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Abstract: Quantum history states were recently formulated by extending the consistent histories
approach of Griffiths to the entangled superposition of evolution paths and were then experimented with
Greenberger–Horne–Zeilinger states. Tensor product structure of history-dependent correlations was also
recently exploited as a quantum computing resource in simple linear optical setups performing multiplane
diffraction (MPD) of fermionic and bosonic particles with remarkable promises. This significantly
motivates the definition of quantum histories of MPD as entanglement resources with the inherent
capability of generating an exponentially increasing number of Feynman paths through diffraction planes
in a scalable manner and experimental low complexity combining the utilization of coherent light sources
and photon-counting detection. In this article, quantum temporal correlation and interference among
MPD paths are denoted with quantum path entanglement (QPE) and interference (QPI), respectively,
as novel quantum resources. Operator theory modeling of QPE and counterintuitive properties of
QPI are presented by combining history-based formulations with Feynman’s path integral approach.
Leggett–Garg inequality as temporal analog of Bell’s inequality is violated for MPD with all signaling
constraints in the ambiguous form recently formulated by Emary. The proposed theory for MPD-based
histories is highly promising for exploiting QPE and QPI as important resources for quantum computation
and communications in future architectures.

Keywords: multiplane diffraction; entangled histories; quantum path entanglement; quantum path
interference; Leggett–Garg inequality

1. Introduction

Quantum temporal correlations are analyzed with diverse methods by utilizing histories or trajectories
of evolving quantum systems with more recent emphasis on mathematical formulation of the entangled
superposition of quantum histories in Reference [1], i.e., denoted with the entangled histories framework.
These varying methods include Feynman’s path integral (FPI) formalism [2] as the most fundamental
of all inherently including histories, consistent histories approach defined by Griffiths [3–5], and the
recently formulated entangled histories framework [1] and two-state vector formalism [6,7] while all
emphasizing correlations in time as standard quantum mechanical (QM) formalisms without violating
Copenhagen interpretations. Multiplane diffraction (MPD) design as a simple linear optical system
was recently proposed for quantum computing (QC) [8,9] and for modulator design in classical optical
communications [10] by exploiting the tensor product structure of quantum temporal correlations as
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quantum resources while utilizing only the classical light sources and conventional photon-counting
intensity detection. The MPD architecture generates interference of an exponentially increasing number
of propagation trajectories along the diffraction events through multiple slits on the consecutive planes.
The simplicity of source and detection in MPD setup combined with the highly important promise of the
utilization of the tensor product structure of the temporal correlations as quantum resources motivates
the definition and study of quantum trajectories or histories in MPD as novel quantum resources. These
new resources denoted as quantum path entanglement (QPE) and quantum path interference (QPI) are defined
and theoretically modeled in this article in terms of the temporal correlations and interference among the
trajectories, respectively, to be exploited for future quantum computing and communications systems.

In this article, MPD design is, for the first time, proposed for defining QPE and QPI as novel quantum
resources. Operator theory modeling for MPD-based resources is presented by combining the consistent
histories approach of Griffiths [1,3–5] and the entangled histories framework in Reference [1] with the FPI
approach as the inherent structure of MPD creating Feynman paths. MPD creates quantum propagation
paths through individual slits in a superposition in which the linear combinations result in evolving
quantum history states. It has low experimental complexity with classical light sources and conventional
photon-counting detection for near-future experimental verification. The theory of QPE and QPI based on
MPD proposed in this article provides a set of tools to explore new structures composed of the correlations
and interference among the paths for future applications in quantum computing and communications and
provides QM foundational studies based on quantum histories.

The concept of the entangled histories is defined in References [1,11] as the quantum history which
cannot be described as a definite sequence of states in time. There is a superposition of multiple timelines
of sequences of events. In this article, we follow similar terminology and denote the temporal correlation
among the quantum propagation paths unique to the MPD design with QPE, i.e., emphasizing the
entanglement among the path histories similar to References [1,11]. Tensor product structure among
the temporal correlations of multiple time instants is utilized as a novel resource for computing in
References [8,9] and for communications in Reference [10] in an analogical manner to the multiparticle
spatial correlations of the conventional quantum entanglement resources. MPD provides a simple system
design inherently including such states having correlations among the paths denoted with QPE. A concrete
example of a history state in MPD composed of diffraction events through N planes is defined as follows:

∑
n

πn

[
PN,sn,N

]
�
[
PN−1,sn,N−1

]
� ...�

[
P1,sn,1

]
� [ρ0] (1)

where Pj,sn,j is the projection operator for diffraction through the slit indexed with sn,j on jth plane and
for nth trajectory, πn as 0 or 1 allows to choose a compound set of trajectories, � denotes tensor product
operation, and [ρ0] denotes the initial state. The quantum state of the light after diffraction through
consecutive N planes includes a superposition of different trajectories through the slits. Experiments for
entangled histories has just been, for the first time, performed in Reference [11] by using the polarization
states of a single photon and by creating Greenberger–Horne–Zeilinger (GHZ)-type states. MPD-based
design compared with complex single photon setup allows the classicality of light sources and simple
intensity detection (or photon counting) as a significantly low complexity tool to study quantum histories
and QM foundations with near-future experiments. MPD utilizes simple and widely available coherent
sources such as Gaussian wave packets of standard laser output conventionally denoted as classical light.
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In this article, an important property of MPD-based QPE is, for the first time, presented: Leggett–Garg
Inequality (LGI) violations as the temporal analog of Bell’s inequality. One of the fundamental tools
to analyze quantum temporal correlations of a system is to check the violations of LGIs [12]. LGIs,
as proposed by Leggett and Garg in 1985, check a system in terms of the fundamental principles of
macroscopic realism (MR) and noninvasive measurability (NIM) such that the systems obeying these rules
satisfy the intuition about the classical macroscopic world [13]. QM systems violate LGIs such that MR
principles implying the existence of a preexisting value of a macroscopic system and the NIM principle
implying the measurement of the value without disturbing the system are both invalidated [14,15]. LGI
violations [12–14,16,17] are utilized for various purposes such as testing temporal correlations of a single
system as an indicator of the quantumness and analyzing QC systems, e.g., Grover’s algorithm violating
temporal Bell inequality [18]. The simple LGI inequality with three-time formulation violated with various
QM setups is defined as follows:

C01 + C12 − C02 ≤ 1 (2)

where Cij ≡
〈

QiQj
〉

is the expected value of the multiplication of the dichotomic observables Qi as
the measurement outcomes at time ti. The left-hand side is maximally violated by QM systems with
the value of 3 / 2. The violation analysis of LGIs is, for the first time, performed for MPD by utilizing
the recently proposed ambiguous form by Emary in Reference [16] with the precautions regarding the
signaling-in-time (SIT) problem in order to convince a macrorealist about the noninvasive nature of
measurements, i.e., to prevent signaling forward in time with measurements. This is achieved by inferring
event probabilities from ambiguous measurements rather than direct measurements and by modifying the
fundamental inequality in Equation (2) by including a signaling term and by providing a NIM-free bound
as described in detail in the Results section. The violation of LGI with no-signaling assumption reaching
>0.2, i.e., left-hand side of >1.2, is numerically obtained for three-time formulation of LGI in MPD setup.
The optimization study to maximize it to the calculated bounds [16] is left as an open issue. Besides that,
a novel system design, i.e., MPD, violating LGIs with classical light sources is proposed in this article,
complementing the recent experimental result in Reference [19] utilizing linear polarization degree of
freedom of the classical light to violate LGIs. However, MPD utilizes photon-counting intensity detection
with a significantly low experimental complexity. It is also simpler compared with the LGI violating
architectures utilizing single-photon sources and Mach–Zehnder interferometers [11,20,21]. Besides that,
light sources not fully coherent in terms of spatial and temporal dimensions are theoretically modeled
while the violation of LGI and QPI are numerically analyzed for specific MPD setup geometry satisfying
coherence of light under Gaussian source beam assumptions.

On the other hand, LGIs are interpreted in a quantum contextual framework in Reference [22], where
the contextuality implies the impossibility to consider a quantum measurement as revealing a preexisting
property independent of the set of measurements. It is also analyzed in relation with consistent histories
approach in Reference [23]. Furthermore, nonlocality and contextuality are presented as important
quantum resources [24]. Therefore, the relation of the proposed QPE and QPI resources with quantum
contextuality is an open issue to be explored.
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The other important property of quantum histories is the interference among them denoted by
QPI. To the best of the author’s knowledge, theoretical modeling of the interference among quantum
history states leading to a counterintuitive observation to be easily verified experimentally has not been
previously formulated. Implementation of the theoretically modeled QPI setup will significantly improve
our understanding about QM fundamentals regarding time. QPI is the temporal analogue of the spatial
interference obtained in Young’s double-slit setup. Destructive and constructive interferences among the
paths are observed in the time domain for the QPI case. A special case is modeled such that decreasing
the number of photons to diffract through a plane by removing a Feynman path results in an increase in
the number of photons diffracting through the next plane due to the interference between two quantum
trajectories. This is proposed, for the first time, as a counterintuitive nature of the interference among the
quantum histories.

The novel contributions of the article are summarized as follows:

• introduction and operator theory modeling of two novel quantum resources, i.e., QPE and QPI,
denoting temporal correlations and the interference among quantum trajectories, respectively, in
MPD while utilizing the tensor product structure for future quantum computing and communication
architectures and foundational QM studies;

• operator theory modeling of MPD-based resources QPE and QPI by combining history-based previous
formulations of quantum histories [1,3–5] with FPI formalism;

• theoretical modeling and numerical analysis of MPD setup for the violation of LGI, with the
ambiguous and no-signaling forms recently proposed by Emary in Reference [16], reaching > 1.2 of
correlation amplitude numerically obtained for three-time formulation while leaving the maximization
of the violation to the boundary levels as an open issue;

• a novel setup, i.e., MPD, violating the ambiguous form of LGI with classical light sources
complementing the recent experiment utilizing linear polarization degree of freedom of the classical
light [19] while MPD setup with remarkably low complexity design utilizing classical light sources
and photon-counting intensity detection;

• theoretical modeling and numerical analysis of counterintuitive properties and examples of the
interference among MPD-based Feynman paths denoted as QPI promising to be easily verified
experimentally in future studies;

• the modeling and numerical analysis of the coherence properties of the light sources in terms of
spatial and temporal dimensions while discussing design issues for MPD setup with coherent light
sources; and

• discussion for future applications of QPE and QPI as quantum resources and
experimental mplementations.

