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Abstract: This paper presents a novel five-dimensional three-leaf chaotic attractor and its application
in image encryption. First, a new five-dimensional three-leaf chaotic system is proposed. Some basic
dynamics of the chaotic system were analyzed theoretically and numerically, such as the equilibrium
point, dissipative, bifurcation diagram, plane phase diagram, and three-dimensional phase diagram.
Simultaneously, an analog circuit was designed to implement the chaotic attractor. The circuit
simulation experiment results were consistent with the numerical simulation experiment results.
Second, a convolution kernel was used to process the five chaotic sequences, respectively, and the
plaintext image matrix was divided according to the row and column proportions. Lastly, each of the
divided plaintext images was scrambled with five chaotic sequences that were convolved to obtain
the final encrypted image. The theoretical analysis and simulation results demonstrated that the key
space of the algorithm was larger than 10150 that had strong key sensitivity. It effectively resisted
the attacks of statistical analysis and gray value analysis, and had a good encryption effect on the
encryption of digital images.

Keywords: five-dimensional chaotic system; digital image encryption; proportional block;
convolution kernel

1. Introduction

In recent years, chaotic and hyperchaotic systems that can produce various types and are suitable
for secure communication have become topics of great interest in the fields of physics, biomathematics,
and information security [1]. Compared with the traditional encryption method, the complex structure
and dynamic behavior of chaotic attractors have a better encryption effect for digital image encryption [2].
Therefore, it has become more important to construct chaotic attractors with multiple scrolls. In the
process of encrypting digital images, the core purpose is to change the position of pixels and the size of
pixel values. Therefore, experts and scholars have proposed many encryption algorithms such as using
chaotic sequences to perform bit disturb of images [3,4], using the chaotic sequence and image pixel
value for the XOR operation [5,6], and scrambling the pixel [7–9]. A nonlinear state feedback controller
was proposed in Reference [10] based on the original three-dimensional (3D) autonomous chaotic
system to construct a new four-dimensional hyperchaotic system. An image encryption algorithm
based on five-dimensional hyper-chaos and bit-level disturbance was proposed in Reference [11].
Chaotic image encryption algorithms based on bit-level scrambling and dynamic DNA coding were
proposed in Reference [12]. Liu et al. [13] proposed an image encryption algorithm for bit position
chaos on the upper four bits. On the basis of arranging the diffusion structure, to improve safety and
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sensitivity, a chaotic image encryption algorithm based on a breadth-first search and dynamic diffusion
was proposed in Reference [14]. The cryptosystem in Reference [15] uses a diffusion layer and then
positions the image in layers instead of byte permutations to disturb the position of the image pixels.
A new chaotic system with hidden attractors and a chaotic-based image encryption algorithm with a
random number generator was proposed in Reference [16]. To reduce the processing time, Enayatifar
et al. [17] performed simultaneous replacement and diffusion steps for any pixel.

Many chaotic-based image encryption algorithms have been inspired by Fridrich’s method.
Therefore, this architecture has become most well-known [18]. However, security of an efficient image
encryption method is a fundamental issue in an image encryption algorithm. Recent cryptanalytical
studies have proven that some chaos-based algorithms are not adequately secure to resist against a
common attack such as Reference [19].

In the proposed scheme, the new five-dimensional chaotic system can generate three-leaf chaotic
attractors in multiple directions. Simultaneously, its dynamic characteristics are analyzed. In the
process of encryption, to increase the key space, we perform convolution operations on five chaotic
sequences. Second, we scale the image matrix proportionally and scramble the image matrix for
each segment separately. Through these processes, the difficulty of the exhaustive attack is increased.
All except for the exhaustive method based on the explicit plaintext ciphertext mapping, the method
will be invalid and have high security.

The rest of the paper is organized as follows. In Section 2, the chaotic system model is given.
In Section 3, circuit design and experimental results are described. In Section 4, related knowledge
is introduced. The encryption scheme is described in Section 5. Simulation results and performance
analyses are reported in Section 6. Lastly, the conclusions are drawn in Section 7.

2. New Five-Dimensional Chaotic System

In 1994, Sprott [20] summarized many 3D chaotic systems. After analyzing these 3D chaotic
systems, we propose a new 3D chaotic system. The system equations are as follows.

.
x = ax + byz2

.
y = cx + dz2

.
z = e + f x

(1)

when a = −1, b = −3, c = 1, d = 1, e = 1, f = 1, system (1) is in a chaotic state.
Based on system (1), we introduce two controllers, w, v, and feedback w into the original controller

y, feedback v into the original controller w, original controller x feedback into the new controller
v, original controller y feedback into the new controller w, v, original controller z feedback to the
new controller w, and feedback v to w. These six operations make the five controllers of this system
interact with each other, which makes the relationship more complicated. The newly constructed
five-dimensional chaotic system is as follows.

.
x = ax + byz2

.
y = x + z2

−wz
.
z = 1 + x

.
w = yz + cw + dv

.
v = xy + ev

(2)

when parameters a = −1, b = −3, c = −3, d = 1.8, e = −5, the system is in a chaotic state.

2.1. Dissipative Analysis

Because of

∆V =
∂

.
x
∂x

+
∂

.
y
∂y

+
∂

.
z
∂z

+
∂

.
w
∂w

+
∂

.
v
∂v

= a + c + e = −9 < 0 (3)
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Therefore, system (2) is dissipative, and convergence is in an exponential form of V0e−(a+c+e)t.
Clearly, the volume element V0 shrinks to the volume V0e−(a+c+e)t at moment t. Now consider when
t→∞ . Each volume element that contains the system trajectory shrinks to 0 at an exponential rate a +

c + e = −9.

