System that associates ranges of solar irradiation values with
weather conditions such as rainy, cloudy and sunny days.
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1
Solar Irradiation W/m?

Figure 3. Illustration of a Takagi-Sugeno Fuzzy Logic System that categorises ranges of solar irradiation
values for a machine learning technique.

The fuzzy system used in this work is a single input and a single output Takagi-Sugeno fuzzy logic
inference system. The output can only take 1 of 5 integer values that correspond to the MLT solution
that is most appropriate as illustrated in Figure 3. Therefore, the regression tree is associated with
the fuzzy output 1, the artificial neural network is associated with the fuzzy output 2, the multi-gene
genetic programming is associated with the fuzzy output 3, the Gaussian process is associated with the
fuzzy output 4, and finally the support vector machines for regression is associated with the fuzzy
output 5. The advantage of this fuzzy system compared to the previous one illustrated in Figure 2,
is that the same machine learning technique can be associated to different ranges of solar irradiation
values, whereas in the previous fuzzy system the sunny day classification could only be used in a
specific range of solar irradiation values.

The results of Experiment 2 provided information about the relationship between the solar
irradiation values and the machine learning techniques that would provide the most accurate results,
as presented in Table 2. It is possible to verify that certain daily solar irradiation ranges are associated
to a certain machine learning technique that provides the best results, and therefore as an example
there is the daily solar irradiation values between 4916 W/m?2 and 5011 W/m? is associated with the
support vector machines for regression, and between 5597 W/m? and 5761 W/m? is associated with
the regression tree. This information was used to implement the fuzzy system by grouping all the
daily solar irradiation values into ranges (fuzzy input) and associating each of the ranges to a machine
learning technique (fuzzy output).

Table 2. Samples from 2014 and corresponding best machine learning techniques (MLTs).

Measured Estimated Output
Date Ill;rl;l;ti:t?(l): Output Solar  Regression ANN Multi-Gene Qenetic Gaussian SVR Best MLT
2 Energy (kWh) Tree Programming Process
(W/m?)

18/07/2014 4916 23.7 25.1 620.9 23.3 233 23.9 SVR
16/07/2014 5011 24.0 25.1 364.0 23.7 23.7 242 SVR
12/07/2014 5597 22.6 25.1 31.4 26.1 26.1 26.2 Regression Tree
04/07/2014 5747 27.0 27.1 372 26.7 26.7 26.7 Regression Tree
06/07/2014 5761 27.1 27.1 33.2 26.7 26.7 26.8 Regression Tree
03/07/2014 5976 28.3 27.1 15.3 27.6 27.6 27.5 Genetic Programming
09/07/2014 5993 27.9 27.1 16.0 27.7 27.6 27.6 Genetic Programming
19/07/2014 6074 28.0 27.1 19.0 28.0 279 27.8 Genetic Programming
31/07/2014 6146 28.5 30.1 21.3 28.3 28.2 28.1 Genetic Programming
20/07/2014 6339 29.1 30.1 259 29.1 29.0 28.7 Genetic Programming
30/07/2014 6610 30.4 30.1 29.7 30.3 30.1 29.7 Genetic Programming
07/07/2014 6862 31.7 30.1 31.6 31.3 31.2 30.5 ANN
22/07/2014 6936 321 32.0 32.0 31.6 315 30.8 ANN
26/07/2014 7004 32.6 32.0 32.3 319 31.8 31.0 ANN
01/07/2014 7304 34.0 33.0 33.2 33.1 33.2 32.0 Gaussian Process
27/07/2014 7434 344 333 334 33.7 339 32.5 Gaussian Process

Figure 4 illustrates how the machine learning hybrid methodology system works, where the
five trained models obtained from Experiment 2 are used together with a fuzzy system. The solar
irradiation input is given to the hybrid system which then sends it to the fuzzy system to analyze and
associate it with the machine learning technique that will provide the most accurate results based on
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the information obtained in Experiment 2. Knowing which machine learning technique will provide
the most accurate results, the hybrid system sends the solar irradiation input to the trained machine
learning model which then provides the prediction output of the PV string DC energy production.