The paper is organized as follows. We firstly define MPD setup with diffractive projection and
measurement operators in Sections 2.1 and 2.2. It is followed by the history state modeling of QPE in
Section 2.3. Then, we present theoretical modeling of the violation of LGI in Section 2.4, followed by QPI
scenario in Section 2.5. Then, numerical analysis is presented in Section 2.6. We provide the conclusions
and discuss future applications of QPE and QPI based on MPD setup in Section 3. Finally, the methods
utilized for theoretical modeling are presented in Section 4.
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2. Results

2.1. MPD Setup for Quantum Temporal Correlations

MPD setup is formed from N − 1 diffraction planes of multiple slits in front of a classical light source
and the measurement of interference pattern with N sensor planes, i.e., both diffraction and sensing on
the same plane, as shown in Figure 1a. It is also possible to locally count the diffracted photons with the
measurement planes inserted between the diffraction planes as discussed in Section 2.6. The utilized light
source is assumed to be coherent as the closest analog of a classical light field emphasizing the absence
of nonclassical states of light such as single photon generation, squeezed light, or multiple particles of
entangled photons [25]. The standard laser output is almost perfectly a coherent state corresponding to
the fundamental transverse modes of light field distribution producing Gaussian beams. This coherent
Gaussian wave function keeps the position and momentum uncertainties stationary as emphasized by
Glauber [26]. It is an eigenstate of the annihilation operator â for the harmonic oscillator, i.e., â |α〉 = α |α〉,
represented as follows in the complete orthonormal basis of the number states |n〉 of the single mode
oscillator [26]:

|α〉 = e−|α|
2 / 2 ∑

n

αn

(n!)1/2 |n〉 (3)

where its representation in the position basis gives the Gaussian form. Therefore, the source is assumed
to have normalized Gaussian wave function Ψ0(x0) ≡ exp

(
− x2

0/(2σ2
0 )
)
/
√

σ0 /
√

π with the standard
deviation term σ0.

Figure 1. (a) System model of the free propagating light with velocity c in the z-direction and MPD through
N planes, where jth plane includes Sj slits at positions Xj,i for i ∈ [1, Sj] and interplane distance of Lj,j+1.
(b) Example of three plane diffractions (N = 3) with two slits for the first and second planes showing all the
possible seven types of histories composed of diffractions or projections P1,1, P1,2, P2,1, and P2,2 through slits
and measurements M1, M2, and M3 on the planes. There are Np ≡ ∏N−1

j=1 Sj = 2× 2 = 4 paths detected
on the third plane.

Each plane is assumed to be capable of performing measurement with photodetectors for counting
the number of photons hitting the detector area. Therefore, a plane either allows projective diffraction of
light through slits denoted by the operator symbol P or performs measurement denoted by M on its sensor
array positions where there are no slits. Gaussian slits are utilized with FPI modeling for simplicity [2,8]
as mathematically described in Equation (7) in the next subsection. Light is assumed to perform free
space propagation between consecutive planes. The plane with the index j has Sj slits, where the central
positions and widths of slits are denoted by Xj,i and Wj,i, respectively, and j ∈ [1, N − 1] and i ∈ [1, Sj].
The widths of the slits are assumed to be the same on each plane but not constrained among different
planes. Distance between the ith and jth planes is denoted by Li,j, where the distance from the light
transmitter source to the first plane is given by L0,1. Light is assumed to have propagation in the z-axis
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with the velocity given by c, while quantum superposition interference is observed in the x-axis as a
one-dimensional model which can be easily extended to two dimensions (2D) [8]. Interplane distances and
durations are denoted by the vectors~LT = [L0,1 ... LN−1,N ] and~tT = [t0,1 ... tN−1,N ] ≡ ~LT / c, respectively,
where transpose is denoted by (.)T . The value~tT is accurate with the assumption Lj−1,j � Wj,i, Xj,i for
j ∈ [1, N − 1] and i ∈ [1, Sj] such that QM effects are emphasized in the x-axis. Nonrelativistic modeling
is assumed. We do not consider the effects of environment dephasing or decohering of the interference
pattern for double-slit setups [27,28]. Furthermore, minor effects of exotic paths [29] on the numerical
results are ignored as discussed in Reference [8] without affecting the main modeling.

Free-particle evolution kernel for the optical propagation paths between time–position values (tj, xj)

and (tj+1, xj+1) is defined as follows [9,10] with the same form for electron propagation [2,8]:

K(xj+1, tj+1; xj, tj) =

√
m

2 π ı h̄ ∆t
exp

(
ı m ∆x2

2 h̄ ∆t

)
(4)

where ∆t = tj+1 − tj, ∆x = xj+1 − xj, m ≡ h̄ k / c is the virtual mass term for the photon with the wave
number k = 2 π / λ, and λ is the wavelength of the light.

The validity of Fresnel diffraction formulation for quantum optical propagation is verified based
on recent experimental [30] and theoretical [31] studies, while Fourier optics [32] extension of MPD is
recently proposed in Reference [9]. Therefore, the Fresnel diffraction integral for free space proposed
in Equation (4) and its consecutive application with FPI formalism are theoretically valid and highly
reliable for the simple design of MPD. The proposed theoretical model significantly promises to be verified
with near-future experiments due to the simplicity of the setup. Then, the propagated wave function
|Ψj〉 =

∫ ∞
−∞ dxj |xj〉Ψj(xj) on the jth plane becomes as follows by utilizing Equation (4) consecutively in

FPIs [8–10]:

Ψj(xj) ≡
Nj−1

∑
n=0

ψj,n(xj) ≡
Nj−1

∑
n=0

(
Υj e(Aj−1 + ı Bj−1) x2

j e
−→x T

n Hj−1
−→x n e(

−→c T
j−1 + ı

−→
d T

j−1)
−→x n xj

)
(5)

where ψj,n(xj) is the contribution for each nth propagation path through the slits on the overall

superposition, and the definitions of the notations n and Nj are explained next while Υj = χ0
(

∏
j−1
l=1
√

ξl
)
;

the constants Aj−1, Bj−1, χ0, and ξl for l ∈ [1, j− 1]; Hj−1 = HR,j−1 + ı HI,j−1; and the vectors −→c j−1 and
−→
d j−1 depending on the group of {h̄, m, σ0, tl,l+1, and βl} for l ≤ j− 1 are explicitly defined in Reference [8].

Explicit forms of the parameters required for double- and triple-plane setups are provided in Section 4
while formulating LGIs and QPI, respectively, in the following discussions. The total number of paths
just before diffraction on the jth plane is calculated by Nj = ∏

j−1
l=1 Sl , while the set of slit positions for the

path indexed with n ∈ [0, Nj − 1] is denoted by −→x n ≡ [X1,sn,1 X2,sn,2 ... Xj−1,sn,j−1 ]
T while each nth path is

indexed by the set of diffracted slits as the following:

Pathn ≡ {sn,1, sn,2, ... sn,j−1; sn,l ∈ [1, Sl ], l ∈ [1, j− 1]} (6)

where the specific slit on lth plane for nth trajectory is indexed with sn,l . The same symbol of the position
vector −→x is used for both the dimensions N and j. The size of the vector is inferred from the index of the
current plane analyzed throughout the text. The position on the jth plane is denoted by xj. In Equation (5)
for j = N, each path reaching the Nth plane is indexed by n for n ∈ [0, Np − 1] as shown in Figure 1b
for a simple example of Np = 4, where total number of paths is given by multiplying the number of
slits on each plane as Np ≡ ∏N−1

j=1 Sj. The vector −→x n ≡ [X1,sn,1 X2,sn,2 ... XN−1,sn,N−1 ]
T denotes the set

of slit positions ordered with respect to the plane indices for nth path for the case of N planes. Next,



Entropy 2020, 22, 246 7 of 29

diffraction and measurement operators are theoretically defined by emphasizing the operator algebra of
multiplane evolution.

2.2. Diffractive Projection and Measurement Operators

Projection operator denotes the light to be in the Gaussian slit in a coarse-grained sense [8,33]
as follows:

Pj,i ≡
∫ ∞

−∞
dxj exp

(
−

(xj − Xj,i)
2

2 β2
j,i

)
|xj〉 〈xj| (7)

where gj,i(xj) ≡ exp
(
− (xj − Xj,i)

2 / (2 β2
j,i)
)

is the slit projection function and the effective slit width is

Wj,i ≡ 2
√

2 β j,i, i.e., leading to a 1 / e2 drop in the intensity, where j ∈ [1, N − 1] and i ∈ [1, Sj]. Projectors
are mutually exclusive with high accuracy such that slit distances are chosen large enough to satisfy
exp

(
− (Xj,i1 − Xj,i2)

2 / (2 β2
j,i1

)
)
� 1 for i1 6= i2. Total diffraction through all slits of the jth plane has the

operator Pj ≡ ∑
Sj
i=1 Pj,i. Measurement operators are redefined due to the proposed Gaussian slit design

such that trace preserving equality is satisfied, i.e., M†
j Mj + P†

j Pj = I, where I is the identity operator

and (.)† or (.)H denotes Hermitian or conjugate transpose operation. It is assumed that wave function at
time t = t0 evolves to |Ψj〉 and |Ψ+

j 〉 for just before and just after diffraction on the jth plane at t−j and t+j ,

respectively. The state of the light at t+j has experienced either Mj or Pj. The measurement operator on the
jth plane is defined as the following:

M†
j Mj ≡ I−

( Sj

∑
i=1

P†
j,i
)( Sj

∑
i=1

Pj,i
)
≡
∫ ∞

−∞
dxj

(
1−

( Sj

∑
i=1

e
−

(xj−Xj,i)
2

2 β2
j,i

)2
)
|xj〉 〈xj| (8)

Therefore, if we define the measurement operator in FPI formalism as multiplication of the wave function
with mj(xj) reducing the probability to measure the light while approaching the slit center, then the
following is obtained by using Equation (8):

|mj(xj)|2 = 1−
( Sj

∑
i=1

e
−

(xj−Xj,i)
2

2 β2
j,i

)2

(9)