2.2. Balance Point Analysis

Let x = y = z = w = v = 0, that is, 

ax + byz2 = 0
x + z2

−wz = 0
1 + x = 0

yz + cw + dv = 0
xy + ev = 0

(4)

when a = −1, b = −3, c = −3, d = 1.8, e = −5, the three equilibrium points of system

(2) obtained by Equation (4) are S0 = [0, 0, 0, 0, 0], S1 = [ 4
√

66
3 , 4

√
66

3 , 32, 128
√

66
9 , 128

√
66

81 ], S2 =

[− 4
√

66
3 ,− 4

√
66

3 , 32,− 128
√

66
9 ,− 128

√
66

81 ]. The balance point is S0 and the corresponding eigenvalues are
λ1 = 0,λ2 = 0,λ3 = −1,λ4 = −3,λ5 = −5. Therefore, S0 is a stable focus, the balance point is S1, and
the corresponding eigenvalues are λ1 = 25.7790,λ2 = 1.9099,λ3 = −12.5696,λ4,5 = −12.0596± 81.956i,
where λ1,λ2 are positive numbers. Therefore, the balance point S1 is an unstable saddle focus,
the balance point is S2, and the corresponding eigenvalues are λ1 = −0.8878,λ2 = −8.7718,λ3 =

−73.2231,λ4,5 = 36.9413± 77.9941i, where the real part of λ4,5 is positive, and the balance point S2 is an
unstable saddle focus.

2.3. Time Series Chart

When a = −1, b = −3, c = −3, d = 1.8, e = −5, the sequence diagram of the values x, y, z, w, v
changes over time t, as shown in Figure 1. We can see that when the system parameters a = −1, b = −3,
c = −3, d = 1.8, e = −5, system (2) is in a chaotic state.
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Figure 1. Time series diagram (a) x t−  time series, (b) y t−  time series, (c) z t−  time series, (d) 

w t−  time series, (e) v t−  time series. 

2.4. Phase Diagram Analysis 

For system parameters 1,a = −  3,b = −  3,c = −  1.8,d =  5e = − , the 3D phase diagram 

generated by system (2) is shown in Figure 2. The resulting planar phase diagram is shown in Figure 

3. It can be clearly seen from Figures 2 and 3 that the chaotic system can generate three-leaf chaotic 

attractors in multiple directions. 

  

  

Figure 1. Time series diagram (a) x − t time series, (b) y − t time series, (c) z − t time series, (d) w − t
time series, (e) v− t time series.

2.4. Phase Diagram Analysis

For system parameters a = −1, b = −3, c = −3, d = 1.8, e = −5, the 3D phase diagram generated
by system (2) is shown in Figure 2. The resulting planar phase diagram is shown in Figure 3. It can be
clearly seen from Figures 2 and 3 that the chaotic system can generate three-leaf chaotic attractors in
multiple directions.
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Figure 2. 3D phase diagram (a) x y z− − 3D map, (b) x y w− −  3D map, (c) x y v− −  3D map,  

(d) x z w− −  3D map, (e) x z v− −  3D map, (f) x w v− −  3D map, (g) y z w− − 3 D map, 

(h) y z v− −  3D map, (i) y w v− −  3D map, (j) z w v− −  3D map. 

   

   

Figure 2. 3D phase diagram (a) x− y− z 3D map, (b) x− y−w 3D map, (c) x− y− v 3D map, (d) x− z−w
3D map, (e) x− z− v 3D map, (f) x−w− v 3D map, (g) y− z−w 3D map, (h) y− z− v 3D map, (i) y−w− v
3D map, (j) z−w− v 3D map.
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2.5 Bifurcation Diagram 

For the equation parameters 3,b = −  3,c = −  1.8,d =  5e = − ,  the bifurcation diagram of 

the change in parameter a  is shown in Figure 4. Figure 4 shows that, when the parameter 
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For equation parameters 1a = − , 3,b = −  3,c = −  5e = − , the bifurcation diagram of the 

change in parameter d is shown in Figure 5. As can be seen from Figure 5, when the parameter d 

(1,2) , system (2) is in a chaotic state. 

Figure 3. Plane phase diagram (a) x − y flat, (b) x − z flat, (c) x −w flat, (d) x − v flat, (e) y − z flat, (f)
y−w flat, (g) y− v flat, (h) z−w flat, (i) z− v flat, and (j) w− v flat.

2.5. Bifurcation Diagram

For the equation parameters b = −3, c = −3, d = 1.8, e = −5, the bifurcation diagram of the
change in parameter a is shown in Figure 4. Figure 4 shows that, when the parameter a ∈ (−1.1,−1),
system (2) is in a chaotic state.
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For equation parameters a = −1, b = −3, c = −3, e = −5, the bifurcation diagram of the change in
parameter d is shown in Figure 5. As can be seen from Figure 5, when the parameter d ∈ (1, 2), system
(2) is in a chaotic state.
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2.6. Power Spectrum Analysis

The power spectrum of the chaotic sequence is a continuum, and the calculation results of the
sequence x, y, w, and v power spectrums of system (2) are shown in Figure 6a–d, respectively. It can be
seen from Figure 6 that system (2) is in a chaotic state.
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3. Circuit Design and Experimental Results

In this section, we design an analog circuit, as shown in Figure 7, which is mainly composed of an
inverting adder, integrator, and inverter composed of an operational amplifier TL082CD. The power
supply voltage of the operational amplifier TL082CD is E = ±15V. This circuit has a simple structure
and is easy to implement. The experimental results for this circuit are shown in Figure 8. Figure 8a
shows the y− v plane, Figure 8b shows the x−w plane, and Figure 8c shows the w− v plane. It can be
seen from the oscilloscope that the experimental results for the circuit for the three-leaf chaotic attractor
in each plane were consistent with the results of the numerical simulation experiments.
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4. Related Information

4.1. Convolution Operation

Let

h =


h11 h12 . . . h1m
h21 h22 . . . h2m
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...