Solar
Irradiation
Input
| ‘ Input is analysed by the fuzzy logic system
\ Hybrid Machine Learning

Prediction and Forecasting System

\ Machine Learning

\ Trained MLT 1
Fuzzy Logic Regression Model

Trained MLT 2
Regression Model

Trained MLT 3
Regression Model

Trained MLT 4
Regression Model

Trained MLT §
Regression Model

Figure 4. Hybrid Machine Learning Prediction and Forecasting System.

| Prediction or Forecasting Output

Experiment 4 represents the machine learning ensemble methodology described in the introduction
Section, which is implemented by averaging the values provided by the five trained machine learning
models obtained from Experiment 2. Figure 5 illustrates how the machine learning ensemble
methodology system works, where the solar irradiation input is given to all five machine learning
models. All of the output values of each of the five machine learning techniques are averaged, and this
averaged value is the output provided by the machine learning ensemble methodology system.

MLT 1

MLT 2

Prediction
or
Forecasting

Ensemble
Technique

Input MLT 3

Output

MLT 4

MLT 5

Figure 5. Diagram of the Ensemble Methodology that uses five different machine learning
techniques (MLTs).

A fifth experiment (Experiment 5) was conducted to resolve the issues raised by the poor results
of the artificial neural networks. As a result, the configuration of the ensemble methodology system of
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Experiment 5 is exactly the same as the one presented in Experiment 4 with the exception that instead
of the ensemble technique averaging all five machine learning techniques it would only average the
top 3 best results given by the five machine learning models.

After analyzing the results from Experiment 4 and 5, a sixth experiment (Experiment 6) was
conducted to verify the results of an ensemble methodology system that does not consider the results
of the popular machine learning techniques such as the artificial neural networks and support vector
machines. Therefore, Experiment 6 is an ensemble methodology system that considers only the
regression tree, multi-gene genetic programming and Gaussian process model results for the averaging.

After determining which methodology provides the most accurate machine learning regression
model outputs of the PV string energy production, the PV string fault detection method can take
place, which includes the analysis of the deviation between the measured data and the prediction data.
The presence of deviation between these two data values indicates the presence of a PV string fault.

2.1. Hyperparameters of the Machine Learning Techniques

The following subsections briefly explain the commands and parameter settings of each of the
machine learning models.

2.1.1. Regression Tree

The ‘fitrtree” command returns a regression binary tree based on the input variables x and target
variables y, where each branching nodes is split on the basis of the values of a column of inputs.
The rest of the settings used were the default settings.

2.1.2. Artificial Neural Networks

The train command returns a net model based on the parameter settings that follow. The parameters
chosen for the ANN in this work include a multilayered feedforward backpropagation network using
the Levenberg-Marquardt training algorithm, 10 neurons, 5000 epoch iterations, and the ‘mapminmax’
normalization for the inputs and the targets. The multilayered transfer function used in this work
was the tan-sigmoid and linear purelin. Every time an artificial neural network model is trained it
provides different outputs and this is because the initial weights of the neural connections are selected
randomly by default and therefore these types of models are referred to as stochastic models. In order
to minimize the issues related to this stochastic nature of the artificial neural network models, 10 of
these models are trained and the best one is used in the experiments.

2.1.3. Multi-Gene Genetic Programming

The model is trained by using the ‘rungp’ training command and then it is tested by using the
‘mymodel’ command. The default control parameters to stop the tree evolution were set to population
size of 250, timeout to 10 seconds, runs to 3, and max number of genes to 6. Since the multi-gene
genetic programming models are stochastic models, just as the artificial neural network models, the
same procedure of selecting the best model out of 10 was also adopted here.

2.1.4. Gaussian Process

The ‘“fitrgp” command returns a GPR model for inputs and continuous targets vector. In this work,
the default kernel functions (squared exponential) and parameters (sigma) were used.

2.1.5. Support Vector Machines for Regression

The ‘fitrsvm’ command returns a full, SVM regression model trained using the input values in the
matrix and the target values in the vector. The parameters chosen for the SVR include an epsilon value
of 0.09, and the input data are standardized. The kernel used in this work for the SVR model was the
default linear kernel.
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3. Results

All the results of the six experiments are presented and discussed in this Section. Experiments 1
and 2 are used to determine the amount and type of data to include in the training dataset and also to
determine which machine learning techniques provide the most accurate machine learning regression
prediction outputs of the PV string DC energy.

Table 3 presents the results of Experiment 1 and shows that the Gaussian process machine learning
technique provides the best results compared to the other four machine learning techniques in all of the
scenarios while the ANN machine learning technique provides the worst results in all the scenarios.

Table 3. Experiment 1 - Train ALL 6 strings from 2015 - Train with 186 samples.