There are two different types of detection mechanisms in MPD design denoted by Rec1 and Rec2.
In Rec1, all of the planes for j ∈ [1, N] have detectors measuring the incident light and Rec1 is the model
proposed in this article forming a complete set of diffractive projection Pj and measurement M j̃ operators

until the final detector plane N for j ∈ [1, N − 1] and j̃ ∈ [1, N]. In this article, Rec1 modeling is utilized
to model history-based time evolution of the light. An example is shown in Figure 1b, where there is a
total of seven different sets of consecutive events forming a complete set of histories. The proposed setup
is modeled compatible with the consistent histories approach defined in Reference [3] or the entangled
histories framework in Reference [1]. On the other hand, the receiver type with the sensors only on the
final plane is denoted by Rec2. In Rec2, i.e., the modeling utilized in Reference [8] for QC, only the final
intensity distribution or interference pattern on the detector plane is measured. There is either no detection
at the time t+N or the light is detected on the final detector plane with the index N. An operator denoting
no detection is defined as Mo to form a complete set for Rec2; then, M†

NMN + M†
oMo = I. Next, consistent

histories approach is applied for MPD setup.
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2.3. History State Modeling of QPE

Following the definition of consistent histories [3–5] and entangled histories [1], a history state is
defined for MPD based on the set of projections Mj and Pj,i on each jth plane for j ∈ [1, N] and i ∈ [1, Sj].
History Hilbert space is defined as follows:

H ≡ HN �HN−1 � ...�H1 �H0 (10)

whereHj denotes the set of projections on planes and � denotes tensor product operation. Hilbert space
until t+j includes both projections Pj and Ml on the planes with the indices l ≤ j since the light is detected
at some plane until tj or still diffracting through the jth plane. A general history state with QPE composed
of superposition of trajectories is denoted as follows based on the notation (similar to bra-ket but with
different notations of (.| and |.) for the histories corresponding to 〈.| and |.〉, respectively) in Reference [1]:

|ΨN) = ∑
n

πn [On(tN)]� [On(tN−1)]� ...� [On(t0)] (11)

where |Ψj) is some history state between times t0 and tj for tj > t0, the projector
[
On(tj)

]
denotes either

of Ml or Pl,i for l ≤ j and i ∈ [1, Sl ], and πn as 0 or 1 is some permutation choosing a compound set of
histories indexed by n. Observe that tj includes measurements Ml for l ≤ j as possible events such that the
state does not change after measurement. It also includes events with zero probability such as jth plane
projection at times not equal to tj. Some examples for N = 4 are as follows:

|Ψa
4) ≡ [M1]� [M1]� [M1]� [M1]� [ρ0]

|Ψb
4) ≡ [M4]� [P3,2]� [P2,4]� [P1,1]� [ρ0]

|Ψc
4) ≡ [M4]� [M2]� [M2]� [M1]� [ρ0]

(12)

The state |Ψa
4) shows that the light is detected on the first plane at t1 while not changing at consecutive

time states, i.e., without diffracting even from the first plane. In |Ψb
4), the light is diffracted from the first

slit of the first plane at t1, then is diffracted from the fourth slit of the second plane at t2 and from the
second slit of the third plane at t3, and is finally measured on the fourth plane. The third example |Ψc

4) is a
state with zero probability due to the orthogonality of the operators on different planes. A simple example
for three planes with two slits is shown in Figure 1b with seven different history states while Np = 4 of
them reach the final detector plane as consecutively diffracted trajectories. History Hilbert space summing
to the identity denoted by IH as the family based upon an initial state and neglecting the histories with
zero probability is described as follows [3]:

IH =
N

∑
j=1

Sj−1

∑
ij−1=1

Sj−2

∑
ij−2=1

...
S1

∑
i1=1

( [
Mj
]� α �

[
Pj−1,ij−1

]
� ...�

[
P1,i1

]
� [ρ0]

)
(13)

where
[
Mj
]� α denotes α ≡ N + 1 − j consecutive measurements of

[
Mj
]

on the same plane. This includes
all the possible history states and evolution for the light until t = tN starting from t0. A chain operator
is presented in Reference [1] to define the inner product between history states which maps a history
state to an operator. The chain operator provides history states with positive semi-definite inner products.
This operator is inherently defined in the MPD system as the free-particle evolution kernel K(x1, t1; x0, t0).
Assume that the free-particle evolution operator with the notation Uj+1,j acts as the bridging operator
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connecting projections at times tj and tj+1. Then, chain operator denoted by χtj+1,tj for the time duration
(tj, tj+1) is defined as follows:

χtj+1,tj{
[
Pj+1

]
�
[
Pj
]
} 1

= Pj+1 Uj+1,j Pj (14)

χtj+1,tj{
[
Mj+1

]
�
[
Pj
]
} 2

= Mj+1 Uj+1,j Pj (15)

χtj+1,tj{
[
Mj
]
�
[
Mj
]
} 3

= Mj I Mj (16)

χtj+1,tj{
[
On(tj+1)

]
�
[
On(tj)

]
} 4

= On(tj+1) I On(tj) (17)

where
[
On(tj+1)

]
and

[
On(tj)

]
in 4

= denote the cases which are not presented in the first three definitions. I
is the identity operator equalizing the consecutive measurements on the same plane, i.e., Ml

j = Mj, for any
integer l. Furthermore, it bridges dynamically not possible history states which have zero probability
to occur as discussed in Reference [3]. These include consecutive measurements on different planes
such as

[
Mj+1

]
�
[
Mj
]
, future projection or measurements at a previous time such as

[
Mj
]
�
[
Pj+1

]
, or

consecutive sets of the same projector Pj at future times such as
[
Pj
]
�
[
Pj
]
, where free-space propagation

in the z-axis prevents this. Then, the compound history state mapped or affected by the chain operator is
defined as follows:

χtN ,t0 |ΨN) ≡∑
n

πn On(tN)VN,N−1 On(tN−1) ... V1,0 On(t0) (18)

where Vj+1,j denotes either Uj+1,j or I.
Besides that, MPD allows to model and explore varying kinds of superposition of history states

and QPEs similar to the specific entangled states discussed in Reference [1] resembling the temporal
counterpart of Bell states. For example, entangled history states of the GHZ type is experimentally tested
in Reference [11]. It is an open issue to utilize MPD to generate and test such states with important
implications and applications based on QPE. Next, probability amplitudes of histories are modeled.

Event Probabilities

The probabilities characterize the statistical properties of the measurement of classical light. It is
assumed that the probability is proportional to the square of the wave function with Born’s postulate. It
is calculated by integrating the number of photons on the detector area at a specific position for a time
interval T enough to obtain the statistical properties [30,31]. The normalized probability is easy to calculate
by measuring the number of photons for each event by forming a histogram and then by dividing the
number of photons for the specific event to the total number of source photon counts. The number of
photons at a particular position x is frequently denoted with the integral element |Ψ(x)|2dx, while |Ψ(x)|2
is denoted as the intensity of the light at the particular position. The probability for the particular history
state is found with the positive semi-definite inner product defined as follows:

(ΦN |ΨN) ≡ tr{
(
χtN ,t0 |ΦN)

)H(
χtN ,t0 |ΨN)

)
} (19)

where tr{.} is the trace operation. Assume that two specific elementary history states corresponding to
specific diffraction paths indexed with ñ and n̂ ∈ [0, Np − 1] composing the superposition wave function
in Equation (5) are denoted by |ψN,ñ) and |φN,n̂), respectively. These paths include only the diffraction
projections at the planes with the indices j ∈ [1, N − 1] denoted by Pj,sñ,j

and Pj,sn̂,j
, respectively. If the
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initial state ρ0 = |Ψ0〉 〈Ψ0| and MN = I are included, then the weight of an elementary diffraction history
denoted by the inner product Wñ ≡ (ψN,ñ|ψN,ñ) in Reference [3] becomes the following:

Wñ = tr
{

UN,N−1 PN−1,sñ,N−1 ... P1,sñ,1 U1,0 ρ0 U†
1,0 P†

1,sñ,1
... P†

N−1,sñ,N−1
U†

N,N−1 MN

}
(20)

= tr
{

ρ0 U†
1,0 P†

1,sñ,1
... P†

N−1,sñ,N−1
U†

N,N−1 UN,N−1 PN−1,sñ,N−1 ... P1,sñ,1 U1,0 ρ0

}
(21)

=
∫ ∞

xN=−∞
dxN |ψN,ñ(xN)|2 (22)

where the trace is realized with respect to the position, tr{ρ2
0} = 1 is utilized, and ψN,ñ(xN) in position

basis of the Nth plane is calculated by putting j = N and n = ñ in the defined wave function ψj,n(xj) in
Equation (5). Similarly, inner product between history states is defined as follows:

(ψN,n̂|ψN,ñ) =
∫ ∞

xN=−∞
dxN ψ∗N,n̂(xN)ψN,ñ(xN) (23)

The probability for the light to be diffracted through the ith slit on the jth plane with the projection Pj,i is
denoted by ProbP

j,i. Similarly, probability to be measured on the jth plane with measurement projection Mj

is denoted by ProbM
j . ProbP

j,i is calculated by using the weight of the compound history ΩN,{j,i} including
the targeted event Pj,i as follows:

ProbP
j,i ≡

(
ΩN,{j,i}

∣∣ΩN,{j,i}
)

(24)

where ΩN,{j,i} is defined as follows:

ΩN,{j,i} = ∑
n

Sj−1

∑
ij−1=1

Sj−2

∑
ij−2=1

...
S1

∑
i1=1

(
[On(tN)]� ...�

[
On(tj+1)

]
�
[
Pj,i

]
�
[
Pj−1,ij−1

]
� ...�

[
P1,i1

]
� [ρ0]

)
(25)

where elementary diffraction history states include diffraction events Pl,il for l < j and il ∈ [1, Sl ] until the
jth plane and diffraction event

[
Pj,i
]

on the jth plane at tj, and where the events
[
On(tj+1)

]
to [On(tN)]

denote any dynamically possible projector at the times between tj+1 and tN . Probability for the events
after diffraction will not have any effect on diffraction probability through Pj,i, and those projections are
discarded. Then, it is easily calculated by using Equations (5) and (7) and with 〈Ψj| P†

j,i Pj,i |Ψj〉 as follows:

ProbP
j,i =

∫ ∞

−∞
dxj e

−
(xj−Xj,i)

2

2 β2
j,i

∣∣Ψj(xj)
∣∣2 (26)

ProbM
j is calculated with ProbM

j =
∫ ∞

−∞
dxj

∣∣mj(xj)Ψj(xj)
∣∣2. Similarly, diffraction through one of several

slits in a superposition of s slits on the jth plane is given by the following expression:

ProbP
j,ĩs

=

∫ ∞

−∞
dxj

(
∑
i∈ĩs

e
−

(xj−Xj,i)
2

2β2
j,i

)2 ∣∣Ψj(xj)
∣∣2 (27)

where ĩs ≡ {i1, i2, ..., is} and il ∈ [1, Sj] for l ∈ [1, s], ia 6= ib.
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It is important to emphasize the practical meaning of the probabilities of the light diffractions or
measurements on the plane. In practice, the probabilities are proportional to the number of photons
for each event, e.g., the number of photons passing through a particular slit integrated over a long
measurement time for calculating projection probabilities or the number of photons detected on the
specific area of the planes for the measurement projection. Histogram-based modeling for counting the
photons for all planes and the slits provides the normalized overall probability for each event summing
to a total of unity. Photon or particle counting with classical light is already achieved in various studies
characterizing the exotic properties of the paths [31] or Fresnel diffraction properties [30].