...
...

hm1 hm2 . . . hmm


is the convolution kernel of m×m,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann


is an n× n matrix, where m < n. Then a n× n matrix C is obtained by a convolution operation between
matrix A and convolution kernel h.

C =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
...

...
cn1 cn2 . . . cnn


The convolution operation steps are as follows.
Step 1: Extend matrix A to an (n + 2) × (n + 2) matrix with 0.

B =



0 0 0 0 0 0
0 a11 a12 . . . a1n 0
0 a21 a22 . . . a2n 0

0
...

...
...

... 0
0 an1 an2 . . . ann 0
0 0 0 0 0 0


where B(1, 1 : n + 2) = B(1 : n + 2, 1) = B(n + 2, 1 : n + 2) = B(1 : n + 2, n + 2) = 0, B(2 : n + 1, 2 :
n + 1) = A.
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Step2: Obtain matrix C = (ci j)nn using a convolution operation between matrix A and convolution
kernel h, where

ci j =

p,q=m∑
p,q=1

hpq × B(p + (i− 1), q + ( j− 1)), i = 1, 2, · · · , n, j = 1, 2, · · · n, (5)

4.2. “Same OR” Operation

The “same OR” operation and the “exclusive OR” operation have the same effect. The “same OR”
operation is defined as follows: when the input variables are the same, the output is 1, and when the
input variables are different, the output is 0. The calculation results are presented in Table 1.

Table 1. Result table for the “same OR” operation.

A(Input) B(Input) F(Result)

0 0 1
0 1 0
1 0 0
1 1 1

5. Algorithm Descriptions

5.1. Encryption Algorithm Description

The flow chart of the encryption is shown in Figure 9.
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Given an M×N grayscale image A, the encryption steps are as follows.
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Step 1: Input a grayscale image A, initial value of the chaotic system y0 = [0.6, 0.1, 0.2, 0.5, 0.4],
and the step size L = 0.01.

Step 2: Find the total iteration time T = (250 + P× P) × L, where P = max(M, N).
Step 3: Call the ode45 function, iterate system (2), and generate five chaotic sequences.
Step 4: The five chaotic sequences are treated separately as follows.

A1(:, :, i) = (reshape(y(250 : 249 + M×N, i), M, N)) × 1011,i = 1, 2, 3, 4, 5 (6)

where y(250 : (249 + M×N), i) is the M ×N value that starts from the 250th value of the chaotic
sequence y(:, i). Use (reshape(y(250 : (249 + M×N), i), M, N)) × 1011 to convert the fetched M ×N
values into an M×N matrix, and then multiply each element value of the matrix by 1011

Step 5: Given a convolution kernel of 3× 3.
Step 6: For the five M×N matrices A1(:, :, i), i = 1, 2, 3, 4, 5 obtained in step 4, apply the convolution

operation with the given convolution kernel to obtain five M×N matrices Y(:, :, i), i = 1, 2, 3, 4, 5.
Step 7: Divide grayscale image A into five regions starting from the center area in the proportion

l = M : N. Input the value of m1 using n1 = m1 ÷ l, and obtain n1. The formulas for mi and ni are
as follows.  mi+1 = mi +

1
4

(
round

(
M
2

)
−m1

)
ni+1 = ni +

1
4

(
round

(
N
2

)
− n1

) , i = 1, 2, 3 (7)

There are T1 = m1 × n1, T2 = m2 × n2, T3 = m3 × n3, T4 = m4 × n4, T5 = M × N as shown in
Figure 10.
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Step 8: Divide the region H1 in matrix Y(:, :, 1) according to the starting point and size of T1 in
grayscale image A, as shown in Figure 11.
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Step 9: Convert matrix T1 and matrix H1 sums of one row and (m1 × n1) column matrix T11 and
H11, respectively. H11 is treated as follows.

HH = mod(round(H11× 10−7), 256) (8)

Step 10: Combine T11 and HH, and perform a bitwise “XOR” operation to obtain matrix B1.
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Step 11: Process H11 as follows to obtain M1 and M2.{
M1 = mod(round(H11× 104), 7) + 1

M2 = mod(round(H11(end− 7 : end) × 104), m1 × n1 − 1) + 1
(9)

Step 12: Convert matrix B1 into binary matrix F1.
Step 13: Disturb each line of binary numbers in each row of F1, and then obtain matrix C1.
The disturbance formula is as follows.

C1(i1, :) = circshi f t(F1(i1, :), M1(i1), 2), i1 = 1, 2, 3, . . . , m1 × n1 (10)

where F1(i1, :) denotes all the columns of row i1 of matrix A and circshi f t(A, k, 2) moves all elements
of row vector A clockwise by k units.

Step 14: Disturb all column elements of C1, and then obtain C2. The disturbance formula is
as follows.

C2(:, i2) = circshi f t(C1(:, i2), M2(i2), 1), i2 = 1, 2, 3, 4, 5, 6, 7, 8 (11)

where C1(:, i2) denotes all the rows of column i2 of matrix C1 and circshift(A,k,1) moves all the elements
of column vector A clockwise by k units.

Step 15: Convert binary number matrix C2 to decimal number matrix D1.
Step 16: D1 is used to replace the area T1. The results are shown in Figure 12.
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Step 17: The area H2 is taken out according to T2 in the starting point and size in A from Y(:, :, 2),
as shown in Figure 13.
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Step 18: Convert matrix T2 and matrix H2 sums of one row and (m2 × n2) column matrix T22
and H22, respectively. H22 is treated as follows.