Dataset Year July 2014 July 2016 July 2017
Scenarios Scenariol Scenario2 Scenario3 Scenario4 Scenario5 Scenario 6
. Error ODD EVEN ODD EVEN ODD EVEN
Tribe MLT . . . . . . .
Analysis Strings Strings Strings Strings Strings Strings
RMSE
1 Reg;ession KWh 1.266 1.256 1.066 1.398 1.051 1.303
ree NRMSE 3.248% 3.222% 2.733% 3.586% 2.695% 3.343%
RMSE
4. . 2.24 2.202 1. .27.
5 ANN KWh 068 3.356 5 0! 905 5.273
NRMSE 10.431% 8.607% 5.756% 5.646% 4.887% 13.522%
3 Multi-Gene Genetic I}(I;/IVShE 2.057 1.995 0.862 1.383 0.640 1.104
Programming NRMSE  5275% 5.116% 2.210% 3.546% 1.643% 2.832%
RMSE
4 Gaussian Process KWh 0.889 0.842 0.853 1.326 0.629 1.100
NRMSE 2.281% 2.158% 2.189% 3.400% 1.614% 2.821%
RMSE
5 SVR KWh 1.874 1.864 1.478 1.397 1.616 1.561
NRMSE 4.807% 4.779% 3.791% 3.583% 4.144% 4.002%

Table 4, shows that the Gaussian process machine learning technique provides the best results
for scenarios 7, 8, 10, and 12. While the ANN machine learning technique provides the best results
for scenario 9, the SVR machine learning technique provides the best results for scenario 11, and the
multi-gene genetic programming machine learning technique provides the best results for scenario 13.

Table 4. Experiment 2 and Experiment 3 - Train 3 strings from 2015 - Train with 93 samples.

Data Set Year July 2014 July 2015 July 2016 July 2017
Scenarios Scenario 7 Scenario 8 Scenario 9  Scenario 10 Scenario 11  Scenario 12  Scenario 13
Tribe MILT Error ODD EVEN EVEN ODD EVEN ODD EVEN
Analysis Strings Strings Strings Strings Strings Strings Strings
1 Regression li(l\‘clehE 1.489 1.532 0.649 1.144 1.605 1.331 1.713
Tree NRMSE 3.818% 3.929% 1.664% 2.935% 4.115% 3.413% 4.394%
RMSE
2 ANN KWh 206.84 183.48 0.567 114.964 114.996 208.54 208.965
NRMSE 530% 470% 1.455% 295% 295% 535% 536%
Multi-Gene I}(I\‘//IVShE 1.024 1.091 0.728 0.873 1.546 0.624 1.203
Geneti
Pro g:‘:;;:in . 1\11{1;41\/;31515 2.628% 2.798% 1.868% 2.238% 3.964% 1.599% 3.084%
4 Gaussian KWh 0.826 0.816 0.735 0.850 1.436 0.616 1.211
Process NRMSE  2.118% 2.092% 1.884% 2.179% 3.682% 1.579% 3.104%
RMSE
5 SVR KWh 1.904 1.899 1.637 1.489 1.427 1.638 1.599
NRMSE 4.883% 4.869% 4.199% 3.819% 3.659% 4.199% 4.099%
Experiment 3-Fuzzy Logic with Experiment 2 prediction Model Results
Scenario 14  Scenario 15 Scenario 16 Scenario 17 Scenario 18 Scenario 19 Scenario 20
RMSE
Fuzzy + 5 MLTs KWh 0.614 0.627 0.232 0.516 0.746 0.502 0.722
NRMSE 1.574% 1.607% 0.596% 1.324% 1.912% 1.288% 1.850%
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The second-best results are presented in grey in Tables 3 and 4.

Overall, the results presented by Experiment 2 re lower than the ones presented in Experiment 1,
even though Experiment 2 only uses 93 data samples for training.

Overall, experiments 1 and 2 suggest that the Gaussian process machine learning technique should
be used to predict the daily DC solar energy outputs of the ODD and EVEN string of years before and
after the ones used for training. The multi-gene genetic programming machine learning technique
could also be considered, however this machine learning technique uses many more computational
resources than the Gaussian process machine learning technique.

The Gaussian process technique provides the best results for all the ODD string scenarios in
Experiment 2 (Table 4). This is expected since the machine learning techniques were trained only with
the ODD strings of the year 2015, and even so, the Gaussian process technique provided the best results
for the EVEN strings of scenario 8 and very good results for the EVEN string scenarios 11 and 13.

The SVR machine learning technique provided the worst results in scenario 9 compared to all the
other machine learning techniques.