Quantumness and temporal correlations for the MPD system design are analyzed by explicitly
providing theoretical formulation of LGIs next.

2.4. Modeling of the Violation of LGI in MPD

LGIs test the temporal correlations by measuring at different times in analogy with spatial Bell’s
inequalities for the entanglement between spatially separated systems [12,13]. Three-time correlation-based
inequality is defined in Equation (2) as K = C01 + C12 − C02 ≤ 1, where the bound is violated quantum
mechanically with dichotomic systems, i.e., Qj = ±1 for j ∈ [0, 2], reaching the bound 3/2 for a
two-level system with the maximum LGI violation of 1 / 2. Cj1,j2 ≡

〈
Qj1 Qj2

〉
is the expected value of the

multiplication of the dichotomic observables, which is equal to Cj1,j2 = ∑j1,j2 p(j1, j2)Qj1 Qj2 , where p(j1, j2)
is the probability for the measurement of Qj1 and Qj2 at times tj1 and tj2 , respectively, and t2 > t1 > t0.
Noninvasiveness or non-disturbing structure of the measurements should be clearly satisfied in order
to reduce the “clumsiness loophole” [15,16], i.e., experimental limitations and disturbance of the clumsy
measurements making it difficult to convince a macrorealist. In Reference [16], ambiguous measurements
are utilized to revise Equation (2) by including the effect of signaling. In this article, the same formulation
is extended for the MPD setup exploiting simple architecture of slits.

The correlation and entanglement in time are tested with the two-plane setup, where each plane
includes triple slits as shown in Figure 2a. It is assumed that the light diffracting through the first
plane is taken into account while calculating probability amplitudes, i.e., utilizing negative measurement
techniques. For example, if the measured state is set to P1,1, then the second and third slits are closed,
forcing the light to diffract through only the first slit setting the measurement result. Furthermore, denote
p1(i1,1) ≡ ProbP

1,i1,1
and p1({i1,1, i1,2}) ≡ ProbP

1,is , where is = {i1,1, i1,2} for i1,1, i1,2 ∈ [1, 3] and i1,1 6= i1,2.
The probability p1({i1,1, i1,2}) corresponds to the measurement result for P1,i1,1 ∪ P1,i1,2 being projected in
one of the slits with the indices i1,1 and i1,2 on the first plane. Similarly, p1({1, 2, 3}) denotes the overall
projection on superposition in all three slits. On the other hand, assume that p1,2({i1,1, i1,2}, î2) denotes the
probability for the history: [

Oî2
(t2)

]
�
( [

P1,i1,1

]
+
[
P1,i1,2

] )
� [ρ0] (28)

where
[
Oî2

(t2)
]

is one of [P2,1], [P2,2], [P2,3], or [M2] denoted by î2 = 1, 2, 3, and 4, respectively. Similar to

Equations (26) and (27), p1,2({i1,1, i1,2}, î2) for î2 ∈ [1, 3] is found as follows:

p1,2({i1,1, i1,2}, î2) =
∫ ∞

−∞
dx2

(
exp

(
− (x2 − X2,î2

)2 / (2 β2
2,î2

)
))2 ∣∣∣∣ψ2,i1,1(x2) + ψ2,i1,2(x2)

∣∣∣∣2 (29)

where the elementary wave function is found with Equation (5) by using i as the path index as follows:

ψ2,i(x2) = χ0
√

ξ1eΓ1 x2
2 eH1 X2

1,i er1 X1,i x2 (30)
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where Γ1 = A1 + ı B1, H1 = HR,1 + ı HI,1, r1 = c1 + ı d1, i ∈ [1, 3], χ0, ξ1, A1, B1, HR,1, HI,1, c1, and d1

are defined in Section 4. Similarly, p1,2({i1,1, i1,2}, 4) is defined as follows:

p1,2({i1,1, i1,2}, 4) =
∫ ∞

−∞
dx2

∣∣m2(x2)
∣∣2 ∣∣ψ2,i1,1(x2) + ψ2,i1,2(x2)

∣∣2 (31)

where i1,1, i1,2 ∈ [1, 3] and i1,1 6= i1,2. p1,2(i1,1, î2), and p1,2({1, 2, 3}, î2) denote the probabilities for[
Oî2

(t2)
]
�
[
P1,i1,1

]
� [ρ0] and

[
Oî2

(t2)
]
�
(
[P1,1] + [P1,2] + [P1,3]

)
� [ρ0], where i1,1 ∈ [1, 3] and î2 ∈ [1, 4].

The same formulation is valid also for the second plane for p2(i2,1), p2({i2,1, i2,2}), and p2({1, 2, 3}) for
i2,1, i2,2 ∈ [1, 3] and i2,1 6= i2,2. Observe that, at time t2, it is assumed that M2 is also included in calculations
providing a complete set I = M2 + ∑3

i=1 P2,i. Negative measurement methodology for the first plane is
utilized such that the light only diffracting through the first plane is utilized in calculating probabilities.
Therefore, all the probability calculations based on Equations (26), (27), (29), and (31) are normalized
by Γc ≡

(
∑3

i=1 ProbP
1,i)
−1. The probabilities denoted by pj(ij,1), pj({ij,1, ij,2}), pj({1, 2, 3}) for j ∈ [1, 2],

p1,2(i1,1, î2), p1,2({i1,1, i1,2}, î2), and p1,2({1, 2, 3}, î2) are assumed to be normalized through the rest of the
article. The normalized operator is defined as PN

1,i ≡ Γc P1,i for i ∈ [1, 3].

(a)                                                   (b)                                                    (c)                                                   (d)

Figure 2. (a) The violation of Leggett–Garg Inequality (LGI) with the setup of two planes with triple slits
where the event set at time t1 is [P1,1], [P1,2], and [P1,3] and, at time t2, are [P2,1], [P2,1], [P2,3], and [M2]

and ambiguous measurement setups by closing (b) the third, (c) the second, and (d) the first slits on the
first plane.

Assume that an ambiguous measurement set of three projections composed by
[
OA

1 (t1)
]
≡
[
PN

1,1

]
+[

PN
1,2

]
,
[
OA

2 (t1)
]
≡
[
PN

1,1

]
+
[
PN

1,3

]
, and

[
OA

3 (t1)
]
≡
[
PN

1,2

]
+
[
PN

1,3

]
is defined. The setups for ambiguous

measurements are shown in Figure 2b–d, respectively. In addition, an assignment of dichotomic indices

for the measurement results is designed denoted by Q1,iA
1
≡ ±1 and Q2,î2

≡ ±1 for
[

OA
iA
1
(t1)

]
and[

Oî2
(t2)

]
, respectively, where iA

1 ∈ [1, 3] and î2 ∈ [1, 4]. Q0 ≡ 1 denotes initial condition [ρ0] with unity
probability. These dichotomic indices can be assigned arbitrarily while they are chosen in Section 2.6
based on the maximization of LGI violation by comparing all the possible assignment combinations. Then,
utilizing a similar architecture to the ambiguous LGI, i.e., Equation (14) in Reference [16], a conversion
matrix D is defined inferring the probability p1(i1,1) from the ambiguous measurements with p̂1(i1,1) ≡
∑iA

1
Di1,1,iA

1
pA

1 (i
A
1 ), where pA

1 (i
A
1 ) denotes the probability for the history [OA

iA
1
(t1)] � [ρ0] for iA

1 ∈ [1, 3],

Di1,1,iA
1

is the element at the i1,1th row and the iA
1 th column of the conversion matrix D, and p̂1(i1,1) denotes
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the inferred probability such that a macrorealist will not observe any problem. Similarly, p̂1,2(i1,1, î2)
becomes the following:

p̂1,2(i1,1, î2) ≡∑
iA
1

Di1,1,iA
1

pA
1,2(i

A
1 , î2) = ∑

iA
1

Di1,1,iA
1

Γc p1,2({iA
1,1, iA

1,2}, î2) (32)

where pA
1,2(i

A
1 , î2) denotes the probability for the history

[
Oî2

(t2)
]
� [OA

iA
1
(t1)]� [ρ0], where i1,1, iA

1 ∈ [1, 3]

and î2 ∈ [1, 4], while it is found in Equations (29) and (31) by normalizing as follows:

pA
1,2(i

A
1 , î2) ≡ Γc p1,2({iA

1,1, iA
1,2}, î2) (33)

where iA
1,1 and iA

1,2 correspond to the the event [OA
iA
1
(t1)], i.e., {iA

1,1, iA
1,2} equals {1, 2}, {1, 3}, and {2, 3} for

iA
1 ≡ 1, 2, and 3, respectively. For example, for the proposed setup, p̂1(1) = (pA

1 (1) + pA
1 (2)− pA

1 (3)) / 2
since the following probability relation holds:

ProbP
1,1 =

ProbP
1,{1,2} + ProbP

1,{1,3} − ProbP
1,{2,3}

2
(34)