HH1 = mod(round(H22× 10−7), 256) (12)

Step 19: Combine T22 and HH1, and perform a bitwise “same OR” operation to obtain matrix B2
Step 20: Process H22 to obtain M3 and M4 as follows.{

M3 = mod(round(H22× 104), 7) + 1
M4 = mod(round(H22(end− 7 : end) × 104), m2 × n2 − 1) + 1

(13)
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Step 21: Convert matrix B2 into binary matrix F2.
Step 22: Scramble each row of binary numbers in F2 to obtain matrix C3. The scrambling formula

is as follows.
C3(i3, :) = circshi f t(F2(i3, :), M3(i3), 2), i3 = 1, 2, 3, . . . , m2 × n2 (14)

Step 23: Disturb all the column elements of C3 to obtain C4. The scrambling formula is as follows.

C4(:, i4) = circshi f t(C3(:, i4), M4(i4), 1), i4 = 1, 2, 3, 4, 5, 6, 7, 8 (15)

Step 24: Convert binary number matrix C4 to decimal number matrix D2.
Step 25: Replace area T2 with D2. The result is shown in Figure 14.
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Step26: According to T3 from the starting point and size in the A, take the area H3 from Y(:, :, 3),
as shown in Figure 15.
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Step 30: Convert matrix 3B  into binary matrix 3F . 

Figure 15. Y(:, :, 3) is divided to obtain H3.

Step 27: Convert the matrices T3 and H3 into matrices T33 and H33 with one row and (m3 × n3)

columns, respectively, and process H33 as follows.

HH2 = mod(round(H33× 10−7), 256) (16)

Step 28: Combine T33 and HH2, and perform a bitwise “same OR” operation to obtain matrix B3.
Step 29: Process H33 as follows to obtain M5 and M6.{

M5 = mod(round(H33× 104), 7) + 1
M6 = mod(round(H33(end− 7 : end) × 104), m3 × n3 − 1) + 1

(17)

Step 30: Convert matrix B3 into binary matrix F3.
Step 31: Scramble the binary numbers in each row of F3 to obtain matrix C5. The scrambling

formula is as follows.

C5(i5, :) = circshi f t(F3(i5, :), M5(i5), 2), i5 = 1, 2, 3, . . . , m3 × n3 (18)

Step 32: Disturb all the column elements of C5 to obtain C6. The scrambling formula is as follows.

C6(:, i6) = circshi f t(C5(:, i6), M6(i6), 1), i6 = 1, 2, 3, 4, 5, 6, 7, 8 (19)
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Step 33: Convert binary number matrix C6 to decimal number matrix D3.
Step 34: Replace area T3 with D3. The result is shown in Figure 16.
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Step 35: Take region H4 from Y(:, :, 4) according to the starting point and size of T4 in A, as shown
in Figure 17.
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Figure 17. Y(:, :, 4) is divided to obtain H4.

Step 36: Convert matrices T4 and H4 into matrices T44 and H44 with one row and (m4 × n4)

columns, respectively, and process H44 as follows.

HH3 = mod(round(H44× 10−7), 256) (20)

Step 37: Combine T44 and HH3, and perform a bitwise “XOR” operation to obtain matrix B4.
Step 38: Process H44 to obtain M7 and M8 as follows.{

M7 = mod(round(H44× 104), 7) + 1
M8 = mod(round(H44(end− 7 : end) × 104), m4 × n4 − 1) + 1

(21)

Step 39: Convert matrix B4 into binary matrix F4.
Step 40: Scramble the binary numbers in each row in F4 to obtain matrix C7. The scrambling

formula is as follows.

C7(i7, :) = circshi f t(F4(i7, :), M7(i7), 2), i7 = 1, 2, 3, . . . , m4 × n4 (22)

Step 41: Disturb all the column elements of C7 to obtain C8. The scrambling formula is as follows.

C8(:, i8) = circshi f t(C7(:, i8), M8(i8), 1), i8 = 1, 2, 3, 4, 5, 6, 7, 8 (23)

Step42: Convert binary number matrix C8 to decimal number matrix D4.
Step43: Replace area T4 with D4. The result is shown in Figure 18.



Entropy 2020, 22, 243 15 of 27

Entropy 2020, 22, 243 15 of 27 

 

Step42: Convert binary number matrix 8C  to decimal number matrix 4D . 

Step43: Replace area 4T  with 4D . The result is shown in Figure 18. 

 

Figure 18. Subtraction after replacing 4T  with 4D . 

Step 44: Convert matrix 5T  and (:,:,5)Y  to matrix 55T and 55H  with one row and 

( )M N  

columns, respectively, and 55H  is treated as follows. 

-74 ( ( 55 10 ),256)HH mod round H=   (14) 

Step 45: Combine 55T  and 4HH , and perform a bitwise “same OR” operation to obtain matrix 

5B . 

Step 46: Process 55H  as follows to obtain 9M  and 10M . 

4

4

9 ( ( 55 10 ),7) 1

10 ( ( 55( 7 : ) 10 ), 1) 1

M mod round H

M mod round H end end M N

 =  +


= −   − +
 (15) 

Step 47: Convert matrix 5B  into binary matrix 5F . 

Step 48: Scramble the binary numbers in each row of 5F  to obtain matrix 9C . The scrambling 

formula is as follows. 

9( 9,:) ( 5( 9,:), 9( 9), 2),C i circshift F i M i=  9 1,2,3, ,i M N=   (16) 

Step 49: Disturb all the column elements of 9C . The scrambling formula is as follows. 

10(:, 10) ( 9(:, 10), 10( 10),1),C i circshift C i M i=  10 1, 2,3, 4,5,6,7,8i =  (17) 

Step 50: Convert binary number matrix 10C  to decimal number matrix 5D , and 5D is the final 

encrypted image. The result is shown in Figure 19. 

 

Figure 19. Encrypted image. 