Scenario 9 presents very interesting information about the behavior of the different machine
learning techniques since the ANN machine learning technique provided the best results for this
scenario, whereas it provides the worst results in all other scenarios, and its use cannot be considered
in any case other than in this scenario because the NRMSE is higher than 5%. Figure 6 illustrates
the machine learning model output predictions of the 2014 PV string 1 DC energy. It is possible to
observe why the ANN error values (RMSE and NRMSE) present such bad results, since it is easy
to see the peaks of the ANN predictions which indicate that this machine learning techniques has
difficulty in accurately predicting certain PV string DC energy values compared to the other four
machine learning techniques. This information gained from comparing Experiments 1 and 2 indicates
that the ANN machine learning technique requires at least the two groups of PV string historical data
(ODD and EVEN) with 186 samples to provide better results such as the ones provided in Experiment
1 (Table 3). This information also indicates that, if more data are included in the training dataset of
the ANN machine learning technique, it would provide even better results, and therefore the ANNs
require many more training data samples than any of the other four machine learning techniques do.
The results of scenario 9 of Experiment 2 indicate that the ANN machine learning technique deals well
with familiar data, since the machine learning techniques were trained with the July ODD strings of
the year 2015 and tested with the July EVEN strings of the same year. Therefore, the ANN is the MLT
that is the most sensitive to the size of the training dataset as well as the type (familiar) of data in the
training dataset.

700 40
35

30
25
20
15
10

500

300

100

———

DC Energy (kWh)

-100 1357 911131517 19212325272931

DC Energy (kWh)

-300 0

_— 135 7 91113151719212325272931
Samples Samples

Measured data Regression Tree Measured data Regression Tree

ANN Genetic Programming Genetic Programming Gaussian Process

Gaussian Process ——SWR —SWR

(a) (b)

Figure 6. Predictions of PV string 1 in 2014 (a) All five machine learning techniques (b) All machine
learning techniques except for ANN
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The SVR provides acceptable model results, however they are higher than the less popular
machine learning techniques (regression tree, multi-gene genetic programming and Gaussian process).
For the SVR more samples in the training dataset is not the answer since the model values do not vary
much between Experiment 1 (more samples in training dataset) and Experiment 2 (less samples in the
training dataset). The less popular machine learning techniques do not need as much data as the ANN
to provide very accurate model results. Therefore, even though the ANN and SVR MLTs are the most
popular (used the most by the research community) it does not mean that they are the ones that are
going to provide the best results. Experiments 1 and 2 show that it is exactly the two most popular
MLTs (ANN and SVR) that provide the worst results.

Experiment 3 is also presented in Table 4 in order to simplify the visual comparison between the
results of Experiments 2 and 3. Experiment 3 presents the results obtained from the machine learning
hybrid methodology system which combines the use of a fuzzy logic system and all five trained models
obtained from Experiment 2. The Takagi-Sugeno type fuzzy logic inference system is used to select one
of the five machine learning techniques that would provide the most accurate prediction by analyzing
the solar irradiation input that is given. The error results of Experiment 3 are much lower compared
to the error results of Experiments 1 and 2, and therefore the machine learning hybrid methodology
system provides much better results than the mono systems used in Experiments 1 and 2 where the
idea is to rely on only one machine learning technique to provide the best results.

Experiments 1, 2, and 3 clearly show that different machine learning techniques provide good
results for different types of data in different scenarios, and therefore different machine learning
techniques deal differently with different data. These experiments prove that it is not possible to select
only one machine learning technique to provide the best results for all types of data in all types of
scenarios, and therefore the best solution is to use various machine learning techniques in a hybrid
system that will select each one to be used to their best ability based on the analysis that is made to the
input that is given to the hybrid system as described in the methodology Section.

The results of Experiment 3 are better than the ones from Experiments 1 and 2, and therefore are
repeated in Table 5 to simplify the visual comparison between the results of Experiments 3, 4, 5, and 6.

Table 5. Experiments 3, 4 and 5 - Train 3 strings from 2015 - Train with 93 samples.