Therefore, D11 = 0.5, D12 = 0.5, and D13 = −0.5. Similarly, D21 = D23 = D32 = D33 = 0.5 and
D22 = D31 = −0.5. Then, a macrorealist is convinced that the inferred probabilities are utilized
for the calculations of C01, C12, and C02 with Equation (2) by replacing p1,2(i1,1, î2) with p̂1,2(i1,1, î2)
and by properly defining the degree of signaling level between the first and second planes for the
ambiguous measurements increasing the required LGI bound. Then, following the similar methodology
in Reference [16] (Equations (5) and (14) in Reference [16]), K = C01 + C12 − C02 with Q0 = 1 is easily
transformed into the combination of the standard LGI term free of the invasive measurement and a
signaling term as follows by firstly replacing the measured probabilities with the inferred ones and then
by inserting into K:

KA ≡
3

∑
iA
1 =1

3

∑
i1,1=1

4

∑
î2=1

(
Q1,i1,1 + Q1,i1,1 Q2,î2

−Q2,î2

)
Di1,1,iA

1
pA

1,2(i
A
1 , î2) −

4

∑
î2=1

Q2,î2
∆S(î2) (35)

where the first term is the standard LGI definition with inferred probabilities and the second term includes
inferred signaling terms ∆S(î2) between the first and second planes for the measurement

[
Oî2

(t2)
]

for

each î2. It is modeled as a signaling quantifier showing the influence of the measurement at time t1 to the
measurement at time t2 and is defined by utilizing ambiguous measurements as follows:

∆S(î2) ≡ p2(î2) −
3

∑
i1,1=1

p̂1,2(i1,1, î2) = p2(î2) −
3

∑
i1,1=1

3

∑
iA
1 =1

Di1,1,iA
1

pA
1,2(i

A
1 , î2) (36)

= p2(î2) −
1
2

3

∑
iA
1 =1

pA
1,2(i

A
1 , î2) (37)
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where
(

∑3
i1,1=1 Di1,1,iA

1

)
= 1 / 2. Therefore, the no-signaling-in-time (NSIT) condition for the definition with

ambiguous measurement of ∆S(î2) = 0 is expected to convince a macrorealist about the reliability of the
measurement setup. Then, the violation of LGI free of the invasive measurement becomes the following:

KA ≤ KV ≡ 1 +
4

∑
î2=1

|∆S(î2)| (38)

where the summation at the right side of the inequality, i.e., KV − 1, shows the invasiveness of the
measurements and the signaling level. Therefore, measured values pA

1,2(i
A
1 , î2) are utilized to check the

violation compatible with respect to the objections of a macrorealist. If Equations (29), (31), and (33) are
inserted into Equations (35), (36), and (38), then the following is obtained:

KA = G1

3

∑
î2=1

Q2,î2
f2(X2,î2

) − G1 Q2,4

3

∑
î2=1

f2(X2,î2
) + G1

3

∑
i1,1=1

Q1,i1,1

3

∑
î2=1

Q2,î2
f1,2(X1,i1,1 , X2,î2

,~li1,1 )

−G1 Q2,4

3

∑
i1,1=1

Q1,i1,1

3

∑
î2=1

f1,2(X1,i1,1 , X2,î2
,~li1,1 ) + G2 (1 + Q2,4)

3

∑
i1,1=1

Q1,i1,1 f1(X1,i1,1 ,~li1,1 )

−G2 Q2,4

3

∑
i1,1=1

f1(X1,i1,1 ,~li1,1 ) − G2 Q2,4 fT (39)

KV = 1 +
3

∑
î2=1

| fV(X2,î2
)|+

∣∣ fT G2 −
3

∑
î2=1

fV(X2,î2
)
∣∣ (40)

where~l1 = [1 1 − 1]T ;~l2 = [1 − 1 1]T ;~l3 = [−1 1 1]T ; the functions f1(.), f2(.), f1,2(.), and fV(.); and the
variables fT , G1, and G2 are defined in Section 4. Next, quantum interference among the paths, i.e., QPI, is
defined for the MPD setup.

2.5. Modeling of QPI

Double-slit interference gives a clear indication of quantumness showing wave-particle duality and
spatial interference as emphasized by Feynman. MPD setup presents the complementary phenomenon
of the temporal interference among the paths which cannot be explained in any classical way showing
that paths interfere in time, destructively and constructively decreasing and increasing the probability
of the consecutive events, respectively. A gedanken experiment shown in Figure 3 is designed with three
planes. The target is to analyze interference effects of opening both slits on the first plane in terms of the
probability of the light to diffract through first (PL-1), second (PL-2), and third (PL-3) planes. History states
at times t1, t2, and t3 with three types of projections indexed by the superscripts a, b, and c are defined
with the setups shown in Figure 3a–c, respectively, as follows:
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|Ψa
1) ≡ Ps � [ρ0] (41)

|Ψa
2) ≡ [P2,1]� Ps � [ρ0] ; (42)

|Ψa
3) ≡ [P3,1]� [P2,1]� Ps � [ρ0] (43)

|Ψb
1) ≡ [P1,1]� [ρ0] (44)

|Ψb
2) ≡ [P2,1]� [P1,1]� [ρ0] (45)

|Ψb
3) ≡ [P3,1]� [P2,1]� [P1,1]� [ρ0] (46)

|Ψc
1) ≡ [P1,2]� [ρ0] (47)

|Ψc
2) ≡ [P2,1]� [P1,2]� [ρ0] (48)

|Ψc
3) ≡ [P3,1]� [P2,1]� [P1,2]� [ρ0] (49)

where superposition event at time t1 is defined as Ps ≡ [P1,1] + [P1,2] and the event probabilities are
defined as follows:

p1({1, 2}) ≡ (Ψa
1|Ψa

1); p1(1) ≡ (Ψb
1|Ψb

1); p1(2) ≡ (Ψc
1|Ψc

1) (50)

p1,2({1, 2}, 1) ≡ (Ψa
2|Ψa

2); p1,2(1, 1) ≡ (Ψb
2|Ψb

2); p1,2(2, 1) ≡ (Ψc
2|Ψc

2) (51)

p1,2,3({1, 2}, 1, 1) ≡ (Ψa
3|Ψa

3); p1,2,3(1, 1, 1) ≡ (Ψb
3|Ψb

3); p1,2,3(2, 1, 1) ≡ (Ψc
3|Ψc

3) (52)

It is observed that p1({1, 2}) = p1(1) + p1(2) while interference exists among consecutive planes.
The targeted scenario for the relation between |Ψa

3), i.e., the superposition of |Ψb
3) and |Ψc

3), and |Ψc
3) is

as follows:

p1({1, 2})
1
> p1(2) (53)

p1,2({1, 2}, 1)
2
> p1,2(2, 1) (54)

p1,2,3({1, 2}, 1, 1)
3
< p1,2,3(2, 1, 1) (55)

The superposition of |Ψb
3) and |Ψc

3) on PL-1 increases the probability for the light to diffract at time t1 in
1
>.

In
2
>, the superposition constructively interferes to increase also the probability to diffract through the

slit on PL-2 at time t2. However, they destructively interfere in
3
<, decreasing the probability to diffract

through the slit on PL-3 at time t3. Assuming starting with the setup in Figure 3c, with the second slit
(the one with X1,2 > 0) open on PL-1, if the first slit is additionally opened as shown in Figure 3a, then
the probability for the light to diffract through PL-1 and PL-2 increases while decreasing the probability
to diffract through PL-3. The counterintuitive observation based on a classical logic with balls passing
through the slits is described as follows. We open the second slit on PL-1 and observe that the total number
of balls passed through them for a statistical experiment increases. It becomes more probable to pass
through PL-1 with two slits in a classically logical manner. Furthermore, the probability to pass through
the single slit on PL-2 or the the total number of balls passing through PL-2 somehow increases. However,
we observe that the probability to pass through the single slit on the consecutive PL-3 counterintuitively
decreases in spite of the fact that more balls are coming from the second plane. This is complementary to
the conventional spatial interference extensively studied in double-slit interference experiments.
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(a) (b) (c)

(d) (e)

Figure 3. Setup for constructive and destructive interferences in time for the probabilities to diffract through
each plane showing the history states (a) |Ψa

3) ≡ [P3,1]� [P2,1]�
(
[P1,1] + [P1,2]

)
� [ρ0] as the superposition

of |Ψb
3) and |Ψc

3), (b) |Ψb
3) ≡ [P3,1] � [P2,1] � [P1,1] � [ρ0], and (c) |Ψc

3) ≡ [P3,1] � [P2,1] � [P1,2] � [ρ0].
The targeted scenario with classically counterintuitive nature where a specific example of interference pattern
(represented as the number of lambs denoting the number of photons for a practical counting experiment)
for the cases of (d) two slits on PL-1 both open and (e) only the second slit open. The operation of closing
the first slit decreases the number of photons diffracted through PL-2 while counterintuitively increases the
number of photons through PL-3 since we classically expect a decrease. This scenario shows the interference
of histories at two different time instants for PL-2 and PL-3 with firstly constructive and then destructive
effects, respectively.

QPI modeling requires the calculation of ψ3,j(x3) in addition to ψ2,j(x3) for j ∈ [0, 1] as modeled
in Equation (30). The explicit parameters required for the calculation of both ψ2,j(x3) and ψ3,j(x3) are
presented in Section 4.

2.6. Numerical Results

Two different calculation scenarios are performed denoted by Sim1 and Sim2 as shown in Table 1.
Sim1 calculates violation of LGI while Sim2 shows an example of interference in time for the numerical
analysis of QPI. Physical parameters are monochromatic laser source wavelength λ = 650 (nm) as a widely
available resource, light velocity of 3 × 108 (m/s) in the z-direction, and h̄ = 1.05 × 10−34 (J × s) as
Planck’s constant. The wavelength allows another degree of freedom to be adapted based on experimental
design requirements or the targeted system design. The layouts used in the simulations Sim1 and Sim2 are
shown in Figure 4a,b, respectively. Furthermore, illustrative measurement setups for practically counting
the number of photons compared with the emitted photons in unit time are presented in Figure 4c,d in
order to calculate the probabilities p1({1, 2}) and p1,2({1, 3}, 2), respectively.



Entropy 2020, 22, 246 17 of 29

Table 1. Simulation and system parameters.