5.2. Decryption Algorithm Description 

Step 1: Input the initial value of the chaotic system 0 [0.6,0.1,0.2,0.5,0.4]y =  and step size L =  

0.02 , and find the total iteration time (250 )T P P L= +   , where max( , )P M N= . 

Step 2: Call the ode45 function, iterate system (2), and generate five chaotic sequences. 

Step 3: The five chaotic sequences are treated as follows. 

111(:,:, ) ( ( (250 : 249 , ), , )) 10 ,A i reshape y M N i M N= +    1,2,3,4,5i =  (18) 

Figure 18. Subtraction after replacing T4 with D4.

Step 44: Convert matrix T5 and Y(:, :, 5) to matrix T55 and H55 with one row and (M×N)

columns, respectively, and H55 is treated as follows.

HH4 = mod(round(H55× 10−7), 256) (24)

Step 45: Combine T55 and HH4, and perform a bitwise “same OR” operation to obtain matrix B5.
Step 46: Process H55 as follows to obtain M9 and M10.{

M9 = mod(round(H55× 104), 7) + 1
M10 = mod(round(H55(end− 7 : end) × 104), M×N − 1) + 1

(25)

Step 47: Convert matrix B5 into binary matrix F5.
Step 48: Scramble the binary numbers in each row of F5 to obtain matrix C9. The scrambling

formula is as follows.

C9(i9, :) = circshi f t(F5(i9, :), M9(i9), 2), i9 = 1, 2, 3, . . . , M×N (26)

Step 49: Disturb all the column elements of C9. The scrambling formula is as follows.

C10(:, i10) = circshi f t(C9(:, i10), M10(i10), 1), i10 = 1, 2, 3, 4, 5, 6, 7, 8 (27)

Step 50: Convert binary number matrix C10 to decimal number matrix D5, and D5 is the final
encrypted image. The result is shown in Figure 19.
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5.2. Decryption Algorithm Description

Step 1: Input the initial value of the chaotic system y0 = [0.6, 0.1, 0.2, 0.5, 0.4] and step size L =

0.02, and find the total iteration time T = (250 + P× P) × L, where P = max(M, N).
Step 2: Call the ode45 function, iterate system (2), and generate five chaotic sequences.
Step 3: The five chaotic sequences are treated as follows.

A1(:, :, i) = (reshape(y(250 : 249 + M×N, i), M, N)) × 1011, i = 1, 2, 3, 4, 5 (28)

where y(250 : (249 + M×N), i) is the M×N value starting from the 250th value of chaotic sequence
y(:, i). Use (reshape(y(250 : (249 + M×N), i), M, N)) × 1011 to convert the fetched M×N values into
an M×N matrix, and then multiply each element value of the matrix by 1011.
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Step 4: Regarding the matrix A1(:, :, i), i = 1, 2, 3, 4, 5 of M×N, the five obtained in the previous
step convolution operation with the given convolution kernel of the encryption algorithm include five
matrix Y1(:, :, i), i = 1, 2, 3, 4, 5 of M×N are obtained.

Step 5: Divide the encrypted image D5 of M ×N into five regions in proportion to the middle
region, with l = M : N, E1 = (m1 × n2), E2(m2 × n2), E3(m3 × n3), E4(m4 × n4), E5(M×N), as shown in
Figure 20.
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6. Experimental Results and Analysis

6.1. Experiment Platform

The PC configuration was as follows: Intel(R) Core (TM) i5-6500 CPU @ 3.70 GHz 3.70 GHz,
memory 8 GB, and Windows 7 64-bit operating system. The above encryption algorithm was
implemented in a program in MATLAB R2014a.

6.2. Experimental Result

For the experiment, six types of grayscale images of classic images were selected: Lena, boat,
baboon, peppers, couple, and leaf, which were all 256× 256. This algorithm is also applicable to grayscale
images of any sizes. The plaintext image, encrypted image, and decrypted image are shown in Figure 21.

6.3. Key Space Analysis

The size of the key space is one of the most important factors that determines the strength of the
image encryption algorithm. The larger the key space, the stronger the ability to resist brute force

attacks. The secret keys of this proposed encryption algorithm include five initial values
y0 = [0.6, 0.1, 0.2, 0.5, 0.4] and five system parameters a, b, c, d, e. Since the precision is 10−15 by
computer with accuracy, the key space is (1015)

10
= 10150. In addition, when the convolution kernel

size is 3× 3, the secret key also needs to consider nine convolution kernel parameters. Therefore, the
total key space of the algorithm is much larger than 10150 > 2100. For a security encryption algorithm,
its key space should be larger than 2100 [21]. Therefore, this algorithm was sufficiently secure.
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the decrypted image was blurred, but the outline could be seen, as shown in Figure 22c. When any 

of the parameters in the convolution kernel was slightly changed with 1410− , the decrypted image 

could not substantially display the plaintext image information, as shown in Figure 22d. When any 

parameter in the convolution kernel changed slightly with 1310− , the plaintext image information 

could not be solved at all, as shown in Figure 22e. Taking the Lena image as an example, we made a 

slight change to the parameters of the second row and the second column of the convolution kernel: 

1=[1,2,3;4,5.000000000000001,6;7,8,9]c , 2 =[1,2,3;4,5.00000000000001,6;7,8,9]c , 3 =[1,2,3;4,c

5.0000000000001,6;7,8,9] . The plaintext images, ciphertext images, and the corresponding 

decrypted images of 1c , 2c , and 3c  are shown in Figure 22. 

Figure 21. Encrypted/decrypted experimental results: (a) Lena original image, (b) Lena encrypted
image, (c) Lena decrypted image, (d) boat original image, (e) boat encrypted image, (f) boat decrypted
image, (g) leaf original image, (h) leaf encrypted image, and (i) leaf decrypted image.