Data Set Year July 2014 July 2015 July 2016 July 2017
Error ODD EVEN EVEN ODD EVEN ODD EVEN
Analysis Strings Strings Strings Strings Strings Strings Strings

Experiment 3-Fuzzy Logic with Experiment 2 prediction Models

Scenario 14  Scenario 15  Scenario 16 ~ Scenario 17  Scenario 18  Scenario 19  Scenario 20
Fuzzy + 5 MLTs I}(l\‘//IVShE 0.614 0.627 0.232 0.516 0.746 0.502 0.722

NRMSE 1.574% 1.607% 0.596% 1.324% 1.912% 1.288% 1.850%

Experiment 4-Ensemble Methodology with Experiment 2 prediction Model

Scenario 21  Scenario 22  Scenario 23  Scenario 24  Scenario 25  Scenario 26  Scenario 27
Ensemble

ALL li(l\‘clehE 41.536 36.585 0.624 22.777 22.899 42.143 42.405
LT:
5MLTs NRMSE 106.50% 93.81% 1.601% 58.404% 58.716% 108.06% 108.73%
Experiment 5-Ensemble Methodology with Experiment 2 prediction Models
Scenario 28  Scenario 29  Scenario 30  Scenario 31  Scenario 32  Scenario 33  Scenario 34
Ensemble RMSE
Top 3 KWh 2.142 2.048 0.643 1.641 1.484 1.122 1.109
NRMSE 5.493% 5.251% 1.648% 4.208% 3.806% 2.878% 2.845%
Experiment 6-Ensemble Methodology with Experiment 2 prediction Models
Scenario 35  Scenario 36  Scenario 37  Scenario 38  Scenario 39  Scenario 40  Scenario 41
Ensemble RMSE
ALL without 1.017 1.057 0.647 0.865 1.422 0.801 1.316
ANN and SVR kWh
NRMSE 2.607% 2.710% 1.660% 2.217% 3.645% 2.054% 3.375%

Experiments 4, 5, and 6 all use the ensemble methodology system to provide the prediction values
of the PV string DC energy, however each one of them has a different configuration.
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Experiments 4 and 5 use the ensemble methodology which involves using a simple ensemble
technique that averages the results provided by the five machine learning techniques. These two
experiments differ from each other in the number of machine learning results they average.
In Experiment 4, the ensemble technique averages all five machine learning technique results, while in
Experiment 5 the ensemble technique only averages the top three results provided by the machine
learning techniques. Overall, the results provided in Experiment 5 are better than the ones provided in
Experiment 4. This is expected since the results from the artificial neural networks are not always very
good compared to the results from the other machine learning techniques and therefore when it is used
in an averaging ensemble technique the results are not going to be the best. Therefore, the methodology
that selects the top three results to use in the ensemble methodology (Experiment 5) is better than
using all five results from the five machine learning techniques as done in Experiment 4.

Experiment 6 uses the ensemble methodology described in Experiments 4 and 5, however instead
of considering the averaging of all the results from the five machine learning techniques, Experiment 6
only considers the results of the less popular machine learning techniques such as the regression tree,
multi-gene genetic programming, and the Gaussian process. Table 5 shows that the overall results of
Experiment 6 are more accurate than the ones provided by Experiments 4 and 5, indicating that the
popular machine learning techniques such as the artificial neural networks and the support vector
machines negatively influence the final results of the ensemble methodology system.

Once again, the results of Experiment 3 are better than the ones of Experiments 4, 5 and 6,
as expected since the results provided by Experiment 3 are precise compared to the results provided by
Experiments 4, 5 and 6 which are average results. Therefore, Experiment 3 provides the best results
out of all the experiments carried out in this research work, which means that the machine learning
hybrid methodology is the one that provides the most accurate results of the four machine learning
methodologies such as the data mining methodology, the machine learning technique benchmarking
methodology, the hybrid methodology, and the ensemble methodology.

Figure 7 shows how the DC energy measured data are closely correlated to the prediction data
provided by the machine learning hybrid methodology system, which includes the combination
of the fuzzy logic system and the machine learning system that consists of five trained machine
learning models.

Once the machine learning methodology that provides the best machine learning regression
model outputs of the PV string DC energy is determined, the next step is to analyze the deviation of
the DC energy values of the ODD and EVEN PV strings. Figure 8 illustrates the prediction values of
the DC energy values of the ODD and EVEN PV strings provided by the machine learning hybrid
methodology system. This way, only the prediction values are considered, and the measured data
are not, and therefore the deviation analysis is comparing the prediction values of the neighboring
PV strings.

The neighboring strings are Strings 1 and 2, Strings 3 and 4, and finally Strings 5 and 6. The x
axis represents the number of samples and the y axis represents the DC energy of the PV Strings. All
samples between 1 and 31 belong to Strings 1 (ODD) and 2 (EVEN), between 32 and 62 belong to
Strings 3 (ODD) and 4 (EVEN), and finally all samples between 33 and 93 belong to Strings 5 (ODD)
and 6 (EVEN).