ID Property Value ID Property Value

Sim1

−→
X T

1 Ds + [−∆x 0 ∆x]× β1

Sim2

−→
X T

1 [−4 4]× β1
−→
X T

2 [−∆x 0 ∆x]× β2 X2,1 (µm) [0, 500]

∆x; Ds {7, 11}; [0, 3000] (µm) X3,1 (µm) [−600, 800]

t01 = t12 (ns) {0.1, 0.2} t01, t12, t23 (ns) 0.5, 0.2, 0.1

β1, β2 (µm) [1, 50], [1, 100] β1, β2, β3 (µm) 25, 35, 45

σ0 (µm) [10, 800] σ0 (µm) 200

Figure 4. The layouts used in (a) Sim1 and (b) Sim2, where for Sim2, the fixed values of the parameters are
σ0 = 200 (µm), t01 = 0.5 (ns), t12 = 0.2 (ns), t23 = 0.1 (ns), β1 = 25 (µm), β2 = 35 (µm), and β3 = 45 (µm)
in addition to the fixed values of the slit positions on the first plane. The practical measurement setups to
be utilized in future experiments are illustrated for the probabilities (c) p1({1, 2}) and (d) p1,2({1, 3}, 2).
The measurement planes count the detected number of photons compared with the number of photons
emitted by the source in unit time.
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2.6.1. Violation of LGI

There are two planes (PL-1 and PL-2) as shown in Figures 2 and 4a. The slit positions on PL-1 and
PL-2 are set to Ds + [−∆x 0 ∆x]× β1 and [−∆x 0 ∆x]× β2, respectively, where the positions on PL-1 are
shifted with varying Ds and the ratio of inter-slit distances to the slit widths is fixed in both planes. ∆x is
chosen larger than seven to realize independence of Gaussian slits, i.e., exp((X1,i − X1,i+1)

2 / 2 β2
1)� 1.

The distance between the planes is set to L such that the time duration is t01 = t12 ≡ L / c. Gaussian source
parameter σ0 is varied between 10 (µm) and 800 (µm), compatible with standard laser resources including
fiber lasers allowing smaller diameters reaching tens of micrometers.

The shift of the slits on PL-1 results in varying levels of temporal correlation for the diffraction through
the slits on PL-2. LGI violation (KA − KV) is analyzed for varying Ds, t01 = t02, β1, β2, and σ0. In Figure 5a,
it is shown with the signaling level (KV − 1) for varying Ds for t01 = 0.2 (ns), t12 = 0.1 (ns), ∆x = 7,
β1 = 15 (µm), β2 = 30 (µm), and σ0 = 130 (µm). The maximum violation is analyzed for different values
of Q1,i1,1 and Q2,î2

for i1,1 ∈ [1, 3] and î2 ∈ [1, 4], respectively, and the signs maximizing the violation are
chosen for each Ds shift. In Figure 5b, distributions of the sign assignments maximizing the violation are
shown. Different setups realized with varying shift on PL-1 result in different optimized sign assignments
for maximum violation. Furthermore, violation decreases as the interplane slit distance increases, i.e.,
decreasing to zero with KA = KV ≈ 1. It is observed that LGI is violated significantly, reaching close to 0.3
for the specific setup shown in Figure 5a. The signaling ∑4

k=1 |∆S(k)| is close to zero, as shown in Figure 5a
for the marked region between the violation peaks. In the next simulations, the signaling is shown to
decrease approximately to zero for varying setup values. It is shown as a proof of concept in Figure 6a that
the amount of signaling is KV − 1 ≈ 2.3× 10−3 for a violation of KA − KV ≈ 0.2122 while satisfying NIM
and signaling-in-time-related assumptions discussed in Reference [16] and utilizing a NIM-free violation.
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Figure 5. (a) LGI violation (KA − KV) and signaling (KV − 1 ) for varying Ds, where t01 = 0.2 (ns),
t12 = 0.1 (ns), ∆x = 7, β1 = 15 (µm), β2 = 30 (µm), and σ0 = 130 (µm) and (b) the corresponding
dichotomic sign assignments for ambiguous measurements maximizing the violation for each Ds.

In Figure 6, the effects of varying ∆x, σ0, and t01 = t12 on the violation of LGI are shown for
varying β1 and β2 pairs. Ds and the signs of Q1,i1,1 and Q2,î2

for i1,1 ∈ [1, 3] and î2 ∈ [1, 4], respectively,
are chosen to maximize the violation for each pair and specific σ0 value. β1 and β2 are chosen in the
sets {5, 10, 15, . . . , 50} (µm) and {10, 20, 30, . . . , 100} (µm), respectively, while choosing the maximum
violation pairs. Similarly, Ds is chosen in the interval of [1, 1000] (µm) with the resolution of 1 (µm). There
are important various observations for the specific simulation constraints in Table 1 which can be further
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improved by increasing the range of values and the resolution in simulations such as for the values of
β1, β2, and Ds. However, the provided simple parameter set shows LGI violation under no-signaling
conditions as a proof of concept. More specific observations provide more information about the nature of
LGI violations for MPD setup as discussed next.

10 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

+ o *

0 200 400 600 800
0

25

50

20

40

60

80

o o o

(a) (b)

20 40 60 80 100

10

20

30
0.1

0.2

0.3

0.4

50 100

10

20

30
0.1

0.2

0.3

0.4

20 40

10

20

30

0.1

0.2

0.3

(c) (d) (e)

200 400 600 800
0

500

1000

1500

2000

2500

200 400 600 800
0

0.05

0.1

0.15

0.2

0.25

0.3

(f) (g)

Figure 6. (a) Maximum LGI violation (KA − KV) and the corresponding amount of signaling (KV − 1)
for varying σ0, ∆x, and t01 = t12 and (b) the corresponding values of β1, β2, and Ds maximizing the
violation for each σ0 assuming fully coherent sources. Maximum violation for varying (β1, β2) pairs for
fully coherent sources where (c) ∆x = 7 and t01 = t12 = 0.1 (ns) at the maximizing σ0 = 30 (µm), (d) ∆x = 7
and t01 = t12 = 0.2 (ns) at σ0 = 230 (µm), and (e) ∆x = 11 and t01 = t12 = 0.1 (ns) at σ0 = 150 (µm). It is
observed that there is a large set of slit pairs and beam width resulting in LGI violation reaching ≈ 0.4
for ∆x = 7 and ≈ 0.23 for ∆x = 11, respectively, while there are local peaks for (β1, β2) pairs for all cases.
Increasing t01, t12 values expands the (β1, β2) pairs for similar values of violations. (f) The comparison
of the spatial coherence diameters Dc with the diffraction setup diameters D1 and D2 for the first and
second planes, respectively, where the targeted case is ∆x = 11 and t01 = t12 = 0.1 (ns), i.e., analyzed as the
red curve in Figure 6a, and (g) the corresponding LGI violation curve plotted again by emphasizing the
coherence including the peak points.
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It is observed in Figure 6a that violation becomes smaller as the relative distance between slits
compared with the slit width parameter β increases from ∆x = 7 to ∆x = 11 for t01 = t12 = 0.1 (ns).
Furthermore, σ0 values maximizing the violation and the functional behavior with respect to varying
σ0 are approximately the same as ∆x changes for fixed t01 = t12. The range of violation reaches ≈ 0.4
and ≈ 0.23 for ∆x = 7 and ∆x = 11, respectively, while decreases as ∆x increases. The signaling term is
approximately zero for the ∆x = 11 case with the maximum violation amplitude of KA − KV ≈ 0.2122 as
emphasized previously. It is an open issue to design MPD setups maximizing the violation, e.g., similar to
the boundary value of 0.5 observed in conventional QM setups or 0.464, as calculated in Reference [16]
with inverted measurements for a three-level quantum optical system. Optimum slit width maximizing
violation for each σ0 decreases as ∆x increases, as shown in Figure 6b. In other words, as ∆x increases,
β1 and β2 are getting smaller to stabilize ∆x× β1 and ∆x× β2 for better violation. As a result, increasing
the relative inter-slit distance results in more classical behavior while decreasing violation. On the other
hand, increasing σ0 further does not have any effect on the optimum β1, β2, and Ds as the source behaves
as a plane wave for the specific setup. Violation amplitudes with respect to different β1 and β2 pairs for
the maximizing σ0 values (extracted from Figure 6a) of 30 (µm) and 150 (µm) for ∆x = 7 and ∆x = 11,
respectively, are shown in Figure 6c,e, respectively, for t01 = t12 = 0.1 (ns). There is a decrease in both
the range of β1 and β2 values and the maximum violation for ∆x = 11. On the other hand, increasing
interplane distance two times, i.e., making t01 = t12 = 0.2 (ns), is observed not to change the maximum
violation regime of 0.4 while increasing both the value of σ0 for the maximum violation to 230 (µm),
as shown in Figure 6a, and the (β1, β2) values giving the maximum violation amplitudes, as shown in
Figure 6d. Increasing interplane distance improves the spread of the wave function on the consecutive
plane while requires larger widths of source beam and slits in order to have similar violation amplitudes.