6.4. Convolution Nuclear Sensitivity Analysis

In the encryption process, we multiplied each element of the five chaotic sequences produced
by 1011 and performed convolution operations with the convolution kernel of 3× 3. The convolution
kernel of 3 × 3 in this algorithm was c = [1, 2, 3; 4, 5, 6; 7, 8, 9]. In the decryption process, when any
of the parameters in the convolution kernel were slightly changed, the original image could not be
successfully decrypted. When any parameter in the convolution kernel changed slightly with 10−15,
the decrypted image was blurred, but the outline could be seen, as shown in Figure 22c. When any
of the parameters in the convolution kernel was slightly changed with 10−14, the decrypted image
could not substantially display the plaintext image information, as shown in Figure 22d. When any
parameter in the convolution kernel changed slightly with 10−13, the plaintext image information
could not be solved at all, as shown in Figure 22e. Taking the Lena image as an example, we made a
slight change to the parameters of the second row and the second column of the convolution kernel:
c1 = [1, 2, 3; 4, 5.000000000000001, 6; 7, 8, 9], c2 = [1, 2, 3; 4, 5.00000000000001, 6; 7, 8, 9], c3 = [1, 2, 3; 4,
5.0000000000001, 6; 7, 8, 9]. The plaintext images, ciphertext images, and the corresponding decrypted
images of c1, c2, and c3 are shown in Figure 22.

A small change in the convolution kernel can lead to a great change in the ciphertext. In this
study, only the Lena image was used as an example. Figure 23 shows the sensitivity of this algorithm
to convolution kernels. Figure 23a is a plaintext image. Figure 23b,c are convolution kernels,
c0 = [1, 2, 3; 4, 5, 6; 7, 8, 9] and c1 = [1, 2, 3; 4, 5.00000000000001, 6; 7, 8, 9] for encrypted ciphertext image
C0 and C1, respectively. Figure 23d is the result of the correct decryption for C0 using c0. Figure 23e,f
show the results of C0 and C1 using the wrong convolution kernel c1 and c0 decryption, respectively.
Figure 23 illustrates that, despite only minor changes between the convolution kernels c0 and c1,
the ciphertext images C0 and C1 could not be properly decrypted with the convolution kernels.
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The difference between the two images can also be measured by the pixel change rate (NPCR) 
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; ,M N  is the size of the image. 1( , )C i j  and 2 ( , )C i j  are 

the pixel values at position ( , )i j . The larger the values of NPCR and UACI, the greater the difference 

between the two images. To better evaluate the sensitivity of the convolution kernel, we use 

Equations (29) and (30) to calculate the NPCR  and UACI  of the encrypted images obtained by the 

slightly changed convolution kernels 1 2 3 4 5, , , ,c c c c c  and the encrypted image obtained by the 

original convolution kernel 0c . There are 1=[1,2,3;4,5.000000000000001,6;7,8,9]c  ,
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Figure 23. Convolution nuclear sensitivity experiment analysis chart: (a) Plaintext image, (b) Ciphertext
C0 (convolution kernel c0), (c) Ciphertext C1 (convolution kernel c1), (d) C0 correct decryption result,
(e) C0 error decryption result using c1, and (f) C1 error decryption result using c0.
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The difference between the two images can also be measured by the pixel change rate (NPCR)
and the normalized mean change intensity (UACI), which are described as Equations (29) and (30).

NPCR =

M,N∑
i, j

D(i, j)

M×N
× 100% (29)

UACI =

M,N∑
i, j
|C1(i, j) −C2(i, j)|

M×N × 255
× 100% (30)

where D(i, j) =

{
1, C1(i, j) , C2(i, j)
0, C1(i, j) = C2(i, j)

; M, N is the size of the image. C1(i, j) and C2(i, j) are

the pixel values at position (i, j). The larger the values of NPCR and UACI, the greater the
difference between the two images. To better evaluate the sensitivity of the convolution kernel,
we use Equations (29) and (30) to calculate the NPCR and UACI of the encrypted images obtained
by the slightly changed convolution kernels c1, c2, c3, c4, c5 and the encrypted image obtained
by the original convolution kernel c0. There are c1 = [1, 2, 3; 4, 5.000000000000001, 6; 7, 8, 9],
c2 = [1, 2, 3; 4, 5.00000000000001, 6; 7, 8, 9], c3 = [1, 2, 3; 4, 5.0000000000001, 6; 7, 8, 9], c4 = [1, 2, 3; 4,
5.00000000001, 6; 7, 8, 9], c5 = [1, 2, 3; 4, 5.00000000001, 6; 7, 8, 9], c0 = [1, 2, 3; 4, 5, 6; 7, 8, 9]. The NPCR
and UACI values between the obtained encrypted images are shown in Table 2. Table 2 shows that
using the convolution kernel operation can greatly increase the key space of the algorithm.

Table 2. Convolution nuclear sensitivity test results.

Lena Image Kernel c1 Kernel c2 Kernel c3 Kernel c4 Kernel c5

Index

Pixel Change Rate
(NPCR) 0.9716 0.9962 0.9962 0.9963 0.996

Normalized Mean
Change Intensity

(UACI)
0.2271 0.3341 0.3335 0.3352 0.3346

6.5. Key Sensitivity Analysis

A small change in the key results in a great change in the ciphertext, which is the key sensitivity.
In the experiment, the Lena image was considered as an example. Figure 24 shows the sensitivity of
the algorithm to the initial key. Figure 24a is a plaintext image. Figure 24b,c show the results of using
keys y0 = [0.6, 0.1, 0.2, 0.5, 0.4] and y1 = [0.600000000000001, 0.1, 0.2, 0.5, 0.4] for encrypted ciphertext
image Y0 and Y1, respectively. Figure 24d shows the result of the correct decryption of Y0 using y0.
Figure 24e,f show the results of Y0 and Y1 using the wrong decryption keys y1 and y0, respectively.
Figure 24 illustrates that, despite only minor changes between the keys y0 and y1, the ciphertext images
Y0 and Y1 could be decrypted correctly using the corresponding keys y1 and y0.