The four graphs presented in Figure 8, illustrate the PV string DC energy production of the ODD
and EVEN strings in the different years of July. When analyzing the results from the ODD and EVEN
strings of the year 2014, it is verified that they are very similar to each other and therefore indicate that
all strings are producing solar energy in a similar way. However, this production similarity does not
take place in the years 2016 and 2017. It is clearly noticeable that the production in String 2 is lower
compared to String 1 in years 2016 and 2017 when compared to the years 2014 and 2015, and therefore
a deviation between the prediction values of the neighboring PV strings indicate that a PV system fault
has been detected since this deviation does not take place in previous years.
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Figure 7. DC energy measured vs. predicted data provided by the hybrid system (Fuzzy + 5MLTs) (a)
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Figure 8. DC energy predictions of the ODD and EVEN PV strings provided by the machine learning
hybrid methodology system (a) 2014 (b) 2015 (c) 2016 (d) 2017.

The reduction in the PV string production can be attributed to a number of reasons such as PV
soiling, PV shading, cabling, PV module fault, or others. String 2 has a loss of approximately 2%
compared to the past and this might be due to only one PV module in the PV string not producing at
its maximum output and therefore dragging down the production of the whole PV string with it, due
to the connection configuration of all PV modules in the string which are connected in series. The next
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step should be to manually inspect the string and each PV module individually to identify the anomaly
and correct it.

The DC energy deviation analysis can also be performed by comparing the measured data of the
neighboring PV strings as illustrated in Figure 9, however the deviation between the measured data
(Figure 9a,c) is more visible than the deviation between the prediction data (Figure 9b,d).
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Figure 9. DC energy values of the ODD and EVEN PV strings (a) 2016 measured data (b) 2016 prediction
data (c) 2017 measured data (d) 2017 prediction data.

4. Conclusions

The aim of this work was to determine which machine learning methodology, out of four,
would provide the most accurate machine learning model predictions for using in PV string performance
analysis and fault detection using a very small data sample. In conclusion, the aim of this work was
achieved by using a new proposed machine learning hybrid methodology described in Experiment 3
to provide the most accurate machine learning regression model outputs of the daily DC energy of the
PV strings.

This hybrid methodology system combines the use of a Takagi-Sugeno type fuzzy logic inference
system with the use of a machine learning system that has five trained machine learning models
(regression tree, artificial neural network, multi-gene genetic programming, Gaussian process and
support vector machines for regression) that were trained in Experiment 2. The fuzzy system analyses
the solar irradiation input value given to the hybrid system and then selects the machine learning
model that would provide the most accurate prediction results.

After determining which methodology provided the most accurate machine learning predictions,
the PV string fault detection method was carried out by using the deviation analysis. The PV string
fault detection was clearly identified in the deviation analysis when using the prediction values of the



Entropy 2020, 22, 205 17 of 18

neighboring PV strings. As a result, this work also proposes a new method that is used to successfully
detect PV string faults which includes the analysis of the deviation between the prediction values
of each of the strings and not requiring the measured data to verify the presence of a PV string
faults. The PV system fault is detected when the predictions of the ODD strings are deviated from the
predictions of the EVEN strings.

The benchmark analysis that was performed in Experiment 2 showed that the worst results
were provided by the popular machine learning techniques (ANN and SVR), while the best results
were provide by the less popular machine learning techniques (regression tree, multi-gene genetic
programming and Gaussian process). The results obtained from Experiment 2 provided information
about the behavior of the five machine learning techniques when dealing with different types of data
from different scenarios. This information lead to the conclusion that it is not possible to select only
one machine learning technique to deal well with all types of data in all types of scenarios. Therefore,
the solution would be to use all of the five machine learning techniques in a hybrid system (Experiment
3) and have a separate system (Fuzzy system) to select one of the five models to provide the most
accurate prediction results. This way, each machine learning technique is used based on their ability to
accurately predict the DC energy output of the PV strings. It should be noted that all the conclusions
obtained about the generalization of the different machine leaning models are mostly driven by the
small size of the training sample dataset (93 samples).

A new ensemble methodology is also proposed in this work and is presented in Experiments 4, 5,
and 6 where the five different machine learning techniques are used in the ensemble methodology
system to provide the prediction results of the DC energy of the PV strings. However, the results
provided by the hybrid system in Experiment 3 were much better than the average ones provided by
the ensemble system in Experiments 4, 5, and 6.
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