The results in Figure 6 assume fully coherent source both temporally and spatially. The realistic
modeling of the temporal and spatial coherence of the light source is presented in Section 4.2. In our
simulations, the total duration that light propagates is smaller than 1 ns, i.e., corresponding to≈ 10−9× 3×
108 = 30 (cm), which is much smaller than the temporal coherence time of the conventional single-mode
lasers, i.e., ∆t > 10−6 (s) for single-mode fiber lasers with ∆ f of a few KHz [34]. On the other hand, the
analysis of the spatial coherence is realized by defining the setup diameters D1 and D2 on the first and
second planes, respectively, for the areas covering the slits. Then, these are compared with the spatial
coherence diameter defined in Equation (58) depending on the duration of the propagation t from the
source to the diffraction plane and on the standard deviation of the Gaussian source denoted by σ0.
The detailed modeling and discussion are provided in Section 4.2, where the spatial coherence diameters
Dc and diffraction setup diameters D1 and D2 are described and it is targeted that Dc is larger than both D1

and D2 as described in Equations (59) and (60). Then, Dc(t01, σ0) corresponds to the propagation from the
source to the first plane and Dc(t12, β1) is for the propagation from the first plane to the second plane. It is
assumed that the Gaussian slit modifies the diffracted wave with β1 as the new source standard deviation
while leaving the analysis with respect to the parameters of the wave function in Equation (5), e.g., A1, as
an open issue, as discussed in Section 4.2. Assume that the analysis providing the minimum signaling
with ∆x = 11 and t01 = t12 = 0.1 (ns) is targeted for coherence. In Figure 6f, the comparisons of Dc(t01, σ0)

vs. D1 and Dc(t12, β1) vs. D2 are shown. It is observed that the spatial coherence diameter covers the
simulation parameters for both the peak and no-signaling cases. The LGI violation curve for ∆x = 11 in
Figure 6a is plotted again in Figure 6g by also emphasizing the violation amplitudes for the simulation
parameters in Figure 6f. It is an open issue to design MPD setups compatible with the coherence properties
of the practical sources while satisfying quantum properties including the violation of LGI.
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2.6.2. QPI Analysis

The three-plane setup (PL-1, PL-2, and PL-3) shown in Figure 3 is numerically analyzed for fixed
values of β1 = 25 (µm), β2 = 35 (µm), β3 = 45 (µm), σ0 = 200 (µm), t01 = 0.5 (ns), t12 = 0.2 (ns),
t23 = 0.1 (ns), and

−→
X T

1 = [−4 4] × β1. Sampling value of Ts = 1 (µm) is utilized in the analysis.
Constructive and destructive interferences of two different paths at times t2 and t3, respectively, are
performed by designing the slit positions with respect to spatial constructive and destructive interferences
on PL-2 and PL-3, respectively. In Figure 7a, single slit position for PL-2, i.e., X2,1, is chosen on
the constructive interference regions, where |ψ2,0(x2) + ψ2,1(x2)| is larger than |ψ2,1(x2)| due to the
superposition. Then, for each constructive X2,1 slit position, the destructive interference regions
on PL-3 such that |ψ3,0(x3) + ψ3,1(x3)| is smaller than |ψ3,1(x3)| are searched while the magnitudes
max

x3

{
|ψ3,0(x3) + ψ3,1(x3)|2 − |ψ3,1(x3)|2

}
and the corresponding X3,1 = x3 are shown in Figure 7b,c,

respectively. It is observed that X2,1 ≈ 140µm maximizes the destructive interference while the
corresponding wave function amplitude on PL-3 is shown in Figure 7d, showing the the maximum
destructive interference at X3,1 ≈ 143µm. Then, for each (X2,1, X3,1) pair, probability amplitudes of
the histories are shown in Figure 7e with the marked areas where constructive interference occurs
on PL-2 but with the destructive interference obtained on PL-3. The conditions with counterintuitive
nature in Equations (53)–(55) for interference in time are satisfied. The top two pairs of curves satisfy
p1({1, 2}) > p1(2) and p1,2({1, 2}, 1) > p1,2(2, 1) due to the constructive interference while the bottom
pair of the curves satisfies p1,2,3({1, 2}, 1, 1) < p1,2,3(2, 1, 1). In other words, the probability for the light to
diffract through the second plane is decreased after blocking the first slit on PL-1 which counterintuitively
results in an increase for the diffraction probability through the third plane. As a result, the proposed
design of the setup and utilization of spatial interference result in interference of the quantum paths in
time for the projection histories with classically counterintuitive probabilistic results.

Besides that, similar to the analysis of spatial and temporal coherence properties of the violation of
LGI, the parameter set resulting in the maximum constructive and destructive interferences on PL-2 and
PL-3, respectively, is analyzed for compatibility with the coherence of practical sources. The inequalities
defined in Equations (61)–(63) in Section 4.2 are targeted to be satisfied where the spatial coherence
diameter Dc and diffraction setup diameters D1, D2, and D3 are described. The inequalities are calculated
for the defined group of σ0, β1, β2, β3, t01, t12, and t13, where X3,1 is given in Figure 7c and X2,1 ∈ [140, 170]
(µm) is targeted. It is found that the practical coherence properties are satisfied as shown in Figure 7f
comparing Dc(t12, β1) with D2 and Dc(t23, β2) with D3 where Dc(t01, σ0) ≈ 607 (µm) > D1 ≈ 270 (µm).
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Figure 7. (a) |ψ2,0(x2) + ψ2,1(x2)|2 compared with |ψ2,1(x2)|2 and |ψ2,0(x2)|2 for diffraction through the
layer PL-2, (b) max

x3

{
|ψ3,0(x3) + ψ3,1(x3)|2 − |ψ3,1(x3)|2

}
for varying X2,1 on PL-3 such that destructive

interference is maximized for each X2,1 with respect to x3 while X2,1 ≈ 140µm maximizes the destructive
interference, (c) X3,1 maximizing the destructive interference for varying X2,1, (d) the comparison of
|ψ3,0(x3) + ψ3,1(x3)|2 and |ψ3,1(x3)|2 on PL-3 for specific X2,1 ≈ 140µm showing the destructive
interference maximized with X3,1 ≈ 143µm, and (e) the marked regions satisfy the counterintuitive
scenario in (53)–(55) for varying X2,1 with the corresponding X3,1 pair in Figure 7c. Constructive and
destructive interferences are observed for diffraction through PL-2 and PL-3, respectively, with different
kinds of correlation of the paths at different times as a proof-of-concept numerical simulation of quantum path
interference (QPI) in time between the two paths. (f) The comparison of setup diameters on the second and
third planes, i.e., D2 and D3, respectively, with the spatial coherence diameters Dc(t12, β1) and Dc(t23, β2),
respectively, in the targeted range of X2,1 ∈ [140, 170] (µm) in Figure 7e.

3. Discussion and Conclusions

In this article, two novel resources for quantum technologies, i.e., QPE and QPI, are introduced based
on tensor product structure of quantum history states for the simple linear optical setup of MPD. Operator
theory modeling is presented by combining conventional history-based approaches of Griffith [3–5] and
entangled histories framework of Reference [1] with FPI modeling. The inherent Feynman path generation
mechanism of MPD setup is exploited for realizing quantum trajectories and for studying quantum
temporal correlations. Following the similar terminology of entangled quantum trajectories in previous
formulations, the temporal correlation among the quantum propagation paths of MPD design is denoted
with QPE as a novel quantum resource. The state of the light after diffraction through consecutive planes
is represented as a superposition of different trajectories through the slits as the main definition of QPE. Its
two fundamental properties are theoretically and numerically analyzed: violation of LGI as the temporal
analog of Bell’s inequality with the ambiguous form and no-signaling recently proposed by Emary [16] and
QPI as a counterintuitive phenomenon defining the quantum interference of histories. LGIs are violated
reaching > 0.2 with a NIM-free formulation complementing the recent experimental implementation of
the violation of LGI in Reference [19] utilizing linear polarization degree of freedom of the classical light
with a photon-counting simple MPD setup of classical light. Besides that, it is an open issue to further
design novel structures allowing the implementation of specific QPE states in analogy with GHZ states
experimentally implemented for entangled trajectories [11].

Furthermore, QPI is numerically analyzed for a scenario where the decrease in the number of
photons diffracting through a plane counterintuitively results in an increase in the number of photons
diffracting through the next plane due to interference between two quantum history or trajectory states.
MPD design introducing QPE and QPI is providing a test bed to understand the nature of temporal
correlations improving our understanding of quantum mechanics and to design novel structures exploiting
history-based formulation for practical purposes of quantum technologies. The simplicity of both the
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setup and proposed theoretical modeling allows varying kinds of gedanken experiments for implementing
paradoxes emphasizing the quantum nature with counterintuitive scenarios.

MPD has significantly low experimental complexity, relying on light sources of finite spatial and
temporal coherence combined with conventional intensity detection or photon counting by promising
near-future implementations. The experimental implementation is further simplified based on the mature
science of Fourier optics with recent proposals in Reference [9]. Experimental and simulation studies
for single-plane diffraction architectures verify the proposed theoretical modeling based on Fresnel
diffraction of Fourier optics [30] and FPIs [31,35,36]. Therefore, proposed MPD theory simply extends
previous modeling to multiple planes with FPI approach. One of the experimental challenges is the
design of Gaussian slit, while any slit mask can be represented in terms of Gaussian basis as discussed
in Reference [9]. Furthermore, based on the results in this article, any slit mask is potentially expected
to have unique MPD setup parameters resulting in both the violation of LGI and QPI as a future work
both to theoretically design and to experimentally verify. Moreover, these experimental implementations
require only the calculation of total photon counts on the total area of the specific slits. This simplifies the
slit design by allowing various geometries and the experimental setup regarding the detectors related to
the size, position, precision, and noise [37]. The overall number of photon counts is satisfied more easily
compared with detailed representations of the interference pattern in spatial basis.

QPE as an entanglement resource promises future applications for computing [8,9],
communications [10], and varying quantum technologies while enriching the conventional resources
of quantum entanglement based on correlations among multiple spatial quantum units. In addition,
MPD-based formulation of QPE and QPI allows future studies emphasizing the importance of time in QM
fundamentals such as regarding entanglement in time [7,38,39], quantum cosmology, and gravity [40–42].

4. Methods

4.1. Parameters for FPI Modeling of the Violation of LGI

LGI and wave functions are modeled with FPI modeling [8], and the resulting parameters
to be utilized in Equations (5), (30), (39), and (40) are provided in Table 2. The functions
utilized in Equations (39) and (40) are defined as follows, where the variables ki for i ∈ [1, 11]
defined in Table 2 depend on the system setup parameters t01, t12, β1, β2, and σ0, where
f1(x,~l) ≡ ek10x2

+ ~lT~e4, f2(y) ≡ −2 1T
3 ~gy − ∑3

i=1 e1(X1,i, y), f1,2(x, y,~l) ≡ ~lT ~gy + e1(x, y),
fV(y) ≡ G1 1T

3 ~gy, fT ≡ 1T
3 ~e4, c(x1, x2, y) ≡ cos

(
k1(x2

1 − x2
2) + k2 (x1 − x2) y

)
, e1(x, y) ≡

e−2 k3 y x− k4 y2 + k5 x2
, e2(x1, x2, y) ≡ ek6 (x2

1 + x2
2)− k3 (x1 + x2) y− k4 y2+k7 x1 x2 , e4(x1, x2) ≡ ek8 (x2

1 + x2
2)+k9 x1 x2 ,

~e4 ≡ [e4(X1,1, X1,2) e4(X1,1, X1,3) e4(X1,2, X1,3)]
T , gi1 ,̃i1

(y) ≡ c(X1,i1 , X1,̃i1
, y) e2(X1,i1 , X1,̃i1

, y), ~gy ≡

[g1,2(y) g1,3(y) g2,3(y)]
T , G1 ≡ G2 β1 β2 m2 σ0

√
(β2

1 + dt,σ) / k11, G2 ≡ 1 /
(

∑3
i=1 e−X2

1,i / (β2
1+dt,σ)

)
, dt,σ ≡

at,σ/(m2σ2
0 ), Ξi ≡ β2

i + σ2
0 , ϑt ≡ m σ2

0 + ı h̄ t0,1, and 13 = [1 1 1]T . Besides that, the explicit parameters
required for the calculation of ψ3,i(x3) for i ∈ [0, 1], i.e., two different paths through two different slits on
the first plane and the single slit both on the second and the third planes, are shown in Table 3 based on
the iterative modeling in Reference [8].
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Table 2. Parameters for modeling LGI and path integrals
(
ψ2,i(x2) for i ∈ [0, 2] : three paths

)
.