To better evaluate the key sensitivity of the algorithm, we tested the NPCR and UACI values
between the keys y0 = [0.6, 0.1, 0.2, 0.5, 0.4] and y = [0.600000000000001, 0.1, 0.2, 0.5, 0.4] for the
encrypted image using Equations (29) and (30). The test values in this study and those in the
literature [4,14,17] are shown in Table 3. Table 3 shows that the algorithm had good test results, so the
encryption algorithm proposed in this paper has good key sensitivity.
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Table 3. Key sensitivity test results.

Images Lena Baboon Boat Peppers

Index Pixel Change
Rate (NPCR)

Normalized
Mean Change

Intensity
(UACI)

NPCR UACI NPCR UACI NPCR UACI

Test value 0.9961 0.3356 0.9962 0.3344 0.996 0.3363 0.9962 0.3357
Reference [4] 0.9961 0.3346 - - - - - -

Reference [14] 0.9961 0.3346 - - - - 0.9962 0.3341
Reference [17] 0.9952 0.3359 0.991 0.3325 0.9925 0.3339 0.985 0.3295

6.6. Information Entropy Analysis

Information entropy is an important indicator of randomness, which reflects the distribution
of gray values of images. The more uniform the gray value distribution, the larger the information
entropy of the image. The information entropy calculation formula of an image is shown below.

H(C) = −
L∑

i=1

p(xi) log2 p(xi) (31)

where p(xi) is the probability of C and L is the total number of xi. For grayscale images, the theoretical
maximum value of information entropy is 8. The closer the image information entropy is to the
theoretical maximum, the more random the image pixel gray value distribution is. The information
entropy before and after the encryption of Lena, baboon, boat, peppers, couple, and leaf is shown in
Table 4. The simulation results show that the pixel value distribution of the encrypted image was very
uniform, and the algorithm had a good encryption effect.
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Table 4. Information entropy analysis for plaintext and encrypted images.

Image Lena Baboon Boat Peppers Couple

Original Image 7.4832 7.3713 7.1267 7.5715 7.2369
Encrypted Image 7.9978 7.9977 7.997 7.9974 7.9974

Considering the Lena image as an example, the information entropy after encrypting the image
was compared with the information entropy in the literature [4,11–13,17]. The experimental results are
shown in Table 5. Table 5 shows that the algorithm had a better encryption effect.

Table 5. Information entropy comparison.

Image Original Image
Information Entropy

Encrypted Image Information Entropy

Algorithm Reference [4] Reference [11] Reference [12] Reference [13] Reference [17]

Lena 7.4832 7.9978 7.9967 7.9972 7.9900 7.9959 7.9975

Global and local entropy [22] values of the encrypted image are tabulated in Table 6. From Table 6,
it is clear that both the entropy values are closer to the optimal theoretical values (≈8). Furthermore,
the obtained results are compared against the critical values at 5%, 1%, and 0.1% significance.
From the above discussion, it can be concluded that the proposed encryption algorithm possesses high
randomness and is robust against a statistical attack.

Table 6. Global and local entropy analysis.

Image Global
Entropy

Local Entropy No. of
Blocks = 20

(Block Size = 44 × 44)

Local Entropy Critical Values

hl*0.05left = 7.9019
hl*0.05right = 7.9030

hl*0.01left = 7.9017;
hl*0.01right = 7.9032

hl*0.001left = 7.9015l
hl*0.001right = 7.9034

Lena 7.9978 7.9028 Pass Pass Pass
Baboon 7.9977 7.9023 Pass Pass Pass

Boat 7.997 7.9027 Pass Pass Pass
Couple 7.9974 7.9022 Pass Pass Pass

6.7. Histogram Analysis

A histogram can reflect the distribution of image pixel values very well. The flatter the histogram
is, the more uniform the pixel value distribution is. Figure 25 shows histograms of the original images
for Lena, baboon, and boat, and encrypted images.

6.8. Histogram Statistics

The variance and standard deviation are metrics of dispersion implemented to support the results
of visual inspection in graphic histograms. They measure how much the elements of a set of data vary
with respect to each other around the mean. Two datasets may have the same average value (mean),
but the variations can be drastically different [23].

The variance calculates the average difference between each of the values with respect to their
central point (mean x). This average is calculated by squaring each of the differences and calculating its
mean again. The squaring process is used to eliminate the negative signs and to increase the variance
of dispersed (non-uniform) datasets. On the other hand, the more uniform the graphic histogram is,
the lower the histogram variance is, which is determined with the following expression.

α =
1

256

256∑
i=1

(xi − x)2 (32)

where:
x =

M×N
256

(33)
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x is the frequency for each intensity value from 0–255 grayscale value of the histogram, α is the
histogram variance, and x is the mean of the histogram. The standard deviation allows us to know the
arithmetic average of fluctuations of the dataset with respect to the mean. It is determined with the
square root of the histogram variance as follows.

β =
√
α (34)

where β is the standard deviation of the histogram. In Table 7, the histogram variance and its standard
deviation are presented for plain and encrypted images. Table 7 shows that the pixel values of the
image encrypted by this algorithm are more uniform. This algorithm has a better encryption effect.
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Table 7. Histogram statistics with the variance and standard deviation of plain and encrypted images.