Formula Formula Formula

k1
−h̄ m t12(at,σ + h̄2 t01 t12)

2 k11
k8 − 1

4
( 1

β2
1
+ 1

β2
1 + dt,σ

)
ξ1

β2
1 m ϑt(

β2
1 m (m σ2

0 + ı
√

bt) + ı h̄ t1,2 ϑt

)
k2 h̄ m3 σ2

0 t12
(

β2
1 + dt,σ

)
/ k11 k9

1
2
( 1

β2
1
− 1

β2
1 + dt,σ

)
A1

−β2
1 m2(h̄2 t2

0,1 +m2 σ2
0 Ξ1)

(2 αt,σ,β)

k3
(
− β2

1m2(at,σ + h̄2 t01 t12)
)

/ k11 k10 −1 / (β2
1 + dt,σ) B1

(
β4

1 m3 h̄ t0,1 +m h̄ t1,2(h̄2 t2
0,1 +m2 Ξ2

1)
)

(2 αt,σ,β)

k4 β2
1 m4 σ2

0 (β2
1 + dt,σ) / k11 k11

β4
1 m2 (m2 σ2

0 Ξ2 + bt
)

+ β2
1m2 (β2

2 at,σ + 2 ct,σ
)

+ h̄2 t2
12 at,σ

HR,1
−m2

(
β2

1(bt +m2σ4
0 ) + ct,σ

)
(2 αt,σ,β)

k5
−m2

(
β2

1(m
2 σ2

0 Ξ2 + bt) + ct,σ
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k11

at,σ,
bt,
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h̄2 t2
01 + m2σ4

0 ,
h̄2 (t01 + t12)
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h̄2 σ2
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12
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m h̄ t1,2(at,σ + h̄2 t0,1 t1,2)

(2 αt,σ,β)

k6

−m2(2 β2
1 (m

2 σ2
0 Ξ2 + bt)

)
/ (4 k11)

+ m2(−β2
2 at,σ − 2 ct,σ) / (4 k11) αt,σ,β

β4
1m2 (bt + m2σ4

0
)

+ 2 β2
1 m2 ct,σ

+ h̄2 t2
1,2 at,σ

c1 β2
1 m2

(
at,σ + h̄2 t0,1 t1,2

)
/ αt,σ,β

k7 β2
2 m2 at,σ / (2 k11) χ0 π−1/4

√
m σ0

m σ2
0 + ı h̄ t0,1

d1
−m h̄ t1,2(h̄2t2

0,1 +m2 σ2
0 Ξ1)

αt,σ,β

Table 3. Parameters for modeling the path integrals of QPI
(
ψ3,i(x3) for i ∈ [0, 1] : two paths

)
.

Formula Formula j ∈ [1, 2] Formula
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(
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2 h̄ t2,3
2 ı ς2
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2 ı ς j
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ζ j

4 Bj−1 β4
j h̄ m tj,j+1 + β4

j m2
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d 2
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2 Aj−1 β2

j − 1
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/ ζ j

A0 −m2σ2
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0,1 + 2 m2σ4
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2 m2 (2 A1 β2

2 − 1)
2 ζ2
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ξ j
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2 ζ2
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4.2. Temporal and Spatial Coherence of the Light Sources

The coherence of the light field is characterized both temporally and spatially [43]. Its temporal
coherence length is inversely proportional to the the full width half maximum (FWHM) of the emission
peak in the wavelength spectrum as follows [43,44]:

∆l ≡ ∆t c =

√
2 ln2
π nr

λ2

∆λ
(56)

where nr is the refractive index of the medium and ∆λ is the wavelength domain representation of
the spectral width. The interference fringes in a double-slit experiment performed with this source are
observed if the path length difference between different paths through the slits is smaller than ∆l as
described in Reference [43].

Spatial coherence depends on the size of the light field source where it is experimentally characterized
with double-slit interference experiment as clearly described in Reference [43], as shown in Figure 8a.
The source is assumed to have a side length ∆s, and ∆θ is the angle from the slits separated with Dc to the
center of the source. The distance between the source and slit planes is L. Then, spatial coherence distance
Dc satisfies the following relation for the interference fringes to be observed:

∆θ ∆s ≤ λ (57)

In Reference [45], more detailed calculation of the spatial coherence diameter of the 2D Gaussian intensity
source I(x0, y0) = I0 exp

(
− (x2

0 + y2
0) / (2 σ2

0 )
)

is achieved by using van Cittert–Zernike theorem [46].
It is observed that an incoherent source of uniform intensity with circular diameter ∆s results in Dc ∝
λ L / (π ∆s) while the coherence diameter of an incoherent source with Gaussian-distributed intensity and
the standard deviation of a propagating coherent Gaussian source are both some multiple of λ L / (π σ0).
Therefore, in this article, it is assumed that Dc is given by the beam width of the propagating Gaussian
wave, which is approximated as 2

√
2 σD for the far field, as shown in Figure 8b, where the intensity drops

to 1/e2 at Dc / 2. The accuracy of the estimation is further improved to include near field due to the diverse
parameter ranges of the LGI and time domain interference setups as follows:

Dc(t, σ0) ≈ 2
√

2 σD =
2√
−A0

(58)

where σD ≡ 1 /
√
−2 A0 for A0 < 0 since the free-space propagating Gaussian wave function on the

detector plane ΨD(x) is proportional to exp(A0 x2 + ı B0 x2), A0 = −m2 σ2
0 / (2 h̄2 L2 / c2 + 2 m2 σ4

0 ), and
t ≡ L / c based on trivial application of FPI kernel in Equation (4). The slit positions on the first plane
should be inside the coherence area for the proposed numerical simulations to be more compatible with
the future experimental implementations.

In numerical simulations of Sim1 for the violation of LGI with two planes of triple slits, the position
of the furthest edge of a slit on PL-1 is found by Ds + ∆x β1 +

√
2 β1 for Ds > 0 by assuming that the

Gaussian slit has a width of 2
√

2 β1 similar to the Gaussian source formulation. Then, for the specific set
of (σ0, Ds, β1, ∆x) shown in Figure 6a,b, the simulation results are reliable if the slits are in the spatial
coherence area formulated as follows:

Dc(t01, σ0) ≥ D1 ≡ 2
(

Ds + (∆x +
√

2) β1
)

(59)

where D1 corresponds to the diameter of the area on PL-1, where the slits reside as shown in Figure 8c.
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(a) (b)

(c) (d)

Figure 8. (a) The conventional modeling for the spatial coherence of light sources based on double-slit
diffraction [43], where ∆θ ∆s ≤ λ is required for the fringes to be observed determining the spatial coherence
diameter (Dc); (b) free-space propagation of Gaussian beam, where Dc is approximated as the 1/e2 intensity
beamwidth of 2

√
2 σ0 with the standard deviation of σD. The descriptions of the calculation of the setup

diameters on the planes to include the slits are denoted by Dj for j ∈ [1, 3] with respect to the location
and the standard deviation of the source on the previous plane (σ0 for the first plane and β j−1 for the
jth plane) for (c) LGI violation numerical analysis Sim1 with two planes of triple slits on each plane and
(d) interference in time scenario Sim2 with three planes.

Similarly, the maximum difference between the positions of the slits on PL-1 and PL-2, i.e., the upper
slit on PL-1 and the lower slit on PL-2, is calculated by using D2 ≡ 2

(
Ds + (∆x +

√
2) β1

)
+ 2 (∆x +√

2) β2. It is assumed that the projected light through the slit on the (j− 1)th plane has spatial coherence
larger than Dc(tj−1,j, β j−1) by assuming that the slit masking modifies the beam width to ≈ 2

√
2 β j−1.

More accurate analysis left as an open issue requires formulation of the coherence for the wave function
ψj,n(xj) for each nth path in Equation (5) by also considering the parameter Aj for calculating the beam
width on the jth plane instead of utilizing −m2 β2

j−1 / (2 h̄2 L2 / c2 + 2 m2 β4
j−1) calculated by replacing σ0

with β j−1 in the expression of A0. Then, the validity of the simulation requires the following inequality
between PL-1 and PL-2:

Dc(t12, β1) ≥ D2 (60)
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Similar formulations for Sim2 with three planes as shown in Figure 8d for the time domain interference
result in the following requirements for the results in Figure 7 to be compatible with the sources practically
not fully coherent:

Dc(t01, σ0) ≥ D1 ≡ 2
(
∆x +

√
2
)

β1 (61)

Dc(t12, β1) ≥ D2 ≡ 2 ∆x β1 + 2 X2,1 + 2
√

2 β2 (62)

Dc(t23, β2) ≥ D3 ≡ 2
(
|X3,1 − X2,1| +

√
2β3
)

(63)

Funding: This research was funded by Ozyegin University Research Grant.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish
the results.

Abbreviations

MPD Multiplane diffraction
QC Quantum computing
QM Quantum mechanical
QPE Quantum path entanglement
QPI Quantum path interference
FPI Feynman’s path integral
LGI Leggett-Garg Inequality
MR Macroscopic realism
NIM Non-invasive measurability
SIT Signaling-in-time
GHZ Greenberger-Horne-Zeilinger
FWHM Full width half maximum
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