Plain Image Scale α β
Lena 256× 256 gray 37,963 195

Reference [22] (lena 256× 256) gray 38,451 196
Boat 256× 256 gray 103,380 321.5

Baboon 256× 256 gray 58,542 241.9
Couple 256× 256 gray 79,457 281.9
Encrypted Image Scale

Lena 256× 256 gray 230 15
Reference [22] (lena 256× 256) gray 414 20

Boat 256× 256 gray 250 15.8
Baboon 256× 256 gray 260 16.1
Couple 256× 256 gray 242 15.6

6.9. Correlation Analysis of Adjacent Pixels

A feature of digital images is the strong correlation of adjacent pixels. To calculate the correlation
of adjacent pixels before and after encryption, 5000 sets of adjacent pixels were randomly selected in
the horizontal, vertical, and diagonal directions of the plaintext and ciphertext images. The horizontal,
vertical, and diagonal correlation coefficients were calculated using Equations (35).

E(x) = 1
K

K∑
i=1

xi

D(x) = 1
K

K∑
i=1

(xi − E(x))2

Cov(x, y) = 1
K

K∑
i=1

(xi − E(x))(yi − E(y))

rxy =
Cov(x,y)
√

D(x)
√

D(y)

(35)

The test results are shown in Table 8. The pixel correlation of the Lena plaintext image and
ciphertext image in the horizontal direction, vertical direction, and diagonal direction are shown in
Figure 26.

Table 8. Test results for the correlation coefficient between plaintext and ciphertext images.

Images

Horizontal Correlation
Coefficient

Vertical Correlation
Coefficient

Diagonal Direction
Correlation Coefficient

Clear Image Ciphertext
Image Clear Image Ciphertext

Image Clear Image Ciphertext
Image

Lena 0.971 0.012 0.9402 0.002 0.9121 −0.0083
Baboon 0.8343 −0.0109 0.8712 0.0043 0.794 −0.0074

Boat 0.9574 −0.0076 0.9533 −0.0137 0.915 0.0036
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(b) horizontally adjacent, (c) and (d) vertically adjacent, (e) and (f) diagonally adjacent.

6.10. Robustness Analysis

6.10.1. Quality Metrics Analysis

Quality evaluation of digital images can use the Mean Squared Error (MSE) and Peak
Signal-to-Noise Ratio (PSNR) for measurement [23,24]. The MSE is a parameter to measure the
difference between two images, which is described as Equation (36).

MSE =
1

H ×W

H∑
i=1

W∑
j=1

(X(i, j) − (i, j))2 (36)

where H ×W is the size of original image, X(i, j) is the original image, and (i, j) is the encrypted image.
The higher value of MSE represents better encryption quality. This MSE analysis is a useful test for
a plain image and encrypted image with pixel values in the range of [0–255]. The PSNR (expressed
in logarithmic scale and decibels) determines the ratio between the maximum possible power of a
signal and the power of distorting noise that affects the quality of its representation. It is calculated by
Equation (37).

PSNR = 20 log10

(
255
√

MSE

)
(37)

The smaller the MSE value is, the larger the PSNR value is, which means that there is a high
degree of similarity between the tested images. By calculation, the MSE between the original image
and the decrypted image is 0, and the value of PSNR is Inf. In this algorithm, the MSE between the
original Lena image and the decrypted image is 77,012, and PSNR is 9.265. The results show that the
quality metrics of the tested images is good.

6.10.2. Occlusion Attack Analysis

In an occlusion attack, we choose 12.5%, 25%, and 50% of occlusion in an encrypted image.
In Figure 27, the attack results are shown. For 12.5% of occlusion, the MSE value is 7853 and the PSNR
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value is 9.1802. For 25% of occlusion, the MSE value is 10,148 and the PSNR value is 8.0672. For 50% of
occlusion, the MSE value is 13,376 and the PSNR value is 6.8676. The results show that the proposed
cryptographic algorithm can effectively resist occlusion attack.
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Figure 27. The results of occlusion attack: (a) encrypted with 12.5% occlusion, (b) encrypted with 25%
occlusion, (c) encrypted with 50% occlusion, (d) decrypted with 12.5% occlusion, (e) decrypted with
25% occlusion, and (f) decrypted with 50% occlusion.

6.10.3. Noise Attack Analysis

In order to verify the anti-noise performance of the proposed algorithm, Salt and pepper noise
with different intensities was added to the encrypted image. The intensities were 10, 15, and 20,
respectively, and they were then decrypted. The results are shown in Figure 28. For 10 of intensity,
the MSE value is 8758.9 and the PSNR value is 8.706. For 15 of intensity, the MSE value is 9302.9 and
the PSNR value is 8.446. For 20 of intensity, the MSE value is 9866.8 and the PSNR value is 8.189. It can
be seen that the original image can be basically recovered after the noise image is decrypted. Therefore,
the proposed algorithm has a certain anti-noise attack capability.
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7. Conclusions

In this paper, a five-dimensional chaotic system was proposed, which had a simple structure
and was easy to implement. Basic dynamic analysis of the system was conducted, including the
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equilibrium point, phase diagram, bifurcation diagram, and power spectrum. Based on the theoretical
analysis, a chaotic circuit was designed using the analog device amplifier TL082CD. The consistency of
the numerical simulation results confirmed the feasibility of the method. Simultaneously, five chaotic
sequences generated by the system were applied to the hybrid image encryption algorithm for physical
chaotic encryption and advanced encryption standard encryption. In the algebraic encryption process,
we performed convolution operations on five chaotic sequences, which was followed by convolution
operations. The latter sequence was applied to the image scaled block encryption, and a numerical
simulation experiment was conducted on the hybrid encryption system. The simulation results verified
the correctness of the encryption algorithm. Therefore, the encryption algorithm proposed in this
paper has a good application prospect in secure communication, particularly digital image encryption.
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